Abstract:
In an embodiment, a method includes receiving, from a computing device, (i) a user identifier, (ii) a vehicle identifier for a vehicle, and (iii) contextual information related to vehicle service content currently displayed on the computing device. Based on the contextual information, the method includes determining a vehicle scan tool function to perform on the vehicle. The method further includes identifying a vehicle scan tool associated with the user identifier. The method also includes causing a selectable vehicle scan tool initialization option to be displayed on the computing device. The method further includes receiving, from the computing device, a selection of the selectable vehicle scan tool initialization option. In response to receiving the selection, the method additionally providing instructions to initialize the vehicle scan tool to perform the vehicle scan tool function on the vehicle.
Abstract:
An example method includes receiving, at a computing system, a first user input from a user interface during operation of a vehicle and responsive to receiving the first user input, determining a time of reception for the first user input. The method further includes receiving a first set of parameters from the vehicle that correspond to a first parameter identifier (PID). The method also includes determining a time of reception for each parameter, and based on the time of reception for the first user input and the time of reception for each parameter of the first set of parameters, determining a first temporal position for an indicator configured to represent the first user input on a graph of the parameters corresponding to the first PID. The method further includes displaying, on a display interface, the graph of the parameters corresponding to the first PID with the indicator in the first temporal position.
Abstract:
A method and system for generating a displayable page with a display card is described. A computer server receives data indicating a vehicle symptom and searches a computer-readable database to determine a most-likely cause of the vehicle symptom, a most-probable component associated with the most-likely cause, a component-type identifier associated with the most-probable component, a subset of information categories from among a set of information categories associated with at least one component-type identifier, and data to populate the display card. The server generates the displayable page including the display card and the data to populate in the display card. The server transmits the displayable page to a display device tor displaying the displayable page on a display screen. The server receives data indicating selection of an action trigger in the display card occurred and responsively provides the display device with data to update the display card or another displayable page.
Abstract:
An example method includes receiving a plurality of vehicle service jobs to be performed in a given time window. The method further includes receiving technician performance data for a plurality of technicians, wherein the technician performance data for a given technician is indicative of past performances by the given technician of one or more of the vehicle service jobs. The method additionally includes determining, based on the technician performance data, a plurality of scoring metrics corresponding to the plurality of vehicle service jobs for each of the plurality of technicians. The method also includes determining, based on the scoring metrics, suggested technician assignments of individual technicians of the plurality of technicians to each vehicle service job of the plurality of vehicle service jobs. The method further includes providing, for presentation on a display, a technician assignment interface that shows the suggested technician assignments.
Abstract:
A processor may determine that a particular computer-readable vehicle repair order (RO) (e.g., including first and second RO portions) corresponds to an existing cluster of ROs due to the particular RO including RO data that refers to a particular vehicle symptom. The processor may determine that the first RO portion, includes first data representative of a non specific vehicle component and may then responsively also determine that the second RO portion includes second data that the at least one processor can use to determine a specific vehicle component associated with the particular RO. Responsively, the processor may determine the specific vehicle component based on the first and second data and may then add the particular RO to a different cluster of ROs that is arranged to contain ROs that correspond to the particular vehicle symptom and to the specific vehicle component.
Abstract:
An example method includes receiving a first service procedure including a plurality of procedural steps for servicing a vehicle, identifying at least one procedural step of the plurality of procedural steps to supplement with supplemental service information, receiving information about vehicles sharing one or more attributes with the vehicle, determining at least one piece of supplemental service information to supplement the at least one identified procedural step, and providing a supplemented service procedure comprising the first service procedure with the at least one piece of supplemental service information included with the at least one identified procedural step.
Abstract:
An example method involves receiving, at a computing system, vehicle diagnostic information from a vehicle. The vehicle diagnostic information may include one or more sets of parameters corresponding to parameter identifiers (PIDs). The method further involves identifying a first set of parameters corresponding to a PID representing a state of a particular system of the vehicle and determining, using the first set of parameters, a current value of the PID. The method may also involve performing a comparison between the current value and a predetermined value for the PID and determining a health of the particular system of the vehicle such that the health reflects a difference between the current value and the predetermined value for the PID. The method may also involve displaying, by the computing system at a graphical interface, a vehicle health record representing the health of the particular system of the vehicle.
Abstract:
A diagnostic tool includes a processor, display, and memory storing instructions to perform scan tool functions (STF) including transmitting a message to a vehicle. The STF include first and second STF for first and second systems of the vehicle. Additional stored instructions are executable to display: a first user-interface screen (UIS) including a first user-selectable control (USC) for a first scanner job performable on the vehicle, and a second UIS in response to selection of the USC of the first UIS. The second UIS includes a first USC including an indicator of the first STF, and a second USC including an indicator of the second STF. In response to a selection of the first USC, a first message addressed to a component of the first system is transmitted. In response to a selection of the second USC, a second message addressed to a component of the second system is transmitted.
Abstract:
A processor may determine that a first repair order (RO) of art existing cluster of ROs (e.g. corresponding to first and second vehicle symptoms and to first and second corrective actions) refers to a first vehicle related to a set of vehicles. The processor may identify ROs that refer to vehicles from the set and may determine among these identified ROs (i) a first relationship between the first symptom and the first action without the first symptom relating to the second action and/or (ii) a second relationship between the second symptom and the second action without the second symptom relating to the first action. The processor may (i) if the first relationship exists, add the first RO to a first different cluster corresponding to the first relationship and (is) if the second relationship exists, add the first RO to a second different cluster corresponding to the second relationship.
Abstract:
Methods and systems may relate to clustering of repair orders based on alternative repair indicators. Accordingly, a processor may determine that a particular computer- readable vehicle repair order (RO) corresponds to an existing cluster of ROs due to the particular RO including data that refers to a particular vehicle symptom. This existing cluster may be arranged to contain ROs that correspond to the particular vehicle symptom. In response to determining that the particular RO correspond to the existing cluster, the processor may determine that the particular RO includes data indicating an alternative repair that defines a vehicle repair for resolving the particular vehicle symptom other than by replacement of a particular vehicle component. Responsively, the processor may add the particular RO to a different cluster of ROs. This different cluster may be arranged to contain ROs that correspond to the particular vehicle symptom and to the alternative repair.