Abstract:
Systems and methods to produce branched alkyl aromatic hydrocarbons are described. Systems may include a hydrogenation unit, a dehydrogenation unit, an olefin dimerization unit, an isomerization unit, an alkylation unit and/or one or more separations unit. Methods for producing a branched alkyl aromatic hydrocarbons may include any combination of hydrogenation, dehydrogenation, dimerization and/or isomerization of olefms in a process stream. The produced olefins may be used to alkylate aromatic hydrocarbons to form branched alkyl aromatic hydrocarbons. After alkylation of the aromatic hydrocarbons, unreacted components from the alkylation process may be separated from the alkyl aromatic hydrocarbons. The unreacted components from the alkylation process may be recycled back into the main process stream or sent to other processing units.
Abstract:
Gallium-niobium oxide catalysts are disclosed herein for converting linear olefinic hydrocarbons to branched olefinic hydrocarbons through isomerisation, the latter being capable for use fuel for their desirable properties.
Abstract:
A method for isomerising n-olefins containing no more than 20 carbon atoms, wherein an olefin-containing feed is contacted with a catalyst based on alumina impregnated with 0.03-0.6 wt % of titanium and a metal from group III A in an amount of 0.05-5 % by weight of oxide. The method may then be carried out in the presence or absence of a small amount of steam.
Abstract:
A process for increasing a yield of an isomerization zone by removing at least a portion of the C6 cyclic hydrocarbons from a stream having iC4 hydrocarbons, iC5 hydrocarbons, and iC6 hydrocarbons prior to the stream being passed into the same isomerization zone. Suppression of the iC4 hydrocarbons does not occur, allowing the iC4 hydrocarbons to be isomerized in the same isomerization zone as the iC5 hydrocarbons and iC6 hydrocarbons.
Abstract:
Processes and apparatuses for isomerizing hydrocarbons are provided. In an embodiment, a process for isomerizing hydrocarbons includes providing a first hydrocarbon feed that includes hydrocarbons having from 5 to 7 carbon atoms. The first hydrocarbon feed is fractionated to produce a first separated stream that includes hydrocarbons having from 5 to 6 carbon atoms and a second separated stream that includes hydrocarbons having 7 carbon atoms. The first separated stream is isomerized in the presence of a first isomerization catalyst and hydrogen under first isomerization conditions to produce a first isomerized stream. The second separated stream is isomerized in the presence of a second isomerization catalyst and hydrogen under second isomerization conditions that are different from the first isomerization conditions to produce a second isomerized stream. The first isomerization catalyst is the same type of isomerization catalyst as the second isomerization catalyst.
Abstract:
The invention relates to a method for producing zeolite, zeolite-like or zeotype particles comprising the steps of: 1 ) Adding one or more metal precursors to a silica or alumina source; 2) Reducing the one or more metal precursors to form metal nanoparticles on the surface of the silica or alumina source; 3) Passing a gaseous hydrocarbon, alkyl alcohol or alkyl ether over the silica or alumina supported metal nanoparticle to form a carbon template coated zeolite, zeolite-like or zeotype precursor composition; 4a) Adding a structure directing agent to the carbon template coated zeolite, zeolite-like or zeotype precursor composition thereby creating a zeolite, zeolite-like or zeotype gel composition; 4b) Crystallising the zeolite, zeolite-like or zeotype gel composition by subjecting said composition to a hydrothermal treatment; 5) Removing the carbon template and structure directing agent and isolating the resulting zeolite, zeolite-like or zeotype particles.
Abstract:
Die Erfindung betrifft ein Verfahren zur Herstellung eines vorzugsweise geformten Katalysators, umfassend: a) intensives Vermischen bzw. Verkneten mindestens einer Zirkonoxid- und/oder - hydroxidkomponente mit mindestens einer wolframhaltigen Komponente, und anschließend, ohne vorherige Calcinierung, mit mindestens einer Aluminiumoxid- und/oder -hydroxidkomponente; b) Formen des Gemisches; c) Calcinierung bei Temperaturen über 700°C, insbesondere über 800°C. Beschrieben wird weiterhin ein nach diesem Verfahren erhältlichen Katalysator sowie dessen Verwendung, insbesondere zur Isomerisierung von Kohlenwasserstoffen.
Abstract:
Systems and methods to produce branched alkyl aromatic hydrocarbons are described. Systems may include a hydrogenation unit, an olefin dehydrogenation-isomerization unit, an alkylation unit and a separation unit. Methods for producing branched alkyl aromatic hydrocarbons may include treatment of a process stream that with a hydrogenation unit followed by a dehydrogenation-isomerization unit. The produced olefins may be used to alkylate aromatic hydrocarbons to form branched alkyl aromatic hydrocarbons. After alkylation of the aromatic hydrocarbons, unreacted components from the alkylation process may be separated from the alkyl aromatic hydrocarbons. The unreacted components from the alkylation process may be recycled back into the main process stream or sent to other processing units.
Abstract:
The production of linear alkylbenzene from a natural oil is provided. A method comprises the step of deoxygenating the natural oils to form a stream comprising paraffins. The paraffins are dehydrogenated to provide mono-olefins. Then, benzene is alkylated with the mono-olefins under alkylation conditions to provide an alkylation effluent comprising alkylbenzenes and benzene. Thereafter, the alkylbenzenes are isolated to provide the alkylbenzene product.
Abstract:
Procédé de déshydratation et d'isomérisation squelettale simultanées d'une charge comprenant au moins un monoalcool en C 4 et contenant entre 0,5 et 50% d'eau, en vue de produire des alcènes en C 4 , ledit procédé opérant à une température comprise entre 250°C et 550°C, sous une pression comprise entre à 0,1 et 1 MPa, avec une vitesse spatiale horaire comprise entre 0,1h -1 et 10 h -1 , caractérisé en ce qu'il met en œuvre un catalyseur comprenant au moins un solide de type aluminosilicate non zéolithique.