Abstract:
This invention relates to a method for making a high solids content, low viscosity, storage stable polyvinyl acetate emulsion in the absence of a protective colloid and employing a solubilizing comonomer and at least one emulsifier.
Abstract:
The present invention relates to single and dual reporter luminescence assays utilizing reagents to quench an optical, e.g., an enzyme-mediated luminescence, reaction. In one embodiment of the invention, a reagent is added to an assay which selectively quenches a first enzyme-mediated luminescence reaction without affecting a subsequent distinct enzyme-mediated luminescent reaction(s). An assay kit containing one or more selective quench reagents, and compositions comprising the quench reagent(s), are also provided.
Abstract:
A system and method for removing post-etch polymer residue from a surface of a substrate includes identifying a dry flash chemistry for removing the post-etch polymer residue from the surface of the substrate. The dry flash chemistry is configured to selectively remove the post-etch polymer residue left behind by an etch operation in a region where a feature was formed through a low-k dielectric film layer. The identified dry flash chemistry is applied using a short flash process to remove at least a portion of the post-etch polymer residue while minimizing the damage to the dielectric film layer. A wet cleaning chemistry is then applied to the surface of the substrate. The application of the wet cleaning chemistry aids in substantially removing the remaining post-etch polymer residue left behind by the short flash process.
Abstract:
Fabrication methods disclosed herein provide for a nanoscale structure or a pattern comprising a plurality of nanostructures of specific predetermined position, shape and composition, including nanostructure arrays having large area at high throughput necessary for industrial production. The resultant nanostracture patterns are useful for nanostructure arrays, specifically sensor and catalytic arrays.
Abstract:
The embodiments of the present invention provide improved materials for cleaning patterned substrates with fine features. The cleaning materials have advantages in cleaning patterned substrates with fine features without substantially damaging the features. The cleaning materials are fluid, either in liquid phase, or in liquid/gas phase, and deform around device features; therefore, the cleaning materials do not substantially damage the device features or reduce damage all together. The cleaning materials containing polymers of a polymeric compound with large molecular weight capture the contaminants on the substrate. In addition, the cleaning materials entrap the contaminants and do not return the contaminants to the substrate surface. The polymers of one or more polymeric compounds with large molecular weight form long polymer chains, which can also be cross-linked to form a network (or polymeric network). The long polymer chains and/or polymer network show superior capabilities of capturing and entrapping contaminants, in comparison to conventional cleaning materials.
Abstract:
A method is provided for treating the surface of high aspect ratio nanostructures to help protect the delicate nanostructures during some of the rigorous processing involved in fabrication of semiconductor devices. A wafer containing high aspect ratio nanostructures is treated to make the surfaces of the nanostructures more hydrophobic. The treatment may include the application of a primer that chemically alters the surfaces of the nanostructures preventing them from getting damaged during subsequent wet clean processes.. The wafer may then be further processed, for example a wet cleaning process followed by a drying process. The increased hydrophobicity of the nanostructures helps to reduce or prevent collapse of the nanostructures.
Abstract:
A method and system for cleaning a surface of a substrate after an etching operation includes determining a plurality of process parameters associated with the surface of the substrate. The process parameters define characteristics related to the surface of the substrate such as characteristics of the substrate surface to be cleaned, contaminants to be removed, features formed on the substrate and chemicals used in the fabrication operations. A plurality of application chemistries are identified based on the process parameters. The plurality of application chemistries includes a first application chemistry as an emulsion having a first immiscible liquid combined with a second immiscible liquid and solid particles distributed within the first immiscible liquid. The plurality of application chemistries including the first application chemistry are applied to the surface of the substrate such that the combined chemistries enhance the cleaning process by substantially removing the particulate and polymer residue contaminants from the surface of the substrate while preserving the characteristics of the features and of the low-k dielectric material through which the features are formed.
Abstract:
A method for cleaning the surface of a semiconductor wafer is disclosed. A first cleaning solution is applied to the wafer surface to remove contaminants on the wafer surface. The first cleaning solution is removed with some of the contaminants on the wafer surface. Next, an oxidizer solution is applied to the wafer surface. The oxidizer solution forms an oxidized layer on remaining contaminants. The oxidizer solution is removed and then a second cleaning solution is applied to the wafer surface. The second cleaning solution is removed from the wafer surface. The cleaning solution is configured to substantially remove the oxidized layer along with the remaining contaminants.