Abstract:
La présente invention concerne Moteur à combustion (1) comportant : au moins un vilebrequin (2) tournant autour d'un premier axe de rotation (3); au moins un arbre de sortie (4) d'un couple moteur, ledit arbre de sortie (4) tournant autour d'un second axe de rotation (5) distinct dudit premier axe de rotation (3); au moins un ensemble de transmission (6) tournant autour dudit premier axe de rotation (3) et étant entraîné en rotation par ledit vilebrequin (2) pour transmettre ledit couple moteur audit arbre de sortie (4).
Abstract:
L'invention concerne un turbomoteur comprenant un carter (5) dans lequel est agencé un générateur (6) de gaz et une turbine (7) libre montée sur un arbre (8) de puissance configuré pour pouvoir être accouplé/désaccouplé mécaniquement à un boitier (10) réducteur, caractérisé en ce que ledit turbomoteur comprend au moins un centreur (12) mobile entre une position, dite position active, dans laquelle il forme un palier dudit arbre (8) de puissance et correspondant à un désaccouplement mécanique entre ledit arbre (8) de puissance et ledit boitier (10) réducteur, et une position, dite position passive, dans laquelle il est écarté dudit arbre (8) de puissance et correspondant à un accouplement mécanique entre ledit arbre (8) de puissance et ledit boitier (10) réducteur.
Abstract:
A fluid condition monitoring device includes a sensing assembly including a sensor and a transducer, the sensor to sense a property of the fluid and the transducer to apply a test signal to the fluid and receive a return signal from the fluid; a control assembly coupled to the sensing assembly, the control assembly including a controller and an input/output interface, the controller interfacing with the transducer to generate fluid condition information in response to the return signal; and an interface assembly coupled to the control assembly, the interface assembly including a connection to the input/output interface to transmit the fluid condition information to an external system.
Abstract:
A propulsor gearbox assembly for a translational thrust propeller includes a housing defining an interior cavity, a planetary gear assembly contained within the interior cavity, an input shaft aligned on a first axis or rotation, and an output shaft aligned along a second axis of rotation. The first axis of rotation is coaxial with the second axis of rotation.
Abstract:
Изобретение относится к летательным аппаратам на воздушной подушке. Летательный аппарат содержит дискообразный корпус с центральным тоннелем, внутри которого установлено удобообтекаемое тело с подъемным винтом на его верхней части, скрепленное со стенками радиальными перегородками аэродинамического профиля, кабину, силовую установку с толкающими винтами, воздушную подушку в виде надувного торового баллона с гибким ограждением, колесно-лыжные опоры под корпусом, глиссирующую поверхность под кабиной и гидрокрыло сзади корпуса, поворотные створки, установленные на входе в тоннель, крыльевые консоли, хвостовое оперение со стабилизатором и килями, установленное на задней части корпуса, струйные закрылки, установленные на задних частях крыльевых консолей и корпуса, органы управления и стабилизации в виде воздушных рулей, установленных на выходе из тоннеля, струйные рули, установленные на стабилизаторе и крыльевых консолях, элевоны, установленные на стабилизаторе. На передней части дискообразного корпуса сверху с 2-х сторон тоннеля установлены продольные аэродинамические гребня. Изобретение направлено на обеспечение устойчивого и управляемого полета, повышение безопасности, увеличение подъемной силы и снижение массы конструкции.
Abstract:
Engine-propeller driving system comprising a device to transmit the power generated by an engine (5) to a propeller comprising an aircraft / vehicle (2) fuselage structure (1 ) that passes inside the propeller hub (3) so that the fuselage structure (1 ) becomes the turning axle of this aircraft / vehicle (2).
Abstract:
An aircraft has a fuselage substantially designed as an aerostatic lifting body and combined lifting and propelling devices joined to the fuselage, provided with propellers and forming driving units which can tilt between a lifting position, in which the plane of rotation of the respective propeller is substantially horizontal and the driven shaft of the associated drive that drives the propeller shaft is substantially vertical, and a propelling position in which the plane of rotation of the respective propeller is substantially vertical and the driven shaft of the associated drive that drives the propeller shaft is substantially horizontal. The plane of rotation of the propeller can swivel around the driven shaft of the associated drive that drives the propeller shaft.
Abstract:
Aerial vehicles may be equipped with propellers having clutch mechanisms that contract around a shaft when the propellers are not rotating, or are rotating at low angular velocities, and expand around the shaft when the propellers are rotating at sufficiently high angular velocities. The clutch mechanisms may receive one or more fixed posts within an opening or window defined therein. When the clutch mechanisms contract into a closed position, components of the clutch mechanisms come into contact with the posts, and the propellers are forced to remain in an alignment defined by the posts. When the clutch mechanisms expand into an open position, such components may rotate freely without contacting the posts. Thus, a clutch mechanism may cause a propeller to remain aligned in a desired orientation when the propeller is not required for operation, thereby reducing drag or adverse acoustic effects.
Abstract:
One aspect is a flight control system for a rotary wing aircraft that includes flight control computer configured to interface with a main rotor system, a translational thrust system, and an engine control system. The flight control computer includes processing circuitry configured to execute control logic. The control logic includes a primary flight control configured to produce flight control commands for the main rotor system and the translational thrust system. Main rotor engine anticipation logic is configured to produce a rotor power demand associated with the main rotor system. Propulsor loads engine anticipation logic is configured to produce an auxiliary propulsor power demand associated with the translational thrust system. The auxiliary propulsor power is combined with the rotor power demand to produce a total power demand anticipation signal for the engine control system.
Abstract:
One embodiment of the present invention is a unique vehicle. Another embodiment is a unique propulsion system. Yet another embodiment is a unique system. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for vehicle propulsions systems. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.