Abstract:
Systems, apparatuses and methods described herein provide a method for padding a signal extension of orthogonal frequency-division multiplexing (OFDM) symbols. A transceiver may obtain a plurality of data symbols for transmission, and determine that a number of information bits for a last symbol of the plurality of data symbols is not an integer value. A special padding rule may be applied to add padding bits to the last symbol. A number of coded bits for the last symbol may be determined when the number of information bits for the last symbol has changed, and the plurality of data symbols for data transmission may be encoded based on the determined number of coded bits for the last symbol.
Abstract:
In one aspect, the teachings herein provide a method and apparatus for extending certain HARQ feedback procedures introduced in LTE Rel-10, which were defined for CA configurations involving TDD serving cells of the same UL/DL configuration, to the new, more complex CA configurations introduced in Rel-11, which involve the aggregation of interband TDD serving cells with differing UL/DL configurations. Such reuse enables reliant and efficient HARQ feedback signaling in LTE Rel-11, without substantially increasing the specification or implementation complexity of HARQ feedback signaling in LTE Rel-11, despite the decidedly more complex CA configurations introduced in LTE Rel-11.
Abstract:
In one embodiment, a message is sent (S310) from the wireless network ( 10) to a user equipment (20) having a variable rate vocoder (22). The message defines transport block sizes for the user equipment to select from in making uplink transmissions if the user equipment is permitted to vary a packet size for uplink transmission. A scheduling grant is sent (S320) to the user equipment, and the scheduling grant includes an indicator indicating that the user equipment is permitted to vary the packet size for uplink transmissions by selecting a transport block size from among the defined transport block sizes.
Abstract:
Systems and methods wherein a two-dimensional array or the like is employable in data transmission and/or reception, and wherein characteristic values are computable with respect to data to be transmitted. The characteristic values are transmitted along with the data and perhaps used by a data recipient, and could include, for instance, forward error correction data. Various such systems and methods are employable for a number of network types including, for example, Digital Video Broadcast networks.
Abstract:
A technique for managing transfer of data frames having a pre-determined mutual order is presented. Each data frame contains an order indicator, for example a sequence number, indicative of the position of the data frame in the pre-determined mutual order. A transmitting end provides each data frame with a satisfaction indicator that indicates whether acknowledgement about reception of ear- lier transmitted data frames is expected from a receiving end. When the satisfaction indicator of a data frame indicates that no acknowledgement is expected, the receiving end knows that the data frame can be treated (303) as a beginning of a received data flow when checking the integrity of the received data flow on the basis of the order indicators. Thus, there is no need to establish a logical connection between the transmitting and receiving ends prior to the transfer of the data frames.
Abstract:
Es ist ein Verfahren zur seriellen Übertragung eines Rahmens (50; 60; 70; 600; 700) über eine Busleitung (3) von einem Sender zu mindestens einem Empfänger und eine Teilnehmerstation (10; 20; 30) für ein Bussystem (1) bereitgestellt. Bei dem Verfahren werden vom Sender in den Rahmen (50; 60; 70; 600; 700) gemäß einer vorbestimmten Regel Stuff-Bits zur Erzeugung zusätzlicher Signalflanken eingefügt und/oder vom Empfänger die Stuff-Bits bei einer Auswertung des Rahmens (50; 60; 70; 600; 700) wieder entfernt, wobei wenigstens eine Information über einen Teilabschnitt (51; 62; 72) des Rahmens (50; 60; 70; 600; 700) zusätzlich außerhalb dieses Teilabschnitts (51; 62; 72) eingefügt und übertragen wird, und wobei der Teilabschnitt (51; 62; 72) eine vorbestimmte Abfolge von Bitwerten aufweist.
Abstract:
In one aspect of the disclosure, a method of wireless communication includes receiving, at a transmitter, data for transmission over an unlicensed carrier, calculating, at the transmitter, a first available extended clear channel assessment (ECCA) opportunity of the unlicensed carrier after the receiving, wherein the calculating uses at least network information and a pseudo-random number, performing a clear channel assessment (CCA) check, by the transmitter, on the unlicensed carrier at the first available ECCA opportunity, in response to detecting a clear CCA check, transmitting channel reserving signals, by the transmitter, onto the unlicensed carrier, and in response to failing to detect the clear CCA check, calculating, by the transmitter, a next available ECCA opportunity of the unlicensed carrier using at least the network information and another pseudo-random number.