Abstract:
Systems and methods for generating periodic signals with reduced duty cycle variation are described. In some cases, a calibration procedure may be performed prior to a memory operation (e.g., prior to a read operation or a programming operation) in which a duty cycle correction circuit receives an input signal (e.g., an input clock signal), steps through various delay settings to determine a first delay setting corresponding with a signal high time for the input signal and a second delay setting corresponding with a signal low time for the input signal, generates a delayed version of the input signal corresponding with a mid-point delay setting between the first delay setting and the second delay setting, and generates a corrected signal using the delayed version of the input signal and the input signal.
Abstract:
In a chip-to-chip signaling system includes at least one signaling link coupled between first and second ICs, the first IC has an interface coupled to the signaling link and timed by a first interface timing signal. The second IC has an interface coupled to the signaling link and timed by a second interface timing signal that is mesochronous with respect to the first interface timing signal. The second IC further has phase adjustment circuitry that adjusts a phase of the second interface timing signal using a digital counter implemented with Josephson-junction circuit elements.
Abstract:
Some embodiments include an apparatus that comprise an interface chip having an oscillator to produce an original clock signal, a first memory chip having first memory cells, and a second memory chip having second memory cells. The first memory cells may be refreshed in response to a first clock signal based on the original clock signal. The second memory cells may be refreshed in response to a second clock signal based on the original clock signal.
Abstract:
Apparatuses and methods for capturing data using a divided clock are described. An example apparatus includes a clock divider configured to receive a DQS signal, and to provide divided clock signals. A divided clock signal of the divided clock signals has a frequency that is less than a frequency of the DQS signal. The example apparatus further includes a command circuit configured to receive a command, and to assert one of a plurality of flag signals based on the divided clock signals and on a defined latency from a time of receipt of the command. The example apparatus further includes a data capture circuit configured serially receive data associated with the command and to provide deserialized data responsive to the divided clock signals. The data capture circuit is further configured to sort the deserialized data based on the asserted one of the plurality of flag signals to provide sorted data.
Abstract:
Systems and methods for delay control are described herein. In one embodiment, a delay circuit comprises a first delay path and a second delay path. The delay circuit also comprises a plurality of switches, wherein each switch is coupled between different points on the first and second delay paths, and each switch is configured to turn on or off in response to a respective one of a plurality of select signals. The delay circuit further comprises a multiplexer having a first input coupled to an output of the first delay path, a second input coupled to an output of the second delay path, and an output coupled to an output of the delay circuit, wherein the multiplexer is configured to selectively couple one of the outputs of the first and second delay paths to the output of the delay circuit in response to a second select signal.
Abstract:
Provided is a device for use in a memory module coupled to a host memory controller over a bus, comprising memory module control logic to generate a request signal to a host memory controller having a pulse width greater than or equal to a minimum pulse width, wherein the minimum pulse width comprises a number of clock cycles needed to guarantee that the host memory controller detects the request signal, and wherein the pulse width of the request signal indicates at least one function in addition to the request signal to the host memory controller.
Abstract:
This disclosure provides examples of circuits, devices, systems, and methods for generating a reference clock signal and delaying a received clock signal based on the reference clock signal. In one implementation, a circuit includes a control block configured to generate a control signal. The circuit includes an oscillator configured to generate a reference clock signal. The oscillator includes a plurality of delay elements each configured to receive the control signal and to introduce a delay in the reference clock signal based on the control signal. The delay elements of the oscillator are arranged to generate the reference clock signal. The circuit further includes a delay block configured to receive a clock signal and to generate a delayed clock signal. The delay block includes one or more delay elements each configured to receive the control signal and to introduce a delay in the clock signal based on the control signal.
Abstract:
A memory device can include a plurality of double data rate data (DDR) ports, each configured to receive write data and output read data on a same set of data lines independently and concurrently in synchronism with at least a first clock signal; an address port configured to receive address values on consecutive, different transitions of a second clock, each address value corresponding to an access on a different one of the data ports; and a memory array section comprising a plurality of banks, each bank providing pipelined access to storage locations therein.
Abstract:
A delay-locked loop (DLL) circuit is disclosed that can generate an output oscillation signal having a frequency that is an integer multiple of an input oscillation signal. The DLL includes a phase detector, a charge pump, and a voltage-controlled oscillator (VCO). The phase detector generates UP and DN control signals in response to a phase difference between a reference signal and a feedback signal. The charge pump generates a control voltage in response to the UP and DN control signals. The VCO adjusts the frequency of the output oscillation signal in response to the control voltage, generates the reference signal in response to the input oscillation signal, and generates the feedback signal in response to the output oscillation signal.