Abstract:
A trace evidence material (TEM) collection device is disclosed that enables crime scene investigators to quickly and easily collect, analyze, annotate, securely store and electronically distribute images of large amounts of trace evidence materials and related crime scene information while also helping to comply with required trace evidence recovery procedures and documentation requirements. The TEM collection device includes a reusable handle and cassette drive mechanism, which may be used with a plurality of single-use cassettes. Each cassette includes a TEM collection media (such as a collection tape or swabbing pads attached to a substrate) that when moved across a surface is capable of collecting TEMs located on the surface. Preferably, each cassette also includes a sealing assembly that seals the TEM collection media after collection of the TEMs so as to preserve the collected TEMs.
Abstract:
The present invention is related to the field of bio/chemical sensing, assays and applications. Particularly, the present invention is related to collecting a small amount of a vapor condensate sample (e.g. the exhaled breath condensate (EBC) from a subject of a volume as small as 10 fL (femto-Liter) in a single drop), preventing or significantly reducing an evaporation of the collected vapor condensate sample, analyzing the sample, analyzing the sample by mobile- phone, and performing such collection and analysis by a person without any professionals.
Abstract:
Optical scanning with an optical probe composed of an elongated cylinder of transparent material mounted upon an optical scanner body; one or more sources of scan illumination mounted in the probe distally or proximally with respect to the scanner body and projecting scan illumination longitudinally through the probe; a radially-reflecting optical element mounted in the probe having a conical mirror on a surface of the radially-reflecting optical element, the mirror oriented so as to project scan illumination radially away from a longitudinal axis of the probe with at least some of the scan illumination projected onto a scanned object; a lens mounted in the probe between the radially-reflecting optical element and the scanner body and disposed so as to conduct to an optical sensor scan illumination reflected from the scanned object.
Abstract:
Systems and methods provided herein. In one embodiment, a borescope system includes a probe to capture images and a display a settings menu, measurements, the images captured by the probe, or any combination thereof. In addition, the borescope system a processor programmed to display a user interface to enable a user to control movement of the probe, adjust settings, navigate menus, make selections, or any combination thereof. The processor is communicatively coupled to the probe, and the display, and is programmed to instruct the borescope to enter a live menu view when an articulation mode is selected from the settings menu. In the live menu view, the processor is programmed to instruct the display to display the images captured by the probe, and to enable a user to control the movement of the probe and adjust articulation sensitivity of the probe while viewing the images on the display.
Abstract:
Apparatus and methods may provide for determining a value of chemical parameter. One or more light emitters may be positioned within a housing to emit light through an aperture of the housing. The emitted light may illuminate a color area of a structure that is separable from the housing, such as a test strip, a printed color reference, and so on.. A color sensor may be positioned within the housing to capture reflected light and to convert the reflected light to an initial digitized color space that may be usable to determine a color shade of a color area. The reflected light may, for example, be captured independently at least of a dimension (e.g., predetermined size, shape, etc.) of the color area.
Abstract:
Apparatus and methods for optical scanning, including an optical probe capable of motion for optical scanning with respect to both the interior and the exterior of a scanned object, the optical probe also including light conducting apparatus disposed so as to conduct scan illumination from a source of scan illumination through the probe; light reflecting apparatus disposed so as to project scan illumination radially away from a longitudinal axis of the probe with at least some of the scan illumination projected onto the scanned object; optical line forming apparatus disposed so as to project scan illumination as a line of scan illumination with at least some of the scan illumination projected onto the scanned object; and a lens disposed so as to conduct, through the probe to an optical sensor, scan illumination reflected from the scanned object.
Abstract:
A solution (10) including a solvent and a monomer is coated on an area of a surface (16) of a piezoelectric member (12) such that the solution (10) flows into one or more defects (18). At least some of the solvent is removed to form a monomer film (20) within a defect (18), and the monomer film (20) is polymerized within the defect to form a polymer film (22) within the defect (18).
Abstract:
Identifying a damaged tool, including capturing, by an optical scanner, images of a manufactured part machined by the damaged tool; determining, from the captured images by a data processor operatively coupled to the scanner, measurements of the part; and determining, by the data processor based upon the measurements, that the tool is damaged.