Abstract:
The present subject matter relates to treating anodized alloy substrates. An anodized alloy substrate is immersed in a titanium salt solution to deposit titanium ions in a surface of the anodized alloy substrate. The immersion results in the formation of a processed substrate. The processed substrate is anodized to form a finished substrate. The anodization oxidizes the titanium ions to titanium dioxide particles.
Abstract:
The present subject matter relates to treating alloy substrates having oxidized layers. An anodized alloy substrate is contacted with an alkaline mixture including titanium to form a processed substrate. The anodized alloy substrate includes an oxidized layer on its surface. The processed substrate is baked to form a finished substrate. The finished substrate includes titanium dioxide particles in the oxidized layer.
Abstract:
A method and system for manufacturing an optical article is provided. The method may comprise providing at least one ophthalmic lens substrate having a surface; applying at least one conductive coating on at least a portion the ophthalmic lens substrate; and electroplating the ophthalmic lens substrate to form a plating layer that is in a contacting relationship with the conductive coating of the optical article. Other layers may also be applied.
Abstract:
A piston for a diesel engine is prepared as a piston for a direct injection engine (step S1), a cavity face of the piston is grinded (step S2), and a squish face thereof is masked (step S3). Next, a high-purity aluminum coating is formed on the cavity face (step S4), and the masking of the squish face is removed and the entire area of the piston top face is subjected to an anodizing treatment (step S5). Thereafter, the cavity face is masked (step S6), and the squish face is subjected to a sealing treatment (step S7).
Abstract:
Porous metal oxide layers having a color due to visible light interference effects are disclosed. In particular embodiments the porous metal oxide layers are formed using an anodizing processes, which includes a porous metal oxide layer forming process and a barrier layer thickening process. The barrier layer thickening process increases a thickness of a barrier layer within the porous metal oxide layer to a thickness sufficient to and cause incident visible light waves to be reflected in the form of a new visible light waves, thereby imparting a color to the porous metal oxide layer. Methods for tuning the color of the porous metal oxide layer and for color matching surfaces of different types of metal substrates are described.
Abstract:
In an internal combustion engine in which an anodic oxide film (10) is formed on part or all of a wall surface facing a combustion chamber, the anodic oxide film (10) has a thickness of 30 μm to 170 μm, the anodic oxide film (10) has first micropores (1a) having a micro-size diameter, nanopores having a nano-size diameter and second micropores (1b) having a micro-size diameter, the first micropores (1a) and the nanopores extending from a surface of the anodic oxide film (10) toward an inside of the anodic oxide film (10) in a thickness direction of the anodic oxide film (10) or substantially the thickness direction, the second micropores (1b) being provided inside the anodic oxide film (10), at least part of the first micropores (1a) and the nanopores are sealed with a seal (2) converted from a sealant (2), and at least part of the second micropores (1b) are not sealed.
Abstract:
A method of treating a surface of an aluminum busbar includes pre-conditioning the surface of the busbar, anodizing one portion of the surface of the busbar, and plating another portion of the surface of the busbar with at least one metal. A fixture used to secure a busbar for a treatment process is also disclosed.
Abstract:
The invention relates to traceable metallic products, methods of uses and methods of making same. The metallic products may be made traceable for integrity purposes, identification purposes, counterfeit avoidance and the like. The invention also relates to metallic supports for nanostorage of various compounds and samples.
Abstract:
Verfahren zur Herstellung eines korrosionsbeständigen und verschleissfähigen Aluminiumsubstrats, welches einer Wärmebehandlung bei Temperaturen von 140 °C oder höher aussetzbar ist ohne dass eine Rissbildung einsetzt. Das korrosionsbeständige und verschleissfähige Aluminiumsubstrat weist eine anodische Oxidschicht auf Aluminium und eine darauf aufgebrachte organische oder anorganische Sol-Gel Lackschicht als äussere Deckschicht auf. Die anodische Oxidation erfolgt in einem Aluminiumoxid rücklösenden Elektrolyten derart, dass eine anodische Oxidschicht einer Dicke von 10 bis 25 μm gebildet wird. Der auf die frei liegende Oberfläche der anodischen Oxidschicht aufgebrachte Sol-Gel Lack wird bei einer vorgegebenen Lackeinbrenn- oder Lackhärtungstemperatur (T) eingebrannt oder gehärtet. Die Dicke (D) der anodischen Oxidschicht wird in Funktion der späteren Lackeinbrenn- oder Lackhärtungstemperatur (T) gemäss (I) gewählt, wobei die Lackeinbrenn- oder Lackhärtungstemperatur (T) im Bereich zwischen 140 und 220°C liegt, und die anodische Oxidschicht vor der Lackbeschichtung in demineralisiertem Wasser bei einer Temperatur von 80 bis 98°C während 5 Sekunden bis 5 Minuten Heisswasser-teilverdichtet wird.