Abstract:
A single, reproducible scheme to simultaneously purify all three of the heparin lyases from F. heparinum to apparent homogeneity is disclosed herein. The kinetic properties of the heparin lyases have been determined as well as the conditions to optimize their activity and stability. Monoclonal antibodies to the three heparinases are also described and are useful for detection, isolation and characterization of the heparinases.
Abstract:
This invention provides a method for inhibiting or preventing the abnormal growth of cells, including transformed cells, by administering an effective amount of 0-acylated heparin derivative. Abnormal growth of cells refers to cell growth independent of normal regulatory mechanism (e.g. loss of contact inhibition). This includes the abnormal growth of: (1) tumor cells (tumors); (2) benign and malignant cells of other proliferative disease in which aberrant cellular proliferation occurs; (3) aberrant smooth muscle cell proliferation, such as might occur following treatment for coronary atherosclerosis such as angioplasty or the insertion of a stent into an occluded vessel.
Abstract:
The present invention provides pharmaceutical compositions for the treatment of cancer and inhibiting an increase in the volume or mass of a tumor, and methods for the treatment of cancer and inhibiting an increase in the volume or mass of a tumor.
Abstract:
Sugar-containing poly(acrylate)-based hydrogels and methods of preparing these hydrogels are disclosed. Poly(sugar acrylate)s are chemeoenzymatically prepared and crosslinked to form hydrogels, which are water absorbant.
Abstract:
Selectin receptor binding is modulated by a method which utilizes heparin-like oligosaccharides. The figure shows a schematic drawing of the molecules involved in leukocyte adhesion to the vessel wall.
Abstract:
The electrophoretic isolation and monosaccharide sequence determination of a neutral or weakly acidic oligosaccharide species of interest are disclosed. A labeling compound and a charged group are coupled to the reducing end of the species of interest, thereby facilitating electrophoretic separation and detection of the separated species. The resolved species of interest can then be recovered from the electrophoretic medium, for example, by electrophoretic transfer to a charged solid support. Following isolation, monosaccharide units can be cleaved successively from the non-reducing end of the species of interest to reveal the monosaccharide sequence. The identity of each monosaccharide unit is determined by correlating cleavage data with known exoglycosidase specificites.