Abstract:
Described are a method for generating a metric that is a function of a phase difference between a modulated carrier and a local carrier, and a phase detector for performing such a method. A baseband symbol is obtained from the modulated carrier, and the phase of the symbol is determined. Assuming that the modulation used to modulate the modulated carrier has a constellation diagram with M-fold rotational symmetry, the metric can be generated from the phase by evaluating a base function that includes a triangle wave having positively and negatively sloped linear segments whose slopes have identical absolute values and that is periodic with a period of 2π/Μ radians. Alternatively or additionally, if the ideal symbol phases are uniformly distributed, the metric can be generated by evaluating a version of the base function in which the ideal symbol phases correspond to identically valued metrics located on the triangle wave.
Abstract:
A phase detection circuit can include two phase detectors that each generate a non-zero output in response to input signals being aligned in phase. The input signals are based on two periodic signals. The phase detection circuit subtracts the output signal of one phase detector from the output signal of the other phase detector to generate a signal having a zero value when the periodic signals are in phase. Alternatively, a phase detector generates a phase comparison signal indicative of a phase difference between periodic signals. The phase comparison signal has a non-zero value in response to input signals to the phase detector being aligned in phase. The input signals are based on the periodic signals. An output circuit receives the phase comparison signal and generates an output having a zero value in response to the periodic signals being aligned in phase.
Abstract:
A phase-frequency detector (110) is provided. The phase-frequency detector can include a frequency counter delay (147) for counting cycles of an output signal to generate a divided variable frequency delayed signal (FVd 146) having a time shift. A control stage (200) coupled to the output stage generates a pump up control signal (222) and a pump down control signal (234) in response to receiving the FVd signal, a divided variable frequency signal (FV 136), and a reference frequency signal (FR 106). The time shift provides an overlap region that allows both source (350) and sink (360) currents to be provided in phase lock. In phase lock, the duration of the pump up control signal approximates the duration of the pump down control signal within a linear region of operation.
Abstract:
In accordance with a first aspect of the invention a phase detector for measuring phase differences between K input signals is provided. The phase detector comprises a counter, K first registers and a first subtractor. Each first register receives the counter signal of the counter and a respective input signal for updating a counter value in response to timing information on the input signal. The first subtractor receives the counter values to generate phase difference representing values. In accordance with a second aspect of the invention, a frequency detector is provided. The first subtractor is substituted by a second subtractor and K second registers are included. Each second register is connected to a respective first register. Each second register receives the counter value of its first register and the same input signal as that of its first register for backing-up the counter value as a back-up counter value in response to the timing information on the input signal. The second subtractor subtracts, for each second register and its first register, the counter values thereof to generate a frequency representing value.
Abstract:
An apparatus, comprising a first sampling circuit configured to sample a clock signal according to a data signal to produce a first sampled signal, a second sampling circuit configured to sample the clock signal according to a delay signal to produce a second sampled signal, and a control circuit coupled to the first sampling circuit and the second sampling circuit, wherein the control circuit is configured to perform a not-and (NAND) operation according to the first sampled signal and the second sampled signal to produce an activation signal for activating a frequency adjustment for the clock signal.
Abstract:
A phase locked loop (200, 700, 800) with a phase detector (210, 710, 730) whose output signal varies between maximum and minimum points with the phase difference between input signals. A VCO (220, 720, 740) receives the output signal from the phase detector (210, 710, 730) as tuning signal. A first part of the output signal of the VCO (220, 720, 740) is an input signal to the phase detector (210, 710, 730) and a second part is the output signal of the phase locked loop. There is a DC voltage shifter (215, 715, 735) between the phase detector and the VCO, which shifts the DC voltage level of the output signal from the phase detector (210, 710, 730) so that a point at a distance from a centre point between said maximum and minimum points is shifted to zero volts (DC). The phase detector (210, 710, 730) is tunable.
Abstract:
A tracking circuit (100) is provided for controlling a locally-generated clock. A receive channel (110) in the tracking circuit receives an incoming signal and a local clock, generates a local signal based on the local clock, and compares the local signal and the incoming signal to generate a data signal and an unfiltered phase error signal. A loop filter (120) filters the unfiltered phase error signal to provide a filtered phase error signal. A numerically controlled oscillator (140) generates a correction clock based on the filtered phase error signal. And a filter control circuit (160) provides one or more filter control signals to control operational parameters of the loop filter. The correction clock is provided to the receive channel to modify at least one of the phase and frequency of the local clock. In addition, a sample switch (125) may also be provided to sample the unfiltered phase error signal.
Abstract:
A phase locked loop comprising a phase detector (100) for determining a phase difference between a reference signal (Ref) and mutually phase shifted signals (I, Q) to generate frequency control signals (U, D), the phase detector (100) comprising: means (10) for obtaining a first one of said frequency control signals (U, D) by binary multiplication of the reference signal (Ref) and one of the relative phase shifted signals (I, Q); and means (20) for obtaining a second one of said frequency control signals (U, D) by binary multiplication of the relative phase shifted signals (I, Q).
Abstract:
An improved multiple frequency digital phase-locked loop circuit (10). The improved digital phase-locked loops utilizes a single circuit (12) to effect both phase and frequency adjustments. The multiple frequency digital phase-locked loop effects phase adjustments by selectively combining or subtracting a reference clock signal (30) with a derived programmable clock signal thereby generating a composite digital phase-locked loop clock signal. The multiple frequency provides frequency adjustments by selectively adding or subtracting pulses from the composite clock signal at a rate determined by a programmably controllable clock signal. The improved multifrequency digital phase-locked loop is suitable for use as a tone detector with the addition of the lock detector (22) wherein the phase-locked loop can be programmed for a plurality of known operating frequencies.