Abstract:
There is an improved apparatus for supplying gaseous fuel from a liquid state to an internal combustion engine comprising an electrical energy generating apparatus for generating electrical energy from a store of chemical energy; a liquid pumping apparatus for pumping the gaseous fuel in the liquid state comprising an energy converter for converting the electrical energy to mechanical energy which drives the liquid pumping apparatus; a first heat exchanger for vaporizing the gaseous fuel received from the pumping apparatus; and a controller programmed to operate the liquid pumping apparatus to maintain a pressure of the gaseous fuel supplied to the internal combustion engine within a predetermined range.
Abstract:
An improved method and apparatus are provided for pumping fuel to a fuel injection system in an internal combustion engine. The method comprises steps of pumping a liquid fuel to a first pressure; using the liquid fuel at the first pressure as a hydraulic fluid for driving a gaseous fuel pump; and pumping a gaseous fuel to a second pressure with the gaseous fuel pump.
Abstract:
Disclosed are a fluid control system and method for controlling delivery of two variable pressure fluids to maintain a pressure bias between the two fluids within an end use device. The system employs an actively controlled vent valve which can be integrated into a fluid control module in preferred embodiments and is actuated to an open position to decrease fluid pressure in a first fluid supply line when a determined pressure differential reversal exceeds a predetermined threshold pressure differential reversal. The disclosed system is particularly useful in a high pressure direct injection (HPDI) multi-fueled engine system where the first fluid is a gaseous fuel and the second fluid is a liquid fuel. The fluid control system and method of controlling it provide for improved control of venting along with protecting system components from high back pressure and cross contamination of fluids.
Abstract:
Hydraulically actuated gaseous fuel injectors required a relatively small pressure bias between hydraulic fluid and gaseous fuel to be able to open and to reduce hydraulic fluid contamination of the gaseous fuel. An improved hydraulically actuated gaseous fuel injector includes an injection valve in fluid communication with a gaseous fuel inlet and includes a valve member reciprocatable within a fuel injector body between a closed position and an open position. There is a lift chamber in fluid communication with a hydraulic fluid inlet such that hydraulic fluid pressure in the lift chamber contributes to an opening force applied to the valve member. A control chamber is in fluid communication with the hydraulic fluid inlet such that hydraulic fluid pressure in the control chamber contributes to a closing force applied to the valve member. A control valve is operable to reduce hydraulic fluid pressure in the control chamber such that the opening force is greater than the closing force and the valve member moves to the open position.
Abstract:
A pressure regulating module for regulating the pressure of a first fluid using a reference pressure of a second fluid. A pressure transfer assembly including a piston slidably disposed within a cylinder bore between a control fluid chamber and a reference fluid chamber is dimensioned to provide a predefined radial clearance between at least a portion of the outer side wall and the inner circumferential surface of the housing along a predefined axial length of the main body. The predefined radial clearance and predefined axial length are dimensioned to control the flow rate and amount of fluid along one or more fluid communication passages formed between at least a portion of the piston and the housing inner circumferential surface from one or more high pressure fluid zones to a lower pressure fluid zone which can include a leak and/or weep orifice directing fluid to a drain and/or vent circuit.
Abstract:
An improved body defining a restricted fluid flow passage in a fuel supply system for delivering a gaseous fuel to an internal combustion engine. The body is formed for installation between and fluidly connecting a gaseous fuel supply conduit and a gaseous fuel flow passage that defines a predetermined volume between the restricted fluid flow passage and a nozzle chamber of a fuel injector from which the gaseous fuel is injected into the internal combustion engine. The restricted fluid flow passage has the smallest effective flow area between the gaseous fuel supply conduit and the nozzle chamber. The restricted fluid flow passage is located a predetermined distance from an injection valve seal within the fuel injector. The predetermined distance is calculated as a function of the speed of sound in the gaseous fuel and an opened time of the fuel injector.
Abstract:
A multi-fuel injection system and method for an internal combustion engine comprises a first fuel injector having a flow area sized for accurate and consistent injection of a pilot amount of a first fuel directly into a combustion chamber, and a 5 second fuel injector in selective communication with a supply of the first fuel and a supply of a second fuel, the second fuel injector having a flow area sized to accommodate injection the first fuel directly into the combustion chamber in amounts required to deliver enough energy to enable operation across a range of engine operating conditions, including high load conditions, with only the first fuel supplied 10 as fuel to the combustion chamber. When the second fuel injector is supplied with the second fuel, it is operable for late-cycle injection of a portion of the second fuel that is required to operate said engine at high load.
Abstract:
There is an improved method for supplying gaseous fuel from a liquid state to an internal combustion engine comprising employing a second internal combustion engine as a source of energy; pumping the gaseous fuel in the liquid state by transforming energy from the source of energy into mechanical work for the pumping; exchanging waste heat from the second internal combustion engine in a first heat exchange fluid circulating through the second internal combustion engine to a second heat exchange fluid; vaporizing the gaseous fuel pumped from the liquid state with heat from the second heat exchange fluid; and delivering the gaseous fuel vaporized from the liquid state to the internal combustion engine; wherein a pressure of the gaseous fuel delivered to the internal combustion engine is maintained within a predetermined range of tolerance by the pumping.
Abstract:
A fuel injection valve is provided for injecting a fuel into the combustion chamber or into the injection port of an internal combustion engine, the valve being actuated by an actuator assembly that comprises a small displacement actuator and a large displacement actuator. The method comprises commanding the small displacement actuator to move the valve member to a first open position corresponding to a first flow area and commanding the large displacement actuator to move the valve member to a second open position corresponding to a second flow area that is larger than the first flow area such that the ratio between the second flow area and the first flow area is at least 15:1. The fuel injection valve can also be operated to alternatively inject two different fuels, one of the fuels being a gaseous fuel and the other one being a liquid fuel.