Abstract:
A panel hoist (100) can be used to hold any of a variety of panels, such as a door attachable to a semi-tractor trailer, and to maneuver the panel for putting into a position for mounting the panel to a panel mounting point or for removing a panel disconnected from a panel mounting point. Various types of suction cups and supplemental panel holders can be used to hold the panel while the panel is moved or prepared for movement. A panel hoist can allow a single person to maneuver panels in various ways instead of having to rely on multiple people to maneuver the panel. Maneuvering the panel can include raising, lowering, or rotating the panel. Various panel hoist components can be configured as a kit.
Abstract:
The equipment (1) for the movement and laying of ceramic articles, particularly large-format tiles, comprises: - a base frame (2); - movement means (3) of said base frame (2) on a support plane (P); - at least an articulated arm (4) associated with said base frame (2) and - gripping means (5) associated with said articulated arm (4) and comprising at least a support element (6) of at least a ceramic article (M), said articulated arm (4) being movable relative to said base frame (2) to lay the article itself on at least a laying surface.
Abstract:
A construction board installation robot comprises a frame with attached devices to securely hold and subsequently affix to a substructure a construction board, a robotic system consisting multiple joints and links to position the frame, and a cart containing ancillary equipment needed for the completion of the desired task and the ability to move and position the entire assembly under its own power. Positioning is determined dynamically utilizing a series of laser scanners and optical sensors. To assist a laborer with the mounting of boards, the arm and cart are capable of being easily maneuvered either through the use of integrated sensors that direct the actuation of the arm and/or cart wheels as determined by the push or pull of the operator on the device, a method of remote control, and/or independently with control software.
Abstract:
A system for placing objects on a surface. The system may include a base, a robotic arm coupled, at an end thereof, to the base, an end effector coupled to the other end of the robotic arm. The end effector may be configured for releaseably coupling to an object to be placed on the surface. The system may further include one or more sensor units on a sensor frame. The one or more sensor units may be configured for sensing a two-dimensional profile data including at least two two-dimensional profiles together comprising at least three boundary portions of the object to be placed and at least three boundary portions of objects on the surface. At least two of the three boundary portions of the object to be placed may be from substantially non-parallel sides. At least two of the three boundary portions of the objects on the surface may be from substantially non-parallel sides. The system may further include a processor configured to determine at least three degrees of freedom of the object to be placed with respect to the sensor frame and six degrees of freedom of the sensor frame with respect to the objects on the surface in a three-dimensional space for determining a current pose of the object to be placed with respect to the objects on the surface based on the two-dimensional profile data. Further, the system may be configured to place the object based on differences between the current pose and a desired pose of the object to be placed determined from a model of objects on the surface in the three-dimensional space.
Abstract:
A robotic system (1900) having a movable gantry robot (1910) including an overead beam (1920) extending between and supported by at lest two side menbers (1930) slidably mounted on a pair of rails (1940). A nozzle assembly (1960) movably coupled to the overhead beam for extrusion.