Abstract:
The present disclosure is directed to a fuel cell system for generating oxygen depleted air. The fuel cell system may include a fuel cell having an anode, a cathode, and an electrolyte positioned between the anode and the cathode. The cathode may be configured to receive an air flow and discharge an oxygen depleted air flow. The fuel cell system may further include a sensor configured to generate a first signal indicative of a presence of hydrogen in the oxygen depleted air flow and a controller in communication with the sensor and the fuel cell. The controller may be configured to detect the presence of hydrogen in the oxygen depleted air flow based on the first signal, and in response to detecting the presence of hydrogen in the oxygen depleted air flow, selectively cause a current density of the fuel cell to decrease and/or increase a flow rate of the air flow to the cathode.
Abstract:
L'invention a pour objet un système (2) de génération d'énergie non propulsive dans un aéronef, comprenant: -un groupe auxiliaire de puissance(20), comprenant une turbine à gaz (21) et une pile à combustible (22), -une voie (23) d'admission d'air extérieur à l'aéronef, et -un conduit d'échappement (24) de la turbine à gaz, le système étant caractérisé en ce que la voie d'admission d'air (23) comprend un conduit de refroidissement (230) de la pile à combustible, en ce que ledit conduit est en communication de fluide avec le conduit d'échappement (24) de la turbine à gaz de sorte que l'éjection de gaz provenant de la turbine à gaz dans le conduit d'échappement provoque une aspiration d'air extérieur à l'aéronef dans le conduit de refroidissement (230) par effet Venturi. L'invention a également pour objet un procédé de génération d'énergie non propulsive.
Abstract:
Ein Luftfahrzeug umfasst eine Brennstoffzelleneinrichtung (16), die mit Wasserstoff aus einem Wasserstofftank (22) sowie mit aus der Umgebungsluft entnommenem Sauerstoff betreibbar ist, ferner eine supraleitende magnetische Energiespeichereinheit (SMES-Einheit) (24), die zusammen mit dem Wasserstofftank (22) in einem Kryogenbehälter (28) angeordnet ist, wobei der Kryogenbehälter (28) keine aktive Kühlung bzw. Flüssigwasserstofferzeugungseinrichtung umfasst und ein Volumen zur Aufnahme von höchstens 40 kg flüssigen Wasserstoffs aufweist.
Abstract:
Method for providing power to a passenger seat (10), whereby the passenger seats are individually fitted with removable fuel cells. The seat fitted with a fuel cell can then use fuel cell power, as well as the by-products generated by the fuel cell to supply energy and elements to optional seat functions. The method involves easily removing and replacing a fuel cell source/bottle associated with a passenger seat, such that even passengers can conduct the replacement, rather than crew members, which allows for fast and easy replacement, without any required tools or mechanical knowledge.
Abstract:
Embodiments of the present invention relate generally to oxygen/air supply systems and methods for use with fuel cell system applications on-board passenger transportation vehicles, such as aircraft or other aerospace vehicles, ground vehicles, or stationary applications for which oxygen and/or air has to be supplied to the fuel cell system.
Abstract:
Autonomous trolleys include an integrated power source, which energy can be utilized for integrated trolley systems such as a wheel assist module, heating module, and cooling module. The power source may include a fuel cell system or a rechargeable electrical energy storage device or a combination thereof. The rechargeable electrical energy storage device can be charged by any other power source, including a fuel cell system. The trolley can also be equipped with a fuel tank for easy and safe refueling of a fuel cell system.
Abstract:
Disclosed are crew rests that may be powered by the outputs of a fuel cell system or other suitable power source. For example, but not limited to, a combination of the water, oxygen-depleted air, thermal energy and/or electrical energy generated by the fuel cell system may be used to supply the crew rest with its various power and water needs, helping to make the crew rest autonomous from the aircraft's main power systems.
Abstract:
Fuel cell systems aboard means of transport can be used for generating energy and for producing water. In order to reduce the overall weight of the system, the fuel cell is controlled or regulated in dependence on a current fill level or a limit level of the water tank, as well as a predicted future water consumption. In this way, it may be possible to minimize the water quantity to be stored in the water tank.
Abstract:
Die Erfindung betrifft ein elektrisch angetriebenes Luftfahrzeug (11), umfassend: einen Tank (13) für NH 3 zur Bereitstellung von NH 3 , eine Energiequelle (15, 17, 19, 19', 35, 37), welche unter Verwendung und Umwandlung von NH 3 elektrische Energie erzeugt, einem elektrisch angetriebenen Antriebssystem (25, 27), welches für den Antrieb des Luftfahrzeugs (11) sorgt, und ein Energieverteilungssystem (23), welches die erzeugte elektrische Energie dem Antriebssystem (25, 27) bereitstellt.
Abstract:
A system for cooling a space in a vehicle comprises a sorption wheel (4), at least one heat exchanger (8), at least a first humidifier unit (10) and at least one fuel cell (6), wherein the sorption wheel (4) is adapted for drying ambient air (16) and for conveying dried process air (18) to the downstream heat exchanger (8) and the heat exchanger (8) is adapted for cooling process air (18), with the heat exchanger (8) being connected to the first humidifier unit (10) for humidifying cooled process air (20), and wherein the fuel cell (6) is connected to the sorption wheel (4) and adapted for making available fuel cell exhaust air (32) for regenerating the sorption wheel (4) and water (22) to be introduced into the first humidifier unit (10). Since the utilization of fuel cells is increasingly considered in modern vehicles and, in particular, commercial aircraft, the system according to the invention makes it possible to realize a symbiotic relationship between already installed fuel cells and cooling systems in vehicles, in which the further use of the waste products heat and humidity leads to fuel savings. In addition, an evaporative cooling method is presented, in which a fuel cell serves for supplying heat and water.