Abstract:
A method for manufacturing a back-contact solar cell, comprising the steps of: (i) preparing a semiconductor substrate comprising an n-layer and a p-layer at the back side of the semiconductor substrate; (ii) applying a conductive paste on both the n-layer and the p-layer, wherein the conductive paste comprises a silver (Ag) powder, a palladium (Pd) powder, an additional metal powder selected from the group consisting of molybdenum (Mo), boron (B) and a mixture thereof, a glass frit, and an organic medium; and (iii) firing the applied conductive paste.
Abstract:
An apparatus (100) for coating at least a first plurality of articles (130), each article thereof having at least a first surface (140) to be coated is disclosed. The apparatus (100) includes an emission source (120) for directing emission elements (155) towards the first surfaces (140) of the plurality of articles (130), at least one support member for supporting the first plurality of articles (130), wherein support member (110) supports the first plurality of articles (130) such that the first surface (140) is exposed to the path of emission (155) from said emission source (120), and a drive assembly (160) for moving the support member (110) such that the first plurality of articles (130) is moveable with respect to the path of emission (155) from said emission source (120).
Abstract:
An article comprises a substrate; a polymer coating; and an intermediate layer disposed between the substrate and the polymer coating, the intermediate layer comprising a carbon composite, wherein the carbon composite comprises carbon and a binder containing one or more of the following: SiO 2 ; Si; B; B 2 O 3 ; a metal; or an alloy of the metal; and wherein the metal comprises one or more of the following: aluminum; copper; titanium; nickel; tungsten; chromium; iron; manganese; zirconium; hafnium; vanadium; niobium; molybdenum; tin; bismuth; antimony; lead; cadmium; or selenium.
Abstract:
One exemplary embodiment of this disclosure relates to a transfer molding assembly including a chamber, a die within the chamber, a first gas control device configured to provide a first gas into the chamber, and a second gas control device configured to provide a second gas into the die.
Abstract:
L'invention a trait à un procédé de fonctionnalisation d'un substrat conducteur de l'électricité qui n'est pas un substrat en or par une couche de composés chimiques, comprenant les étapes suivantes: - une étape de mise en contact du substrat conducteur de l'électricité avec des composés chimiques comprenant au moins un groupe terminal disulfure; - une étape d'électrooxydation du groupe terminal disulfure desdits composés chimiques moyennant quoi lesdits composés chimiques forment une couche à la surface du substrat conducteur de l'électricité.
Abstract:
A method and a porous article are provided.In said method, a porous article which comprises a matrix material in a solid state and pores therein,is processed at least some of the pores being open to an outer surface of the article. A flowing treatment substance is applied to the outer surface of the article and into at least some of the pores. The flowing treatment substance is allowed to react with the outer surface of the article and surfaces of said at least some of the pores such that a hydrophobic coating layer is established on surfaces thereof. An excess of the flowing treatment substance is removed from the article, and the hydrophobic coating layer established on the outer surface of the article is converted into a hydrophilic coating layer.
Abstract:
A nano protection coating for jewelry and method are disclosed which is formed from the listed materials by weight: aminopropyltriethoxysilane 0.5~3, Al 2 O 3 1~5, SiO 2 15~25, isopropyl alcohol 20~30, H 2 O 35~42. The producing method for nano protection coating of jewelry comprises the following steps: firstly, 1-~15 (weight units) of isopropyl alcohol is put into the SiO 2 nano powder and mixed evenly, then the Al 2 O 3 powder and aminopropyltriethoxysilane are put in, finally, the surplus isopropyl alcohol & the water are put in and mixed evenly until the coating liquor is produced. Secondly, the surface of the jewelry is cleaned. Thirdly, the coating liquor is sprayed onto the surface of the jewelry. Fourthly, the surface of the jewelry is dried, and then a strong solid protection coating is produced on the surface of the jewelry. Provided is a coating for jewelry, which has the effect of high rigidity, nice protection, and not easy to be damaged, and also provided is a simple and low cost method for jewelry coating.
Abstract translation:公开了一种用于首饰和方法的纳米保护涂层,其由所列材料重量组成:氨基丙基三乙氧基硅烷0.5〜3,Al 2 O 3 1〜5,SiO 2 15〜25,异丙醇20〜30,H 2 O 35〜42。 首饰纳米保护涂层的制备方法如下:首先,将1〜15(重量单位)异丙醇放入SiO2纳米粉末中均匀混合,然后放入Al2O3粉末和氨基丙基三乙氧基硅烷, 将剩余的异丙醇和水均匀混合均匀,直至制成涂布液。 其次,清洁珠宝的表面。 第三,将涂布液喷到珠宝表面上。 第四,首饰的表面被干燥,然后在珠宝表面上产生强固体保护涂层。 提供一种用于首饰的涂层,其具有高刚性,良好的保护性和不易损坏的效果,并且还提供了用于珠宝涂层的简单且低成本的方法。
Abstract:
Disclosed herein are medical devices, such as stents, comprising a porous substrate, such as a porous ceramic. Also disclosed herein are methods for impregnating the porous substrate with a composition comprising at least one lipid and at least one pharmaceutically active agent, where the porous substrate is microporous and/or nanoporous.
Abstract:
L'invention concerne un procédé de synthèse d'un revêtement hydrophobe/oléophobe sur un substrat verrier, céramique ou vitro- céramique, de préférence verrier, par mise en contact dudit substrat avec le mélange d'un gaz excité issu d'un dispositif générant un plasma à la pression atmosphérique et d'un gaz contenant au moins un composé fluoré, ledit procédé se caractérisant en ce qu'une sous couche, dont l'épaisseur est comprise entre 1 et 100 nm, est préalablement déposée sur ledit substrat. Elle concerne également un produit, comprenant un vitrage monolithique, feuilleté ou multiple, muni sur au moins une partie d'au moins une de ses surfaces d'un revêtement hydrophobe/oléophobe obtenu par la mise en œuvre du procédé.