Abstract:
Die Erfindung betrifft einen Mehrphasen-Schlaufenreaktor (1) mit einem inneren Zylinder (2) und einem äußeren Zylinder (3) unterschiedlichen Durchmessers, welche derart angeordnet sind, dass sie zwischen sich einen Zylinderringspalt (4) bilden, wobei der innere Zylinder (3) oder der Zylinderringspalt (4) als ein Upcomer und der jeweils andere entsprechend als ein Downcomer fungieren, so dass eine kontinuierliche Phase (100) eine Schlaufenströmung (103) ausführen kann. Dabei ist vorgesehen, dass ein erster Einlasser (5) für eine erste disperse Phase (101) und ein zweiter Einlasser (6) für eine zweite disperse Phase (102) derart angeordnet sind, dass die erste (101) und die zweite disperse Phase (102) räumlich getrennt voneinander in die kontinuierliche Phase (100) dispergiert werden können, wobei eine der ersten oder zweiten dispersen Phasen (101, 102) die Schlaufenströmung (103) antreibt und die andereder ersten und zweiten dispersen Phasen (101, 102) einen Gegenstrom zu der Schlaufenströmung (103) bildet, und dass den Einlassern (5, 6) entgegengesetzt eine Trennvorrichtung (7) angeordnet ist, die eine Vermischung der ersten und zweiten dispersen Phasen (101, 102) verhindert. Außerdem wird ein Verfahren zum Betrieb eines Mehrphasen-Schlaufenreaktors (1) angegeben.
Abstract:
Described herein are expandable center arrangements for use in a tubular reactor, such as a reformer, for enhancing heat transfer and reactor efficiency. The expandable center arrangement can include a cone being expandable in the radial direction and an expansion weight for promoting expansion of the cone. The cone and expansion weight can be slidably arranged on a center support. Expansion of the cones in the radial direction forces reactor components radially outward to an outer tube that houses the reactor components and expandable center arrangement. Expansion of reactor components towards the outer tube promotes heat for carrying out catalytic reactions.
Abstract:
Improved hydrochlorination reactors, which have a larger internal volume and hence functional capacity than presently available hydrochlorination reactors, may be prepared with reactor walls having inner and outer layers where each layer provides a unique benefit, the inner layer having hydrogen chloride resistance and the outer layer having high strength at elevated temperature and pressure. Alternatively, or additionally, hoops may be disposed along the outside of the reactor wall to provide additional strength to the reactor during operation. Specified materials may be used to form the reactor wall in order to provide both acid resistance and high strength at elevated operating temperatures.
Abstract:
An apparatus (100) and method for treating liquid hydrocarbon fuel for increasing the gaseous content of the fuel for use with internal combustion engines, boilers, heating units, gas turbines or any other hydrocarbon fuel burning apparatus. The apparatus (100) comprises a treatment unit (3) for increasing the gaseous content of the fuel. The treatment unit (3) comprises an inlet for receiving the hydrocarbon fuel into the treatment unit and an outlet for discharging a treated hydrocarbon fuel from the treatment unit, and an assembly of two or more tubes of a non-magnetic material. The two or more tubes (32,33) have a circular cross-section and the assembly is arranged between the inlet and the outlet. The two or more tubes have different diameters, have substantially equal lengths, are arranged in length alignment, and are arranged concentrically with the tubes defining a plurality of intermediary spaces, thus providing flow paths for the hydrocarbon fuel between the inlets to the outlet. Furthermore, an innermost tube and an outermost tube are electrically connected to an electrical current generator, and the electrical current generator is configured for supplying a fluctuating current with the inner tube being connected to one pole of the electrical current generator and the outer tube being connected to the other pole of the electrical current generator to thereby increase the gaseous content of the hydrocarbon fuel flowing through the intermediate tank 1.
Abstract:
Systems and methods for collecting and processing permafrost gases and for cooling permafrost are disclosed herein. A method in accordance with a particular embodiment for processing gas in a permafrost region includes obtaining a gas from a sacrificial area of a thawing permafrost region, dissociating the gas in a non-combustive chemical process, and circulating a constituent of the gas through a savable area of the thawing permafrost region to cool the savable area. In particular embodiments, this process can be used to cool selected areas of permafrost and/or create clean-burning fuels and/or other products from permafrost gases.
Abstract:
A reactor including a monolith having a plurality of fins in an annular arrangement for receiving fluid flow through the reactor. The monolith is disposed within a generally cylindrical outer tube, and around a corrugated inner tube. The reactor includes a device for urging the monolith radially outward, so as to maintain contact between the monolith and the outer tube.
Abstract:
A recuperative heat exchanger (36) is provided for use in a fuel processor (20), the heat exchanger (36) transferring heat from a fluid flow (34) at one stage of a fuel processing operation to the fluid flow (32) at another stage of the fuel processing operation. The heat exchanger (36) includes a housing (56) defining first and second axially extending, concentric annular passages in heat transfer relation to each other; a first convoluted fin (70) located in the first passage to direct the fluid flow therethrough; and a second convoluted fin (72) located in the second passage to direct the fluid flow therethrough.
Abstract:
A combustor preheater (94) is provided for use in a fuel processor (20) to preheat a combustor feed (40) by transferring heat from a post water-gas shift reformate flow (32) to the combustor feed (40). The combustor preheater (94) includes a housing (92) defining first and second axially extending, concentric annular passages in heat transfer relation to each other; a first convoluted fin (96) located in the first passage to direct the post water-gas shift reformate flow (32) therethrough and a second convoluted fin (98) located in the second passage to direct the combustor feed therethrough.