Abstract:
Provided are in-vitro methods and devices for sustaining a synchronized circadian rhythm in cells of a cell culture by exposing the cells to a continuous flow of medium and to at least two stimuli provided in an oscillating manner with a periodicity of 24 ±4 hours, wherein a first stimulus and a second stimulus of said at least two stimuli are distinct, wherein said first stimulus is provided in a first time period and reaches a first peak in a first peak time period, and wherein a second stimulus is provided in a second time period and reaches a second peak in a second peak time period, and wherein an interval between end of time period of said first peak and beginning of said time period of said second peak is at least about 2 hours.
Abstract:
The present invention provides co-cultures of organoids and immune cells, and methods of using these to identify agents for treating diseases.
Abstract:
Certain types of automated medical analysis equipment are used to analyze blood or other fluids. The equipment may thus use various diluents or reagents that allow the blood or other fluids to be run through the analysis equipment for analysis and data collection. Disclosed is a diluent preparation module that combines purified water and reagent concentrate for use by this equipment. Also disclosed is a diluent preparation unit that combines more than one diluent preparation modules for redundancy and back-up purposes. Also disclosed are systems for supplying the Diluent prepared by the diluent preparation module or diluent preparation unit to one or more analytic instruments.
Abstract:
Disclosed herein are methods of detecting at least one target biomolecule in at least one single cell comprising lysing the single cell or cells and performing a cell identification assay and target identification assay. Also disclosed herein are methods for preparing a sample for undergoing single cell analysis, wherein the single cell analysis comprises performing a cell identification assay and a target identification assay.
Abstract:
Methods and apparatus to test and screen compounds in a multiplexed manner, using a mixture of genetically or functionally heterogeneous cells in common conditions.
Abstract:
The present invention relates to a nucleic acid molecule encoding a fusion protein, wherein the nucleic acid molecule comprises: (a) a first nucleic acid sequence encoding a transmembrane domain linked to a first biosensor, wherein said first biosensor is a first molecule capable of interacting with a second molecule to form part of a first inducible interaction module, and wherein said first biosensor is linked to the transmembrane domain such that the first biosensor is located intracellularly upon expression of the fusion protein in a cell; (b) a second nucleic acid sequence encoding an effector-activating module, wherein the effector-activating module comprises: (i) a nucleic acid sequence encoding a first part of a protease, wherein said first part of the protease is capable of interacting with a second part of said protease to form an active form of said protease; or (ii) a nucleic acid sequence encoding a second biosensor, wherein said second biosensor is a first molecule capable of interacting with a second molecule to form part of a second inducible interaction module; (c) a third nucleic acid sequence encoding a third biosensor comprising a protease cleavage site, wherein the protease cleavage site is sterically occluded in the absence of a stimulus for said third biosensor and wherein the protease cleavage site becomes accessible in the presence of said stimulus; and (d) a fourth nucleic acid sequence encoding an effector molecule. The present invention further relates to a vector comprising the nucleic acid molecule of the invention, to sets of nucleic acid molecules, to the sets of nucleic acid molecules of the invention comprised in one or more vectors, to a cell expressing a set of nucleic acid molecules according to the invention as well as to a cell comprising the one or more vectors of the invention. Furthermore, the present invention relates to a method for inducing intracellular signaling, as well as to a method for monitoring intracellular signaling.
Abstract:
The invention relates to method of treating or inhibiting progression of hemoglobinopathy in a subject in need thereof comprising inhibiting interaction between LRF-BTB and CHD protein-LBD.
Abstract:
The present invention relates to the use cyclic-di-nucleotide and related scaffold molecules that measurably inhibit STING signaling, and methods for their use in identifying more potent inhibitors of STING signaling. In particular, the methods provided can be used to identify potent inhibitors of STING signaling, which are useful in the treatment of autoimmune and inflammatory diseases. Also provided are compounds having STING inhibitory activity useful in the treatment of autoimmune and inflammatory diseases.
Abstract:
Methods of promoting hypoxia or the hypoxia response for the treatment or prevention of mitochondrial dysfunction and oxidative stress disorders are described. Methods for screening for targets of mitochondrial dysfunction and oxidative stress disorders are also described.