Abstract:
A method for treating a hydrocarbon containing formation is provided. In one embodiment, heat from one or more heaters may be provided to at least a portion of the formation. Heat may be allowed to transfer from the one or more heaters to a section of the formation. In certain embodiments, the heat from the one or more heaters may pyrolyze at least some hydrocarbons within the section. In an embodiment, a first fluid may be introduced into at least a portion of the formation. The portion may have previously undergone an in situ conversion process. A mixture of the first fluid and a second fluid may be produced from the formation.
Abstract:
A method for treating a hydrocarbon containing formation is provided. In one embodiment, heat from one or more heaters may be provided to at least a portion of the formation. Heat may be allowed to transfer from the one or more heaters to a section of the formation. In certain embodiments, the heat from the one or more heaters may pyrolyze at least some hydrocarbons within the section. In an embodiment, a first fluid may be introduced into at least a portion of the formation. The portion may have previously undergone an in situ conversion process. A mixture of the first fluid and a second fluid may be produced from the formation.
Abstract:
A method is described for inhibiting migration of fluids into and/or out of a treatment area undergoing an in situ conversion process. Barriers in the formation proximate a treatment area may be used to inhibit migration of fluids. Inhibition of migration of fluids may occur before, during, and/or after an in situ treatment process. For example, migration of fluids may be inhibited while heat is provided from heaters to at least a portion of the treatment area. Barriers may include naturally occurring portions (e.g., overburden, and/or underburden) and/or installed portions, such as frozen barrier zones, cooled by a refrigerant.
Abstract:
Disclosed is a new process and apparatus for steam reforming of any vaporizable hydrocarbon to produce H2 and CO2, with minimal CO, and no CO in the H2 stream, using a membrane steam reforming (MSR) reactor and flame-less distributed combustion (FDC) which provides great improvements in heat exchange efficiency and load following capabilities to drive the steam reforming reaction. The invention also pertains to a zero emission hybrid power system wherein the produced hydrogen is used to power a high-pressure internally manifolded molten carbonate fuel cell. In addition, the design of the FDC-MSR powered fuel cell makes it possible to capture good concentrations of CO2 for sequestration or use in other processes.