Abstract:
A technique is presented for simultaneously sorting a first biological entity from a second biological entity and aligning the first biological entity, in a desired region within a flow chamber of a flow cell. The flow chamber has a rectangular cross-section. A bottom flow input module, a top flow input module and a sample input module provide a first fluid, a second fluid, and the sample, respectively, to the flow chamber. The sample laminarly flows sandwiched between the first and the second fluids. By controlling flow rate of the first and/or the second fluid the sample flow is aligned adjacent to but distinct from the desired region. An acoustic transducer generates a standing acoustic wave having pressure node linearly arranged along an axis passing through the desired region thus moving, i.e. sorting, and simultaneously orienting, the first biological entity from the sample flow into the desired region.
Abstract:
A technique is presented for aligning, in a desired region within a flow chamber of a flow cell, a non-spherical biological entity carried in a sample. The flow chamber has a rectangular cross-section. A bottom flow input module, a top flow input module and a sample input module provide a viscoelastic first fluid, a second viscoelastic fluid, and the sample, respectively, to the flow chamber. The first and the second viscoelastic fluids laminarly flow along a bottom and a top wall of the flow chamber and the sample laminarly flows sandwiched between them. By controlling rate of flow of the first and/or the second viscoelastic fluids the sample flow, and thus the non-spherical biological entity, is focused in the desired region. A gradient of sheer within the sample flow set up due to the first and second viscoelastic fluids orients the non-spherical biological entity in the desired region.
Abstract:
The present invention relates to an improved method for marker-free detection of a cell type of at least one cell in a medium using microfluidics and digital holographic microscopy, as well as a device, particular for carrying out the method.
Abstract:
A computer-implemented method for analyzing digital holographic microscopy (DHM) data for hematology applications includes receiving a DHM image acquired using a digital holographic microscopy system. The DHM image comprises depictions of one or more cell objects and background. A reference image is generated based on the DHM image. This reference image may then be used to reconstruct a fringe pattern in the DHM image into an optical depth map.
Abstract:
Die Erfindung betrifft einen automatischen Analyzer zum Analysieren einer medizinischen Probe, der Analyzer umfassend eine Analysezelle für die Probe, ein Piezoelement und eine AnalyseVorrichtung, wobei das Piezoelement durch Anlegen einer Spannung und einer Frequenz betrieben werden kann und dabei ein akustisches Wellenfeld generiert, wobei eine sich in der Analysezelle befindende Probe bei Betrieb des Piezoelements in dem akustischen Wellenfeld befindet.
Abstract:
Es wird eine Vorrichtung (1, 2) zur Untersuchung von Partikeln (RBC, WBC, PLT) in einer zu untersuchenden Flüssigkeit beschrieben, die eine Fließpassage (F) umfasst, durch die die zu untersuchende Flüssigkeit (BL) bewegt wird. Die Fließpassage (F) weist mindestens einen Einlass (E3, E4) auf, durch den mindestens eine Mantelflüssigkeit (PF1, PF2) in die Fließpassage (F) strömt, derart, dass die mindestens eine Mantelflüssigkeit (PF1, PF2) mindestens einen Mantelstrom (MS1, MS2) in der Fließpassage (F) ausbildet. Die Vorrichtung (1, 2) umfasst außerdem eine Wellenerzeugungseinrichtung (WE2) zur piezoakustischen Erzeugung von Schallwellen (AW), welche sich transversal zur Fließrichtung der zu untersuchenden Flüssigkeit (BL) durch die Fließpassage (F) ausbreiten und Wellenknoten (KN) in einer Beobachtungsebene (BA) ausbilden, so dass aufgrund der Druckwirkung der Schallwellen (AW) in Transversalrichtung zu untersuchende Partikel (WBC, RBC, PLT) der zu untersuchenden Flüssigkeit (BL) in die Beobachtungsebene (BA) verschoben und dort angereichert werden.
Abstract:
A technique is presented for aligning, in a desired region within a flow chamber of a flow cell, a non-spherical biological entity carried in a sample. The flow chamber has a rectangular cross-section. A bottom flow input module, a top flow input module and a sample input module provide a first fluid, a second fluid, and the sample, respectively, to the flow chamber. The first and the second fluids laminarly flow along a bottom and a top wall of the flow chamber and the sample laminarly flows sandwiched between them. By controlling rate of flow of the first and/or the second fluid the sample flow, and thus the non-spherical biological entity, is focused in the desired region. An acoustic transducer generates a standing acoustic wave having pressure node linearly arranged along an axis passing through the desired region to orient the non-spherical biological entity in the desired region.
Abstract:
The present technique presents a method for determining a characteristic of a biological corpuscular entity in a biological sample obtained from a subject. In the method, the biological sample including the biological corpuscular entity in its native morphological form is provided. To the biological sample, a reagent mixture is mixed including at least a fixative in the reagent mixture. The fixative maintains the native morphological form of the biological corpuscular entity. Subsequently, the biological sample is inspected with an interferometric microscopy device to obtain an interference pattern representing the biological corpuscular entity in the native morphological form. Finally in the method, the interference pattern is analyzed to determine the characteristic of the biological corpuscular entity in the native morphological form. Thus a volumetric and/or morphological study of the biological corpuscular entity is performed in the native morphological form.
Abstract:
A technique for focusing a sample into a desired region in a flow cell is presented. The flow cell includes a bottom flow input module, a sample input module, a top flow input module and a flow chamber having a rectangular cross-section. The desired region is in the flow chamber. The bottom flow, the top flow and the sample input modules receive and provide a first fluid, a second fluid, and the sample respectively, to the flow chamber. The first and the second fluids laminarly flow along the bottom and the top wall from one end towards another end of the flow chamber. The sample laminarly flows sandwiched between the top and the bottom laminar flows. The bottom and the top flow input modules respectively control a rate of flow of the first fluid and a rate of flow of the second fluid in the flow chamber.