Abstract:
A system for controlling flight of an aircraft has sensors (37, 43), a receiver (45), and a digital control system (57), all of which are carried aboard the aircraft. The sensors (37, 43) determine the position of the aircraft relative to the earth and the inertial movement of the aircraft. The receiver (45) receives transmitted data (51, 55) communicating the position and movement of a reference vehicle relative to the earth. The control system (57) calculates the position and velocity of the aircraft relative to the reference vehicle using the data from the sensors (37, 43) and the receiver (45) and then commands flight control devices (33) on the aircraft for maneuvering the aircraft in a manner that maintains a selected position and/or velocity relative to the reference vehicle. The system allows use of a graphical or tactile user interfaces.
Abstract:
The invention concerns a small-size radio-controlled flying device propelled by a heat engine (20) with pusher propeller (10) for remote sensing, said device enabling short take-off and landing and a maximum flying speed of 34 Km/h. The device comprises a nacelle and a wing system, the nacelle (1) being a rigid three-wheeled carriage capable of being disassembled by denesting a more or less pyramidal jig with rear base (2) and front top (7), a lower plane (3) two lateral planes (4, 5) and an upper plane (6), the base being a single-piece welded element and comprising the engine, the propeller, a tank and the remote sensing unit, the top being a single-piece welded element, the lower plane and the two lateral planes comprising side members (11, 12) at least assembled at the base and at the top, the lower plane comprising at its three end angles two rear wheels (8) and a front wheel (9), the front wheel being arranged overlapping forward in the top and the wheels being low pressure tyres, the wing system (13) being a wing box flexible parafoil, said wing system being linked to the nacelle adjustable by two front suspension cables (17), two braking suspension cables (18) acting on the two flaps/wings.
Abstract:
Un dispositif de fixation mécanique pour train d'atterrissage détachable sur un avion sans pilote ou drone. Le dispositif fournit une ou plusieurs fixations mécaniques assurées par des crochés rotatifs. Le détachement du train est effectué par rotation des crochés résultant en la libération du train qui tombe par gravité. La rotation est effectuée par un moteur électrique, asservi de préférence.
Abstract:
An aerial vehicle system including a vertical takeoff and landing apparatus, a wing assembly removably coupled to the vertical takeoff and landing apparatus, and a rotor guard interchangeable with the wing assembly and removably coupleable to the vertical takeoff and landing apparatus. The vertical takeoff and landing apparatus can include a frame, a control module carried by the frame, and a plurality of thrust assemblies carried by the frame.
Abstract:
Hydrogen powered air vehicles (100) that in some embodiments can fly with very long endurance (10 or more days) at altitudes over 18288m (60,000 ft) carrying pay loads of up to 907,2kg (2,000 pounds). Embodiments may include features such as large wingspan relative to fuselage (110) and an all composite or partial composite structure for light weight and strength. The aircraft of the invention use one or more internal combustion engines (122) adapted for hydrogen combustion, each engine driving propellers (123). The hydrogen fuel is stored on board in containers (300), located within the fuselage, as a cryogenic liquid, and is vaporized in a heat exchanger (320) before delivery to the internal combustion engine.
Abstract:
Disclosed is an aircraft (101), configured to have a wide range of flight speeds, consuming low levels of power for an extended period of time, while supporting a communications platform with an unobstructed downward-looking view. The aircraft (101) includes an extendable slat (205) at the leading edge of the wing (103), and a reflexed trailing edge. The aircraft comprises a flying wing (103) extending laterally between two ends and a center point. The wing (103) is swept and has a relatively constant chord. The aircraft (101) also includes a power module configured to provide power via a fuel cell (131). The fuel cell (131) stores liquid hydrogen as fuel, but uses gaseous hydrogen in the fuel cell (131). A fuel tank heater is used to control the boil-rate of the fuel in the fuel tank. The aircraft (101) of the invention includes a support structure including a plurality of supports, where the supports form a tetrahedron that affixes to the wing (103).
Abstract:
The present invention provides an Unmanned Aircraft System, including an integrated unmanned aerial vehicle and all related components and subsystems that can be packaged and transported as a kit, and customized to fit desired mission profiles, and easily repaired by replacement of damaged components or subsystems. The present invention further provides unmanned aircraft system components and subsystems that facilitate low power and low noise operation, and extended flight times.
Abstract:
Methods and apparatus for aircraft according to various aspects of the present invention operate in conjunction with a fuselage and a wing. The fuselage may be configured to generate lift in response to airflow over the fuselage. In addition, the fuselage may have at least one hole defined therethrough. A spar may be disposed through the hole and extend into at least a portion of the wing and at least a portion of the fuselage. The spar may connect the fuselage to the wings.
Abstract:
Hydrogen powered air vehicles that in some embodiments can fly with very long endurance (10 or more days) at altitudes over 60,000 ft carrying pay loads of up to 2,000 pounds. Embodiments may include features such as large wingspan relative to fuselage and an all composite or partial composite structure for light weight and strength. The aircraft of the invention use one or more internal combustion engines adapted for hydrogen combustion, each engine driving propellers. The hydrogen fuel is stored on board in containers, located within the fuselage, as a cryogenic liquid, and is vaporized in a heat exchanger before delivery to the internal combustion engine.
Abstract:
There is provided an Unmanned Air Vehicule (uav) (2) including an engine (4) and an airframe (6), including means for performing a deep stall maneouvre; at least one inflatable sleeve (12) connected or connectable to the airframe (6), and means for inflating the sleeve (12) during flight, wherein the inflated sleeve (12) extends along the lower side of the airframe (6) so as to protect same during deep stall landing. A method for operating an Unmanned Air Vehicle (UAV), including an engine and an airframe is also provided.