Abstract:
The invention relates to an extruder and a method for extruding cord reinforced tire components, wherein the extruder comprises an extruder head with a die and a cord guide, wherein the die is provided with a cross sectional profile that defines a first cross section of the extrusion material in the die, wherein the cross sectional profile has a profile height, wherein the cord guide is arranged for guiding the cords into the die at a cord entry height, wherein the extruder head is provided with first heating elements, wherein the extruder comprises a control unit that is operationally connected to the first heating elements for generating an adjustable height temperature gradient in the extrusion material across the profile height to control swelling of the extrusion material relative to the cord entry height from the first cross section to a second cross section after the extrusion material leaves the die.
Abstract:
A temperature gradient controller device in parts of machines for processing plastic materials comprises heating means to be operatively activated on at least one part of a machine; this heating means comprises vector means adapted to transfer a predetermined amount of heat to said part of said machine by remote radiation.
Abstract:
A center heated die plate for an underwater pelletizer radiates heat outwardly to the extrusion orifices and die faces of the die plate thereby maintaining the die plate and extrusion orifices at an elevated temperature to obtain optimum flow of molten polymer through the extrusion orifices. In one embodiment, a cylindrical heating coil is placed in a hollow central core of the die plate and a plurality of peripheral heating elements are inserted in radial recesses distributed around an outer perimeter of the die plate to create an inner heat zone and an outer heat zone which are separately controllable.
Abstract:
Composite layer having a length and width and comprising a first plurality of repeating, three-dimensional structures having peaks and valleys, comprising a first polymeric material and a second plurality of repeating, three-dimensional structures having peaks and valleys that is adjacent to, and the inverse of, the first plurality of repeating, three-dimensional structures, and comprising a second polymeric material. There is a distance between adjacent peaks comprising the first polymeric material. There is an average of said distances between adjacent peaks comprising the first polymeric material. Any of said distances between adjacent peaks comprising the first polymeric material is within 20 percent of said average distance between adjacent peaks comprising the first polymeric material.
Abstract:
A method for forming a wood composite product (P) by extrusion with a manufacturing apparatus. The temperature profile prevailing in the manufacturing apparatus is adjusted in such a way that the surface of the wood composite product to be formed becomes rough. Furthermore, the invention relates to a wood composite product and an apparatus for manufacturing a wood composite product.
Abstract:
An extruded composite utilized as a building material includes a base polymer, unseparated processed recycled carpet waste, and a filler material, which may be a wood filler or other natural fiber. Carpet waste may be separated into components that may be utilized in a variety of plastics applications, including extruded composites utilized as building materials. Separation may include shaving face fiber (402) from bound fiber (406) secured in a backing fiber (408) and/or may include separating fiber pile and backing fibers from carpet adhesive (410) to remove inorganic materials such as calcium carbonate.
Abstract:
An improved method is provided for extruding ePTFE tube (12) for use in medical applications. A tube (12) of PTFE is extruded, preferably in an extrusion process, using counter-rotated die components (22, 26). The die component (16) is maintained at a constant temperature during processing. The resulting green tube (12) has enhanced fibrous state formation in a direction perpendicular to the direction of extrusion. The PTFE green tube (12) is then subjected to secondary operations such as stretching and expansion to yield medical product. The ePTFE tube (12) structure is defined by nodes interconnected by elongate fibrils. Both the nodes and fibrils are substantially randomly tilted with respect to the longitudinal axis of the tube (12). This particular structure yields a tube (12) which exhibits a high degree of radial tear strength useful in medical applications.
Abstract:
Die Erfindung betrifft ein Extrusionswerkzeug (10) für einen Folienblaskopf (1) einer Schlauchextrusionsanlage zur Extrusion eines Schlauches (2) aus einer Kunststoffschmelze (3) mit einem Werkzeugkörper (11), der einen Schmelzkanal (12) zum Ausformen des Schlauches (2) aufweist, wobei der Werkzeugkörper (11) einen Mündungsbereich (13) mit einer Austrittsöffnung (14) für den ausgeformten Schlauch (2) aufweist.
Abstract:
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von festen Zellulosefilamenten oder -folien aus einer Lösung von Zellulose, NMMO (N-Methyl-Morpholin-N-oxid) und Wasser, durch Extrudieren der Lösung durch eine oder mehrere Extrusionsöffnungen unter Druck und Verfestigen des Filamente oder Folien in einem Auffangbad, wobei die Lösung zwischen den Extrusionsöffnungen und dem Auffangbad durch einen Luftspalt geführt wird, wobei die Temperatur der Lösung an den Extrusionsöffnungen unter 105°C ist und der Druckunterschied zwischen dem Druck der Lösung unmittelbar vor der Extrusion und nach Extrusion im Luftspalt zwischen 8 und 40 bar ist.
Abstract:
Composite layer comprising a plurality of longitudinal first zones comprised of a first polymeric material alternating with a plurality of longitudinal second zones comprised of a second polymeric material such that one first zone is disposed between two adjacent second zones. The zones are generally parallel to one another, and at least one of each first zone or each second zone has a maximum width dimension of not greater than 2 mm. Adjacent first and second zones have an average pitch, wherein for the composite layer there is an average of said average pitches, and wherein the average pitch for any adjacent first and second zones is within 20 percent of the average pitch for adjacent first and second zones of said average of said average pitches.