Abstract:
The invention provides a process for the production of a wavelength converter containing a siloxane polymer matrix with wavelength converter nano particles embedded therein, the process containing (a) mixing (i) a first liquid containing (i1) short chain siloxane polymers and (i2) wavelength converter nano particles having an outer surface grafted with siloxane grafting ligands and (ii) curable siloxane polymers, and (b) curing the curable siloxane polymers, thereby producing the wavelength converter(100); wherein the short chain siloxane polymers have s1 Si backbone elements, wherein the siloxane grafting ligands comprise siloxane grafting ligands having x1 Si backbone elements, wherein at least one Si backbone element of each siloxane grafting ligand comprises a group having a grafting functionality; and wherein the curable siloxane polymers have y1 Si backbone elements, wherein x1/s1 ≥ 0.8, s1
Abstract:
Composite particles of a semiconductor particle such as a metal chalcogenide within a crosslinked, cored dendrimer are described. Additionally, methods of making the composite particles and compositions that contain the composite particles are described.
Abstract:
The invention relates to the use of nano-scaled metal oxide particles as catalysts for the thermal and/or photochemical polymerisation of species which have at least one polymerisable carbon-carbon multiple bond and/or at least one ring which contains carbon and is accessible to ring-opening polymerisation.
Abstract:
A method of preparing submicron particles of a therapeutic or diagnostic agent which comprises grinding the agent in the presence of grinding media having a mean particle size of less than about 75 microns. In a preferred embodiment, the grinding media is a polymeric resin. The method provides extremely fine particles, e.g., less than 100 nanometers in size, free of unacceptable contamination.
Abstract:
Composite particles of a metal particle within a crosslinked, cored dendrimer are described. Additionally, methods of making the composite particles and compositions that contain the composite particles are described.
Abstract:
Provided are an ultrathin polymer film formed by homopolymerization or copolymerization of a cucurbituril derivative with an organic monomer and a method of forming the same. The ultrathin polymer film has a thickness of 10 nm or less, and can retain its film shape even after being separated from a substrate.
Abstract:
The invention comprises a chemical composition with the structure shown below. The composition can be polymerized or pyrolyzed, forming transition metal nanoparticles homogeneously dispersed in a thermoset or carbon composition. (I) wherein A is selected from the group consisting of H, (II), and (III) wherein M is a metal selected independently from the group consisting of Fe, Mn, Ru, Co, Ni, Cr and V; wherein Rx is independently selected from the group consisting of an aromatic, a substituted aromatic group and combinations thereof; wherein Ry independently selected from the group consisting of an aromatic, a substituted aromatic group and combination thereof; wherein m is >/=0; wherein s is >/=0; wherein z is >/=0; and wherein m and s are independently determined in each repeating unit.
Abstract:
A method to synthesize a Group 15 containing metal polymerization catalyst is disclosed. The method includes an efficient high temperature synthesis of Group 15 containing ligands, especially arylamine ligands, for use in preparing polymerization catalysts and catalyst systems.
Abstract:
A method of forming a relief image in a structure comprising a substrate and a transfer layer formed thereon comprises covering the transfer layer with a polymerizable fluid composition, and then contacting the polymerizable fluid composition with a mold having a relief structure formed therein such that the polymerizable fluid composition fills the relief structure in the mold. The polymerizable fluid composition is subjected to conditions to polymerize polymerizable fluid composition and form a solidified polymeric material therefrom on the transfer layer. The mold is then separated from the solid polymeric material such that a replica of the relief structure in the mold is formed in the solidified polymeric material; and the transfer layer and the solidified polymeric material are subjected to an environment to selectively etch the transfer layer relative to the solidified polymeric material such that a relief image is formed in the transfer layer.
Abstract:
A method comprising incorporation of an inorganic polymer precursor of a grain growth inhibitor into nanostructured materials or intermediates useful for the production of nanostructured materials. The precursor/nanostructured material composite is optionally heat treated at a temperature below the grain growth temperature of the nanostructured material in order to more effectively disperse the precursor. The composites are then heat treated at a temperature effective to decompose the precursor and to form nanostructured materials having grain growth inhibitors uniformly distributed at the grain boundaries. Synthesis of the inorganic polymer solution comprises forming an inorganic polymer from a solution of metal salts, filtering the polymer, and drying. Alloying additives as well as grain growth inhibitors may be incorporated into the nanostructured materials.