Abstract:
Described herein are self-assembling protein molecules for delivering a payload, for example, a toxic anti-cancer agent, a cancer immunotherapy, a toxic anti-cancer agent and a cancer immunotherapy, or an imaging agent, to specific tissues. Examples of self-assembled proteins include clathrin and derivatives of clathrin.
Abstract:
This invention describes compositions comprising indocyanine green and poly(N-vinylpyrrolidone) and methods of making the same as well as applications thereof for diagnostic and therapeutic uses. One of those applications is the structural and functional assessment of the lymphatic system by fluorescence imaging.
Abstract:
The document proposes a diagnostic chewing gum for identifying the presence of inflammatory tissues in the mouth, in particular in or adjacent to the mandible, the maxilla, an implant or the teeth of a user, comprising a base material or particles (3) embedded and/or attached to said base material; an element (1, 5-7), like e.g. a releasable flavor molecule, attached to said base material and/or said particles, for the generation of a change in the chewing gum directly detectable by the user; wherein the element (1, 5-7) generates the change upon direct or indirect contact with a marker (4), e.g. a proteolytic enzyme, which is released by inflammatory tissue in response to bacterial mediators.
Abstract:
The document proposes a diagnostic chewing gum for identifying the presence of inflammatory tissues in the mouth, in particular in or adjacent to the mandible, the maxilla, an implant or the teeth of a user, comprising a base material or particles (3) embedded and/or attached to said base material; an element (1, 5-7), like e.g. a releasable flavor molecule, attached to said base material and/or said particles, for the generation of a change in the chewing gum directly detectable by the user; wherein the element (1, 5-7) generates the change upon direct or indirect contact with a marker (4), e.g. a proteolytic enzyme, which is released by inflammatory tissue in response to bacterial mediators.
Abstract:
The present invention relates to a dynamic host-guest interactive system that possesses unique characteristics and finds utility in multitude of areas, specifically, in imaging and site directed drug delivery. An aspect of the present disclosure provides a dynamic host-guest interactive system including a host molecule and a guest molecule interacting with each other through non-covalent forces, wherein the host molecule is associated with any or a combination of a targeting moiety and a therapeutic agent with proviso that when the host molecule is associated with the targeting moiety, the guest molecule is associated with an imager, and when the host molecule is associated with the therapeutic agent, the guest molecule is associated with the targeting moiety, and when the host molecule is associated with a combination of the therapeutic agent and the targeting moiety, the guest molecule is associated with the imager. Another aspect provides a dynamic host-guest interactive system for site specific drug delivery of relatively less cell membrane permeable drug(s).
Abstract:
Provided herein are microorganisms engineered with heme-responsive transcription factors and genetic circuits. Also provided are methods for using engineered microorganisms to sense bleeding events and treat bleeding in vivo.
Abstract:
Disclosed are compositions that contain a plurality of biocompatible self-assembling molecules that transform from isolated molecules or spherical micelles while in blood serum into cylindrical nanofibers in the acidic extracellular environment of tumors, which can be used to achieve a higher relative concentration of imaging, drug delivery, or radiotherapeutic agents at the tumor site compared to non-tumor tissues. This transition is rapid and reversible, indicating the system is in thermodynamic equilibrium.
Abstract:
The document proposes a diagnostic chewing gum for identifying the presence of pathogens detectable via the mouth, in particular residing in nasal, oropharyngeal, laryngeal, oesophageal, ocular and/or pulmonal tissue of a user, comprising a base material or particles (3) embedded and/or attached to said base material; an element (1, 5-7), like e.g. a releasable flavor molecule, attached to said base material and/or said particles, for the generation of a change in the chewing gum directly detectable by the user; wherein said pathogen is selected from the group consisting of virus, bacterium, protozoa, prion, fungus or a combination thereof; and wherein the element (1, 5-7) generates the change upon direct or indirect contact with a marker (4) which is released by said pathogens, or, in case of a virus or prion, by the cellular structure hosting it.