Abstract:
Water is mixed with fire suppressant polymer in a mixer absent a power source. The mixer receives water through a water inlet with water exhibiting high velocity and associated hydrodynamic force. Such velocity is achieved by locating the water inlet connected to a float or other part of an aircraft so that when the aircraft flies over water with the float dipping into the water, water is driven through the opening and into the water inlet of the mixer. A polymer inlet passes into the mixer. A bend is located downstream of the water inlet and the polymer inlet. The bend exhibits sufficient resistance to fluid flow direction therethrough that the polymer is sheared and thoroughly mixed and activated with the water. A colorant inlet is optionally provided within the mixer and the water and polymer mixture is then discharged into a tank for later utilization at a firefighting location.
Abstract:
An enzymatic processing plant for continuous flow-based enzymatic processing of organic molecules, comprises an enzymatic processing area, wherein the enzymatic processing area comprises a turbulence-generating pipe with a repeatedly changing centre-line and/or a repeatedly changing cross-section, for generating turbulence to mix a reaction mixture and prevent sedimentation of particles as the reaction mixture is flowing through the turbulence-generating pipe, and wherein the enzymatic processing plant and the enzymatic processing area are arranged such that the reaction mixture is subjected to turbulence within the enzymatic processing area for a reaction time of 15 minutes or more.
Abstract:
A system, device, and method for receiving, preparing and identifying a biological sample. Some parts may be user held and actuated. The sample may be detected by an array of sensors. The system may comprise reusable and disposable components arranged to be connected together. The biological sample may contain nucleic acids, proteins, or other molecules to be detected.
Abstract:
A method includes providing a water sample for analysis at a well site, or at a location proximate the well site, where the water sample is collected from at least one water source and the water sample comprises at least one analyte. The water sample and a reagent are introduced into a microfluidic mixing cell to produce a mixture of the reagent and water sample, and the mixture has a detectable characteristic indicative of concentration of the at least one analyate in the water sample. The detectable characteristic is measured by spectrophotometry to determine concentration of the at least one analyte. Then a subterranean formation treatment fluid is prepared using water from the at least one water source based on the concentration of the at least one analyte. The introducing into the microfluidic mixing cell and the measuring by spectrophotometry are conducted over an elapsed time period of about 5 minutes or less.
Abstract:
A batch or continuous mixer for mixing powders, immiscible liquids, or a powder with a liquid includes one or more vibrational energy applicators which propagate vibrational energy into the mixture, causing powders to flow like liquids and breaking up liquid droplets and powder clumps. In embodiments, the vibration frequency and amplitude are selected according to properties of the mixture components. Vibrations can be propagated through container walls, impellers, or other structures within the mixing container. Vibrated structures can be flexibly supported for enhanced propagation of the vibrations. Vibrational energy can be uniform throughout the container, or focused in a desired region. Ultrasonic energy can be simultaneously applied with acoustic energy.
Abstract:
A system, device, and method for receiving, preparing and identifying a biological sample. Some parts may be user held and actuated. The sample may be detected by an array of sensors. The system may comprise reusable and disposable components arranged to be connected together. The biological sample may contain nucleic acids, proteins, or other molecules to be detected.
Abstract:
The present invention discloses microfluidic modules for making nanocrystalline materials in a continuous flow process. The microfluidic modules include one or more flow path with mixing structures and one or more controlled heat exchangers to process the nanocrystalline materials and reagents in the flow path. The microfluidic modules can be interconnected to form microfluidic reactors that incorporate one or more process functions such as nucleation, growth, and purification.
Abstract:
The present invention discloses microfluidic modules for making nanocrystalline materials in a continuous flow process. The microfluidic modules include one or more flow path with mixing structures and one or more controlled heat exchangers to process the nanocrystalline materials and reagents in the flow path. The microfluidic modules can be interconnected to form microfluidic reactors that incorporate one or more process functions such as nucleation, growth, and purification.
Abstract:
A fluid mixer includes an elongate mixing chamber having an inlet system at one end for admission of liquid and gas to be intimately mixed by passage through the chamber and an outlet for the mixture at the opposite end, wherein opposed longitudinal sides of the chamber are each defined by a surface of scallop shape having peaks and troughs, with the peaks of the two surfaces being relatively offset so as to cause the liquid and gas entering the chamber to flow along a generally sinuous path through the chamber to create a turbulent flow which promotes intimate mixing. Advantageously a UV source extends within the chamber to sterilise the liquid flowing through the chamber.