Abstract:
Comprende dos compresores independientes neumáticos alimentados eléctricamente (CAC) (2) que están conectados a un controlador independiente de (CACs) (5), una unidad de potencia auxiliar (APU) (3) dimensionada para alimentar cada (PAC) (1) de forma independiente en las operaciones de la aeronave tanto en tierra como en vuelo, que está conectado a un controlador independiente de (APU) (6) y un controlador central (12) conectado a los controladores (5 y 6) para que los (PACKs) sean alimentados individualmente bien por un (CAC) (2) o por el (APU) (3) y de forma que se alimente un único (PACK) (1) o varios de ellos.
Abstract:
The present invention relates to an air conditioning system (10) for an aircraft cabin (12) with at least one air inlet (14) for supplying air to the cabin (12), at least one air outlet (16) for discharging air from the cabin (12) and at least one compressed-air source (52, 54, 56), which is adapted to provide pressurised fresh air for supplying to the cabin (12) via the at least one air inlet (14). The air conditioning system (10) further comprises a heat exchanger (42) supplied with ram air from a ram air inlet (92) for cooling air from the compressed-air source (52, 54, 56), wherein the heat exchanger (42) is disposed upstream of the air inlet (14) of the cabin (12). It is intended that the air conditioning system (10) comprises a cabin air heat exchanger (100) which is designed to be supplied with air discharged from the cabin (12), wherein the cabin air heat exchanger (100) is disposed downstream of the at least one air outlet (16) and upstream of a point (N) at which fresh air is mixed with air from the cabin (12).
Abstract:
An electrical power system (10) for an aircraft includes an ac generator bus (16), an air conditioning system ("ACS") generator (42) and a main engine generator (46). The ACS generator (42) supplies primary ac power to the bus (16) while the frequency of the ac power is within a frequency range. If the frequency of the ac power goes outside the frequency range, the main engine generator (46) supplies backup ac power to the bus. The frequency of the ac power generated by the ACS generator (42) is maintained between upper and lower limits. Such ac power can be used directly by certain ac loads onboard the aircraft. Other ac loads onboard the aircraft are supplied with fixed frequency ac power by reduced-size inverters.
Abstract:
An environmental control system includes a turbomachine and an air cycle machine (14) that is driven by shaft power (24) of the turbomachine. The turbomachine includes a compressor (16), which supplies compressed bleed air to the air cycle machine (14). Ambient air is compressed by the compressor (16), and heat of compression is removed by an air-to-air heat exchanger (26), which envelops the turbomachine. The cooled, compressed air is expanded in the air cycle machine (14) to produce a stream of cooled, conditioned air. Ambient air used by the air-to-air heat exchanger (26) to cool the compressed bleed air is drawn into the turbomachine's exhaust by an eductor (36).
Abstract:
An environmental control system has an air cycle machine that includes a compressor (38), a cooling turbine (34), a motor/generator (36), and a power turbine (40) all mounted on a single shaft (32). The power turbine receives bleed air from the aircraft's engine (12) and has a variable geometry inlet nozzle (42) that adjusts the air flow rate therethrough without significant throttling. Downstream of the nozzle the power turbine extracts the expansion energy from the bleed air while cooling it. This is used to drive the other components of the air cycle machine, and in particular the motor/generator which generates electricity.
Abstract:
L'invention vise une récupération optimisée d'énergie d'un aéronef, en altitude mais également au sol, à l'aide d'une même architecture. A cette fin, l'invention prévoit de récupérer l'énergie thermique à l'échappement. Une architecture de récupération d'énergie comporte un groupe auxiliaire de puissance APU (20) équipé d'une tuyère d'échappement (14) et d'un générateur de gaz (2a) équipé d'un arbre (21) de transmission de puissance à un compresseur de charge (22). Ce compresseur fournit, via une veine d'alimentation(C1), de l'air comprimé au système de conditionnement d'air ECS (30) de la cabine passagers(40). De plus, un turbocompresseur de récupération (10) est accouplé directement, ou via une boite de transmission, à l'arbre (21) du groupe APU (20). Ce turbocompresseur (10) comporte une turbine de récupération (11) alimentée par une branche aval (C3b) d'un conduit (C3) monté sur un échangeur thermique (1) équipant la tuyère (14). Ce conduit (C3) présente une branche amont (C3a) couplée à des canaux (41, 42) reliant les sorties d'air de la cabine (40) et du compresseur (12). Un deuxième échangeur (2) peut être monté entre la veine d'alimentation(C1) et le canal de sortie cabine (41).
Abstract:
The invention relates to an emergency power system for an aircraft, comprising at least one fuel cell unit (FCEPS) for generating electricity. Said fuel cell unit (FCEPS) is cooled using at least one cooling cycle encompassing at least one heat exchanger (HX) that is connected to at least one air distribution system for the aircraft cabin such that used air heated by the heat exchanger during operation of the emergency power system can be distributed in the aircraft cabin via the air distribution system.
Abstract:
A supply system (100) for the energy supply in an aircraft comprising an engine (101) for propelling an aircraft, a fuel cell (102) for supplying an aircraft with electric energy, a first fuel reservoir (103) for supplying the engine (101) with engine fuel and a second fuel reservoir (104) for supplying the fuel cell (102) with fuel cell fuel. The first fuel reservoir (103) is arranged separately of the second fuel reservoir (104).
Abstract:
Methods and systems for providing secondary power to aircraft systems. In one embodiment, an aircraft system architecture for providing power to an environmental control system includes an electric generator operably coupled to a jet engine. The jet engine can be configured to provide propulsive thrust to the aircraft, and the electric generator can be configured to receive shaft power from the jet engine. The environmental control system can be configured to provide outside air to a passenger cabin of the aircraft in the absence of bleed air from the jet engine.
Abstract:
The present invention relates to an integrated aircraft system which comprises an aircraft frame (4), a primary gas turbine engine (14) mounted within the nacelle cowl (12), a secondary power system (30) incorporated within the nacelle cowl and being driven by a flow of air created by or through the engine, and an electrical power and cooling unit for supplying electrical power and cabin cooling air. The electrical power and cooling unit is pneumatically driven by engine bleed air.