Abstract:
Die Erfindung betrifft eine mobile photometrische Messvorrichtung mit: mindestens einem Messmodul, bestehend aus einer Lichtquelle, einem Detektor und einem Optikgerüst mit einer Optik mit integrierten Filtereigenschaften oder einer Optik und mindestens einem Filter, wobei diese Komponenten auf einer Platine, in einem Gehäuse und/oder einem Baustein verschaltet angeordnet sind. Ferner betrifft die Erfindung ein mobiles photometrisches Messverfahren an Mikrotitierplatten mit Gittersensoren.
Abstract:
Aspects and embodiments relate to a target detector; a method of detecting a change in a target, target monitoring apparatus and a method of monitoring a target. One aspect provides a target detector comprising: a structure comprising: a gain medium comprising a plurality of disordered nanostructure features and a target-sensitive material; the structure being configured, when pumped, to support random lasing and to exhibit a change in the gain of the gain medium and the random lasing in response to a change in the target. Aspects recognise that it is possible to use an appropriately fabricated random laser material as a detector or sensor for a target. In particular, the first aspect recognises that it is possible to perform sensing operations by utilizing the properties of random lasing. That target may, for example, comprise a change in a physical parameter of an environment adjacent, surrounding or permeating the random laser material.
Abstract:
Method for demonstrating the refractive index matching properties of a particle (2, 8) in liquid (4, 9) by presenting a container (1, 6, 7) which contains particles (2, 8) and a visual indicia (3, 5) and at least partially filling the container (1, 6, 7) with liquid (4, 9). Method for comparing the refractive index of at least two particles (2, 8) by presenting at least two containers (1, 6, 7) each of which contains particles (2, 8) and a visual indicia (3, 5) and at least partially filling the containers with liquid (4, 9). Container (1, 6, 7) defined by a base and at least one side wall attached to said base comprising a plurality of particles (2, 8) having a refractive index of from 1.20 to 1.50 and a visual indicia (3, 5) which is hidden from view by said particles (2, 8) when viewed from the exterior.
Abstract:
The invention relates to an optical sensor arrangement and to a method for measuring an observable. The sensor arrangement comprises a light source (5) for emitting light of a spectrum containing a plurality of different wavelengths, a first optical element (2), a second optical element (3), a first photo detector (6) and a second photo detector (7). The light source (5) is optically coupled to the first optical element (2) for feeding the light into the first optical element (2), the first optical element (2) being optically coupled to the second optical element (3) for feeding a part of the light transmitted by the first optical element (2) into the second optical element (3). The first photo detector (6) is optically coupled to the first optical element (2) for detecting a first component of said part of the light which is not transmitted by the second optical element (3), the second photo detector (7) being optically coupled to the second optical element (3) for detecting a second component of said part of the light which is transmitted by the second optical element (3), wherein one of the first and the second optical elements (2, 3) is an optical filter for filtering out a subset of said wavelengths and wherein the remaining of the first and the second optical elements (2, 3) is a sensor element, the sensor element or the filter being tunable.
Abstract:
A tunable light source system (200) capable of providing a reference to a wavelength tuning parameter comprises a tunable light source (106) for emitting a tunable light beam (134) having a tunable cen¬ ter wavelength based on a wavelength tuning parameter x, the tun¬ able light source generating an electrical signal (SF) representative of the wavelength tuning parameter; a light-deflecting element (300) disposed in the tunable light beam (134) for deflecting at least a por¬ tion (134P) of the tunable light beam; a reference filter (310) having a reference bandwidth and disposed to filter the deflected portion of the tunable light beam to form a filtered light beam (134PF); at least one photodetector (320) arranged to detect the filtered light beam and generate at least one detector electrical signal (SD) representa¬ tive of a detected light spectrum; and a controller (150) operably con¬ nected to the tunable light source and the photodetector and config¬ ured to receive the wavelength-tuning-parameter electrical signal and the at least one detector electrical signal and determine a reference wavelength tuning parameter x cR corresponding to a reference tun¬ able center wavelength based on a maximum value of the detected light spectrum.
Abstract:
Die Erfindung betrifft ein wellenlängensensitives plasmonisch aktives Modul (1, 40, 401, 402) zur spektral aufgelösten Detektion von Licht (22), bestehend zumindest aus einem Substrat (2) als Trägermaterial und einem auf dem Substrat (2) aufgebrachten Feld (6) von substrathervorstehenden Nanostrukturen (3, 4, 5, 18, 19, 20, 21; 46, 47, 48; 50, 51, 52) mit einer vorgegebenen Oberflächenplasmonresonanz, wobei den plasmonisch aktiven Nanostrukturen (3, 4, 5, 18, 19, 20, 21; 46, 47, 48; 50, 51, 52) Oberflächenplasmonresonanzen zugeordnet sind, die mit einer Ausbildung von mindestens einem Gradienten (∂, Δ) - einem stetigen Gradienten (∂) und/oder einem stufenförmigen Gradienten (Δ) - verbunden sind, wobei die Ausbildung des Gradienten abhängig ist vom dielektrische Funktionen aufweisenden Material der Nanostruktur (3, 4, 5, 18, 19, 20, 21; 46, 47, 48; 50, 51, 52), von der Geometrie der vorgegebenen Nanostruktur (3, 4, 5, 18, 19, 20, 21; 46, 47, 48; 50, 51, 52), von den Eigenschaften des Umgebungsmediums (42) der Nanostrukturen (3, 4, 5, 18, 19, 20, 21; 46, 47, 48; 50, 51, 52) und/oder von vorgegebenen Positionen (x, y) der Nanostrukturen (3, 4, 5, 18, 19, 20, 21; 46, 47, 48; 50, 51, 52) relativ zu einem Detektionsvolumen. Das Substrat (2) ist mit lichtempfindlichen Pixeln (10, 11, 12, 13, 14, 15, 16, 17) versehen, wobei im festen Verbund mit dem pixellierten Substrat (2) ein Feld (6) plasmonisch aktiver Nanostrukturen (3, 4, 5, 18,19, 20, 21; 46, 47, 48; 50, 51, 52) auf dem Substrat (2) aufgebracht ist, wobei das Nanostrukturfeld (6) mindestens einen Gradienten (∂, Δ) der Oberflächenplasmonresonanz der Nanostrukturen (3, 4, 5, 18, 19, 20, 21; 46, 47, 48; 50, 51, 52) aufweist, wobei sich der Gradient (∂, Δ) über mindestens ein Pixel (10, 11, 12, 13, 14, 15, 16, 17) erstreckt und eine vorgegebene Anzahl von Nanostrukturen (3, 4, 5, 18, 19, 20, 21; 46, 47, 48; 50, 51, 52) jeweils einem Pixel (10, 11, 12, 13, 14, 15, 16, 17) zugeordnet sind, die je nach Wellenlänge des einfallenden Lichts (22) resonant auf das einfallende Licht (22) reagieren und durch ein überhöhtes optisches evaneszentes elektromagnetisches Feld oder durch verstärkte oder verminderte elektromagnetische Abstrahlung oder verstärkte oder verminderte elektromagnetische Absorption ein elektrisches Signal in den entsprechenden lichtempfindlichen Pixeln (10, 11, 12, 13, 14, 15, 16, 17) des pixellierten Substrats (2) erzeugen.
Abstract:
The present disclosure provides methods, systems and devices for a photonic crystal combinatorial sensor. The photonic crystal sensor may include an array of photonic crystal materials, wherein each photonic crystal material has a reflected wavelength in a respective initial wavelength range. At least one a first one of the photonic crystal materials may be configured to have a response to an external stimulus different from at least a second one of the photonic crystal materials, the different response resulting in a change in the reflected wavelength of the first photonic crystal material that is an optically detectable difference from the second photonic crystal material. The optically detectable difference may provide an optically detectable response pattern of reflected wavelengths in the array. The sensor may be reversible and reusable.
Abstract:
The present invention provides for photonic nanoimprinted silk fibroin-based materials and methods for making same, comprising embossing silk fibroin-based films with photonic nanometer scale patterns. In addition, the invention provides for processes by which the silk fibroin-based films can be nanoimprinted at room temperature, by locally decreasing the glass transition temperature of the silk film. Such nanoimprinting process increases high throughput and improves potential for incorporation of silk-based photonics into biomedical and other optical devices.
Abstract:
Systems and methods for sensing an external measurand are disclosed. A sensor includes an optical fiber having at least one fiber Bragg grating (FBG) section and a plurality of carbon nanotubes (CNTs) surrounding at least a portion of the FBG section. Light is provided into the sensor while the CNTs are exposed to one or more measurands. A change in a spectrum of one of a transmitted portion and a reflected portion of the light is determined. A measurand that has caused the change is identified.
Abstract:
A detection system for detecting target material is provided. The system comprises a photonic structure having a reflectance-band and associated side bands; an illumination source for illuminating at a wavelength in at least one of an edge of the reflectance-band and the side bands of the photonic structure and for generating a return beam; a detector system having an intensity-sensitive channel configured to detect an in-line signal from the return beam and a phase-sensitive channel configured to detect a differential phase contrast signal from the return beam; and a processing system for receiving and adding in quadrature the in¬ line signal and the differential phase contrast signal to generate a joint signal, and for determining one of the presence or the absence of the target material on the photonic structure using the joint signal.