摘要:
A phosphor-containing drug activator activatable from a Monte Carlo derived x-ray exposure for treatment of a diseased site. The activator includes an admixture or suspension of one or more phosphors capable of emitting ultraviolet and visible light upon interaction with x-rays, wherein a distribution of the phosphors in the diseased target site is based on a Monte Carlo derived x-ray dose. A system for treating a disease in a subject in need thereof, includes the drug activator and a photoactivatable drug, one or more devices which infuse the photoactivatable drug and the activator including the pharmaceutically acceptable carrier into a diseased site in the subject; and an x-ray source which is controlled to deliver the Monte Carlo derived x-ray exposure to the subject for production of ultraviolet and visible light inside the subject to activate the photoactivatable drug.
摘要:
The present invention provides preparations of MSCs with important therapeutic potential. The MSC cells are non-primary cells with an antigen profile comprising less than about 1.25% CD45+ cells (or less than about 0.75% CD45+), at least about 95% CD105+ cells, and at least about 95% CD166+ cells. Optionally, MSCs of the present preparations are isogenic and can be expanded ex vivo and cryo-preserved and thawed, yet maintain a stable and uniform phenotype. Methods are taught here of expanding these MSCs to produce a clinical scale therapeutic preparations and medical uses thereof.
摘要:
Nanoparticle-loaded cells and compositions useful for improved imaging and radio-therapy are disclosed. Also provided are methods of manufacture of nanoparticle-loaded cells, methods of administering the nanoparticle-loaded cells, and methods for treatment and/or imaging using the cells.
摘要:
The present invention provides preparations of MSCs with important therapeutic potential. The MSC cells are non-primary cells with an antigen profile comprising less than about 1.25% CD45+ cells (or less than about 0.75% CD45+), at least about 95% CD105+ cells, and at least about 95% CD166+ cells. Optionally, MSCs of the present preparations are isogenic and can be expanded ex vivo and cryo-preserved and thawed, yet maintain a stable and uniform phenotype. Methods are taught here of expanding these MSCs to produce a clinical scale therapeutic preparations and medical uses thereof.
摘要:
X-ray fluorescence computed tomography (XFCT) using polychromatic x-rays is provided herein. The XFCT of the presently disclosed subject matter allows for the imaging of various cells loaded with metallic nanoparticles using polychromatic diagnostic energy x-rays. Both imaging of nanoparticles distributed within a cell and the quantification of nanoparticle concentration within the cell, in some configurations, may be accomplished. The x-ray source may, in some examples, provide a pencil beam or a cone/fan beam x-ray configuration.
摘要:
A gold-coated iron oxide nanoparticle, method of making thereof, and method of using thereof is disclosed. The nanoparticle is substantially toxin free (making it clinically applicable), easily functionalized, and can serve as a contrast agent for a number of imaging techniques, including imaging a subject in at least two distinct imaging modes. Further, the nanoparticle is well-suited for therapeutic uses.
摘要:
A material which is suitable for use as a contrast agent for diagnostic imaging comprises (i) nanoparticles, (ii) amphiphile self-assembled into an ordered lyotropic liquid crystal phase, (iii) a liquid solvent in which the lyotropic liquid crystal phase is dispersed as nanodroplets, and (iv) a stabiliser for providing stabilisation against re-aggregation of the nanodroplets, wherein the nanoparticles are distributed within the dispersed nanodroplets of the lyotropic liquid crystal phase.
摘要:
The present invention is generally directed to core/shell nanoparticles, wherein such core/shell nanoparticles comprise a nanoparticle core and a nanoshell disposed about the nanoparticle core such that, in the aggregate, they form a core/shell nanoparticle that is operable for use as an imaging agent in X-ray/computed tomography (CT). Typically, such core/shell nanoparticle-based X-ray CT imaging agents further comprise a targeting species for targeting the imaging agent to diseased sites.
摘要:
The present invention is generally directed to core/shell nanoparticles, wherein such core/shell nanoparticles comprise a nanoparticle core and a nanoshell disposed about the nanoparticle core such that, in the aggregate, they form a core/shell nanoparticle that is operable for use as an imaging agent in X-ray/computed tomography (CT). Typically, such core/shell nanoparticle-based X-ray CT imaging agents further comprise a targeting species for targeting the imaging agent to diseased sites.