Abstract:
The present invention relates to an immunoaffinity device for capturing, isolating and purifying one or more analytes of interest present at high or low concentration in simple or complex matrices. The device is designed as an integrated modular unit that includes one or more analyte concentrator-microreactor devices anchored into a T-shaped support box, which is built-in or connected to a interchangeable cartridge-cassette of a capillary electrophoresis or liquid chromatography apparatus for the isolation, enrichment, derivatization, separation and characterization of small molecules and polymeric macromolecules, primarily protein and peptide biomarkers. The integrated modular unit is also designed to perform metabolic or bioactivity studies.
Abstract:
The present disclosure relates to fluidic systems and devices for processing, extracting, or purifying one or more analytes. These systems and devices can be used for processing samples and extracting nucleic acids, for example by isotachophoresis. In particular, the systems and related methods can allow for extraction of nucleic acids, including non-crosslinked nucleic acids, from samples such as tissue or cells. The systems and devices can also be used for multiplex parallel sample processing.
Abstract:
The present disclosure provides systems and methods for sample preparation, processing and analysis. Also provided in the present disclosure is a fully-integrated electrophoresis cartridge which has a small footprint and configured to removably engage with the system. An electrophoresis cartridge adapted to releasably engage with a cartridge interface of a system is provided. The electrophoresis cartridge comprises: an electrophoresis assembly including: (1) an anode sub-assembly comprising an anode, (2) a cathode sub-assembly comprising a cathode; and (3) at least one electrophoresis capillary having a first end and a second end, wherein the cathode and the anode are configured to provide a voltage gradient across the first end and the second end of the at least one electrophoresis capillary.
Abstract:
Some embodiments described herein relate to a capillary cartridge. A capillary cartridge can include a multiple of capillaries configured to be used for capillary electrophoresis. The capillaries can be fixed relative to each other in at least a radial direction by a capillary spacer plate. A slit plate can be coupled to the capillary spacer plate and can define optical access to the capillaries such that optical measurements, such as absorbance or fluorescence measurements can be made while the capillaries are within the cartridge.
Abstract:
A method of determining a charge of at least one test particle (as herein defined), comprising: applying one of an electric current or a voltage across an aperture connecting two chambers, whereby the chambers are at least partially filled with electrolyte and whereby the at least one test particle is suspended in the electrolyte of at least one of the chambers; measuring a value indicative of the other of the electric current or voltage across the aperture; determining a time interval between a first and a second point in time, the second point in time corresponding to a point in time when the measured current or voltage has reached a specific proportion of the measured current or voltage at the first point in time; and determining the charge of the at least one test particle by: determining a value indicative of an electrical velocity component of a total velocity of at least one calibration particle having a known charge, taking into account that the total velocity of the at least one calibration particle comprises a non¬ zero convective velocity component and the electrical velocity component; determining a value indicative of an electrical velocity component of a total velocity of the at least one test particle, taking into account that the total velocity of the at least one test particle comprises a non-zero convective velocity component and the electrical velocity component; and using the determined values indicative of the electrical velocity components of the test particle and the calibration particle to calibrate the quantitative relationship between the charge of the at least one test particle and the determined time interval.
Abstract:
The present disclosure provides methods for forming a nano-gap electrode. In some cases, a nano-gap having a width adjusted by a film thickness of a sidewall may be formed between a first electrode-forming part and a second electrode-forming part using sidewall which has contact with first electrode-forming part as a mask. Surfaces of the first electrode- forming part, the sidewall and the second electrode-forming part may then be exposed. The sidewall may then be removed to form a nano-gap between the first electrode-forming part and the second electrode-forming part.
Abstract:
A system of controlled translocation of macromolecules by gel electrophesis employs a funnel nanopore structure. A graphene portion is attached to a porous material layer including funnel-shaped pores such that the graphene portion blocks the side of the porous material layer having openings for smaller pores. A pair of electrical contacts is formed on the graphene portion. A dielectric material layer may be deposited to hold the graphene portion in place. A nanoscale hole is formed through the dielectric material layer and the graphene portion to provide a smallest opening in a funnel nanopore structure. The funnel nanopore structure is placed within a capsule configured for gel electrophoresis. A linear chain of molecules can pass through a funnel-shaped pore and the nanoscale hole during the gel electrophoresis. A graphene nanopore detector allows measurement of blockage current for sufficient resolution of base pairs in DNA's.
Abstract:
Embodiments of the present disclosure are directed to methods, systems and devices, for analyzing the molecules. For example, in some embodiments, a system is provided which includes a first volume of conducting fluid, a second volume of conducting fluid, an orifice in communication with said first and second volumes of fluid, and means for applying an electric potential difference between said first and second volumes of fluid. In some such embodiments, a conjugate product is provided which comprises charged polymers each having attached thereto at least one first molecule for analysis, where the product carries a predetermined charge greater than the charge on the first molecule, and upon dissolving a product in the first volume of fluid, the product is directed into the orifice.