Abstract:
Die vorliegende Erfindung betrifft eine opto-elektronische Messeinrichtung (1) für ein Farbmessgerät, insbesondere ein Handfarbmessgerät zur Anwendung an Bildschirmen, umfassend mindestens eine Primäroptik (2), mindestens eine Blende (3), mindestens einen Diffusor (4) und mindestens eine Sensoreinheit (5), wobei die Messeinrichtung (1) derart gestaltet ist, dass bei Vorliegen der Messeinrichtung (1) in einem Messzustand von einem Messobjekt (6) ausgehende Lichtstrahlen (7) auf die Primäroptik (2) treffen und mittels der Primäroptik (2) zumindest teilweise bündelbar sind, wobei die Primäroptik (2) derart relativ zu dem Diffusor (4) angeordnet ist, dass der Diffusor (4) zumindest im Wesentlichen im Fokus der Primäroptik (2) liegt, wobei die Blende (3) in Strahlungsrichtung der Lichtstrahlen (7) betrachtet vor dem Diffusor (4) angeordnet ist und einen Einfallswinkel der Lichtstrahlen (7) begrenzt, wobei die Lichtstrahlen (7) mittels des Diffusors (4) homogenisierbar sind, sodass sie ausgehend von dem Diffusor (4) gleichmäßig auf die Sensoreinheit (5) leitbar sind, wobei die Lichtstrahlen (7) mittels der Sensoreinheit (5) in elektrische Signale umwandelbar sind, dadurch gekennzeichnet, dass wobei die Sensoreinheit (5) von einem integralen Mehrfachspektralsensor gebildet ist, der mindestens drei Teilflächen (8) zur Erfassung jeweils verschiedener Spektralanteile aufweist. Um ein Farbmessgerät hervorzubringen, das im Vergleich zum Stand der Technik möglichst einfach und zuverlässig anwendbar ist, wird erfindungsgemäß vorgeschlagen, dass die Primäroptik (2) mindestens einen zusammenhängenden Linsenkörper (29) aufweist, der zwei Bereiche unterschiedlicher Dispersion und/oder insgesamt mindestens drei refraktiv und/oder reflektiv wirksame Flächen (9) aufweist.
Abstract:
A radiation measuring device for measuring electromagnetic radiation originating from an external source. The radiation measuring device includes, a spectrometer, a pyranometer, a pyrgeometer, a diffuser, and a control unit. The spectrometer and a pyranometer are positioned in a sensor zone of a housing of the radiation measuring device. The spectrometer measures visible shortwave radiation and near-infrared shortwave radiation received at the sensor zone. The pyranometer measures shortwave radiation received at the sensor zone. The pyrgeometer is positioned in another sensor zone of the housing and measures longwave radiation received at the other sensor zone. The control unit receives radiation measurements from the spectrometer, pyranometer, and pyrgeometer. A corrected amount of radiation received at the sensor zones of the radiation measuring device is determined from the received radiation measurements. Other embodiments are described and claimed.
Abstract:
L'invention concerne un dispositifoptique (20) d'excitation pour générer des processus Raman stimulés, ledit dispositif optique (20) étant destiné à recevoir le faisceau laser (11) d'une source laser (10) impulsionnel. Le dispositif optique (20) comporte un séparateur optique pour séparerle faisceau laser sur une première et une deuxième voie (210, 220). La première voie (210) comporte une première fibre optique (211) et un système de pré- dérive de fréquenceadapté pour appliquer une première dérive temporelle de fréquence.Le dispositifoptique (20) comprend en outre une deuxième fibre optique (233) agencée pour récupérer des premier et deuxième sous-faisceaux (21, 22) en sortie de la première et de la deuxième voie (210, 220) et pour leur appliquer une deuxième dérive temporelle de fréquence, la deuxième fibre optique (233) et le système de pré-dérive de fréquence étant configurés pour que le premier et le deuxième sous-faisceau (21, 22) présententune dérive en fréquenceidentique. L'invention concerne en outre un système de mesure et un procédé d'excitation.
Abstract:
Embodiments of the present disclosure provide systems and methods for providing integrated waveguide-based spectrometer systems. In one aspect, the system includes an optical spectrometer comprising one or more waveguides configured to support propagation of optical radiation (i.e. light) through the waveguides to a photodetector. The spectrometer further includes an input coupler for each waveguide, the input coupler configured to couple the radiation from free space into the waveguide in absence of fiber-optic coupling of the radiation into the waveguide. Because at least a portion of the light propagated through the waveguides has interacted with a sample to be spectroscopically evaluated, the light detected by the photodetector allows to carry out the spectroscopic evaluation of the sample. At least some components of the spectrometer are provided on a single die using conventional CMOS techniques, yielding a compact and low cost device.
Abstract:
The invention provides an imaging device comprising: a dichroic prism assembly configured to receive light from an object image through an entranceface of the dichroic prism assembly and to disperse said light through at least three exit faces, wherein a first exitface of the dichroic prism assembly is provided with an imaging sensor suitable for visible light and at least a second exit face and a thirdexitface of the dichroic prism assemblyare eachprovided with a hyperspectral imagingsensor. The invention also provides a method for obtaining a hyperspectral image in an imaging device.
Abstract:
The present invention provides a digital spectroscopic and holographic microscope and a method thereof. The digital spectroscopic and holographic microscope (100) includes a light source(s) (102) for illuminating a sample (104), and an optical element (106) for collecting a beam of light (134) downstream the sample (104). Furthermore, the microscope (100) includes a beam shearer (110) for generating an interference pattern from the portion of the beam of light (134) reflected from the beam shearer (110). Also, the microscope (100) includes a first sensor (112) for capturing the interference pattern in the form of a digital hologram. Moreover, the microscope (100) includes an optical means (116) for generating spectral signatures associated with the sample (104) from the remaining portion (121) of the beam of light (134) refracted from the beam shearer (110), and a second sensor (132) for capturing the spectral signatures associated with the sample (104).
Abstract:
In some implementations, optical analysis systems use an integrated computational element (ICE) that includes a planar waveguide configured as an ICE core. In other implementations, the ICE used by the disclosed optical analysis systems includes a planar waveguide configured as a spectrograph, the spectrograph to be integrated with a conventional ICE.
Abstract:
An imaging device and method are provided. Light from an object is provided as a plurality of sets of light beams to a phase difference array having a plurality of elements. The phase difference array is configured to provide different optical paths for light included within at least some of a plurality of sets of light beams. The light from the phase difference array is received at an imaging element array. The imaging element array includes a plurality of imaging elements. Information obtained from hyperspectral imaging data based on output signals of the imaging element array can be displayed.
Abstract:
An optical phase scrambler is coupled to a laser source to randomly modulate the optical phase. Since the optical phase is continuously changing in a random fashion, at the output of an etalon interferometer formed in the optical path, the two or more components in the interference always have certain time delay between each other, resulting in a random phase different between each other. Therefore, after interference, the fringe amplitude varies randomly as well. Then at the receiver side, the fringe noise is greatly reduced after averaging over time.
Abstract:
An optical interference device 100 is disclosed herein. In a described embodiment, the optical interference device 100 comprises a phase shifter array 108 for receiving a collimated beam of light. The phase shifter array 108 includes an array of cells 128 for producing optical light channels from respective rays of the collimated beam of light, with at least some of the optical light channels having varying phase shifts. The optical interference device 100 further includes a focusing lens 110 having a focal distance and arranged to simultaneously produce, from the optical light channels, a focused beam of light in its focal plane and an image downstream the phase shifter array 108 for detection by an optical detector 116. The optical interference device 100 also includes an optical spatial filter 112 arranged at the focal distance of the focusing lens 110 and arranged to filter the focused beam of light to produce a spatially distributed interference light pattern in zeroth order for detection by the optical detector 116. A method for producing a spatially distributed interference light pattern is also disclosed.