摘要:
This invention relates to magnetocaloric materials comprising alloys useful for magnetic refrigeration applications. In some embodiments, the disclosed alloys may be Cerium, Neodymium, and/or Gadolinium based compositions that are fairly inexpensive, and in some cases exhibit only 2 nd order magnetic phase transitions near their curie temperature, thus there are limited thermal and structural hysteresis losses. This makes these compositions attractive candidates for use in magnetic refrigeration applications. Surprisingly, the performance of the disclosed materials is similar or better to many of the known expensive rare-earth based magnetocaloric materials.
摘要:
Methods, systems, and devices are disclosed for implementing and fabricating electrochemical solar cells including dye-sensitized and perovskite-sensitized solar cells. In one aspect, a dye-sensitized solar cell device includes a cathode including a metal mesh structure that is optically transmissive and electrically conductive, an anode including a metal base layer that is optically opaque and electrically conductive, one or more layers of a semiconductive oxide coupled to the anode, the one or more layers of the semiconductive oxide including nanostructures having a photosensitive dye material coating, in which the anode generates photoelectric energy based on absorption of light by the photosensitive dye material, and an electrolyte of a substantially transparent substance and formed between the cathode and the one or more layers of a semiconductive oxide.
摘要:
Methods, systems, and devices are disclosed for fabricating clean, oxidation-free nanoparticles of electrically conducting metals and alloys using spark erosion techniques. In one aspect, a method includes dispersing bulk pieces of an electrically conducting material in a dielectric fluid with mechanical vibrations within a container; generating an electric field using electrodes in the dielectric fluid using by an electric pulse, in which the electric field creates a plasma in a volume existing between the bulk pieces that locally heats the bulk pieces to form structures within the volume, the dielectric fluid quenching the structures to form nanoparticles, and filtering the nanoparticles through a screen including holes of a size allowing nanoparticles of the size or smaller to pass through the screen to a region in the container, in which the dielectric fluid inhibits oxidation of the surface of the nanoparticles.
摘要:
Materials, techniques, systems, and devices are disclosed for fabricating and implementing high- strength permanent magnets. In one aspect, a method of fabricating a magnet includes distributing particles of a first magnetic material such that the particles are substantially separated, in which the particles include a surface substantially free of oxygen. The method includes forming a coating of a second magnetic material over each of the particles, in which the coating forms an interface at the surface that facilitates magnetic exchange coupling between the first and second magnetic materials. The method includes consolidating the coated particles to produce a magnet that is magnetically stronger than each of the first and second magnetic materials.
摘要:
This invention discloses novel nanocomposite material structures which are strong, highly conductive, and fatigue-resistant. It also discloses novel fabrication techniques to obtain such structures. The new nanocomposite materials comprise a high-conductivity base metal, such as copper, incorporating high-conductivity dispersoid particles that simultaneously minimize field enhancements, maintain good thermal conductivity, and enhance mechanical strength. The use of metal nanoparticles with electrical conductivity comparable to that of the base automatically removes the regions of higher RF field and enhanced current density. Additionally, conductive nanoparticles will reduce the surface’s sensitivity to arc or sputtering damage. If the surface is sputtered away to uncover the nanoparticles, their properties will not be dramatically different from the base surface. Most importantly, the secondary electron emission coefficients of all materials in the nanocomposite are small and close to unity, whereas the previously used insulating particles can produce significant and undesirable electron multiplication.
摘要:
Methods, devices and systems are described for digitally creating new scents or digitally dispensing gas, vapor, or liquid substances. A device includes a container or replaceable cartridge including one or more chambers containing one or more scented substances; a housing structured to include a compartment to hold the cartridge, an opening to allow the one or more scented or unscented substances to dispense to an outer environment from the device, and one or more transporting channels formed between the compartment and the opening, in which each of the one or more transporting channels is configured to deliver a scented substance from the corresponding chamber to the opening for delivering a scent from the one or more scented substances; and an actuator switch arranged in a corresponding transporting channel and rapidly operable to move between an open position and closed position based on an applied signal to selectively allow passage of the scented or unscented substance from the corresponding transporting path.
摘要:
Disclosed are nanostructured materials that reflect light in selected spectra incorporated in dark colored textiles or substrates. In one aspect, a light reflecting material includes a textile exhibiting a dark color and formed of a plurality of fibers, and nanostructures arranged on the fibers and formed of a plurality of nanoparticles, the nanostructures having a dimension size of substantially less than 1/2 of a visible light wavelength, in which the nanostructures reflect light from the textile or substrate in at least one of infrared, near- infrared, or red visible light spectra.
摘要:
Methods, systems, and devices are disclosed for implementing switchable dispensing and/or delivery of scented substances. In one aspect, a device includes a cartridge structured to include one or more chambers containing one or more scented substances contained in a corresponding chamber, a housing structured to include a compartment to hold the cartridge, an opening to allow the scented substances to dispense to an outer environment from the device, and one or more transporting channels formed between the compartment and the opening, in which each of the one or more transporting channels is configured to accelerate a scented substance from the corresponding chamber to the opening, and an actuator switch arranged in a corresponding transporting channel and operable to move between an open position and a closed position based on an applied signal to selectively allow passage of the scented substance from the corresponding transporting path.
摘要:
The invention provides products of manufacture, e.g., biomaterials and implants, for cartilage maintenance and/or formation in-vivo, in-vitro, and ex-vivo, using nanotechnology, e.g., using nanotube, nanowire, nanopillar and/or nanodepots configured on surface structures of the products of manufacture.
摘要:
This invention describes unique treatment methods and innovative articles that can be placed in a human or animal body to enable controlled destruction of diseased tissue. The methods include destruction of diseased cells and tissues by magnetically controlled motion and an externally controllable drug delivery process with a capability to start and stop the drug delivery at any time, for any duration. This invention provides two approaches to diseased cell destruction, (1) magneto-mechanical disturbance of cell structure ( e.g. cancer cells) for cell lysis and (2) magnetically activated drug release at local regions ( e.g. tumors) from a magnetic-particle-containing drug reservoir. The invention also provides combinations of both the above treatments for dual therapy. It further combines one or both of the treatments with magnetic hyperthermia for multifunctional cell destruction therapy. The approaches can be combined with magnetic MRI for monitoring the accuracy of placement as well as for following up the cancer destruction progress and appropriate reprogramming of the magneto-mechanical therapy and remote-controlled drug release.