Abstract:
A multi-layer fiber coating is provided which, in an illustrative embodiment, includes: a ceramic grade Nicalon preform; a silicon carbide coat applied over the fibers; a boron nitride interface coat applied over the silicon carbide coat; wherein the boron nitride coat has a thickness of about 0.5 micron; a silicon carbide coat applied over the boron nitride coat; and wherein the silicon carbide has a thickness of about 2 micron. A multi-layer fiber coating, comprising: a Tyranno Lox-M fiber coated in tow form with 1 micron of silicon carbide by a chemical vapor deposition process and about 1 micron of silicon nitride; a silicon doped boron nitride coat is applied over the about 1 micron of silicon nitride; and wherein the doped boron nitride coat has a thickness of 0.3 micron is also provided. A multi-layer fiber coating, comprising: a T-300 carbon fiber preform; a coat that is graded from PyC to SiC is applied over the T-300 carbon fiber preform; wherein the graded PyC to SiC coat has a thickness of about 1.5 micron; a silicon doped boron nitride interface coat is applied over the graded PyC to SiC coat; wherein the silicon doped boron nitride interface coat has a thickness of about 0.5 micron; and a silicon carbide coat of 2 micron is applied over the silicon doped boron nitride interface coat, is also provided.
Abstract:
A fiber having an environmental barrier coating is provided that includes, in one illustrative form, a Hi Nicalon preform assembled in a tooling for chemical vapor infiltration and cleaned to remove sizing char from fibers of the Hi Nicalon preform; a ytterbium doped silicon carbide coat located over the Hi Nicalon preform; a boron nitride interface coat applied over the ytterbium doped silicon carbide coat; and a silicon carbide coat applied over the boron nitride interface coat.
Abstract:
Ceramic matrix composites include a fiber network and a matrix including layers of first and second materials. The first material may include SiC. The second material may include an element that when oxidized forms a silicate that is stable at high temperatures, and can be Si3N4 or SiCN. The interface layer can be BN or pyrolytic carbon. The element that when oxidized forms a silicate that is stable at high temperatures is selected from the group consisting of yttrium, ytterbium, dysprosium, erbium, gadolinium, scandium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, terbium, holmium, thulium, lutetium, zirconium, niobium, molybdenum, hafnium, tantalum, rhenium, tin, selenium and tellurium. The matrix layers are deposited by chemical vapor infiltration. The CMC can also be a ceramic matrix composite, including: a plurality of fibers; individual first matrix layers surrounding each fiber; and individual second matrix layers surrounding each of the individual first matrix layers, the individual second matrix layers including an element that when oxidized forms a silicate that is stable at high temperatures. Or alternatively, a ceramic matrix composite, including: a first fiber; a first matrix layer surrounding the first fiber; a second matrix layer surrounding the first matrix layer, the second matrix layer including an element that when oxidized forms a silicate that is stable at high temperatures; a second fiber; a third matrix layer surrounding the second fiber; a fourth matrix layer surrounding the third matrix layer, the fourth matrix layer including an element that when oxidized forms a silicate that is stable at high temperatures; and a fifth matrix layer surrounding the second matrix layer and the fourth matrix layer. The CMC can also be a ceramic matrix composite, including: a network of fibers; a first matrix layer, the first matrix layer including silica; and a second matrix layer, the second matrix layer including a silicate.