图像篡改区域的定位方法、装置及存储介质

    公开(公告)号:WO2022000861A1

    公开(公告)日:2022-01-06

    申请号:PCT/CN2020/121512

    申请日:2020-10-16

    Abstract: 本申请涉及一种图像篡改区域的定位方法、装置及存储介质,属于图像处理技术领域,该方法包括:对目标图像进行离散小波变换,得到目标图像的对角小波系数矩阵;对对角小波系数矩阵按照不同尺寸进行多次分块,得到每次分块对应的分块系数集;分别对各个分块系数集中的各个分块系数进行噪声估计,得到各个分块系数对应的分块噪声值;结合多次分块对应的各个分块噪声值确定目标图像中的篡改区域;可以解决现有的图像篡改检测方法的适用场景受限的问题;由于图像篡改区域的噪声分布通常与正常区域的噪声分布不同,因此,通过对各个区域的噪声进行估计以检测篡改区域,可以扩大图像篡改检测方法的适用范围,并提高定位篡改区域的准确性。

    基于类内判别器的弱监督图像语义分割方法、系统、装置

    公开(公告)号:WO2021243787A1

    公开(公告)日:2021-12-09

    申请号:PCT/CN2020/099945

    申请日:2020-07-02

    Abstract: 一种基于类内判别器的弱监督图像语义分割方法、系统、装置,旨在解决弱监督采用的粗略标注带来的语义分割不准确的问题。本方法包括:为每个图像级的类别构建两级类内判别器,用以判断所属该图像类别的各像素点属于目标前景或是背景,并使用弱监督的数据进行训练;基于该类内判别器生成像素级的图像类别标签,生成语义分割结果并输出;还可以使用该标签进行图像语义分割模块或网络的训练,得到最终用于无标签输入图像的语义分割的模型。本方法充分挖掘隐含在特征编码中的类内图像信息,准确区分前景与背景像素,在仅依赖图像级标注的情况下,显著地提高弱监督语义分割模型的性能。

    COMPUTER-IMPLEMENTED METHOD, COMPUTER PROGRAM PRODUCT AND SYSTEM FOR ANALYZING VIDEOS CAPTURED WITH MICROSCOPIC IMAGING

    公开(公告)号:WO2021239533A1

    公开(公告)日:2021-12-02

    申请号:PCT/EP2021/063258

    申请日:2021-05-19

    Abstract: A computer-implemented method is provided for analyzing videos of a living system captured with microscopic imaging. The method comprises: obtaining (S10) a base dataset including one or more videos captured with microscopic imaging, at least one of the one or more videos including a cellular event; cropping out (S30), from the base dataset, sub-videos including one or more objects of interest that may be involved in the cellular event; receiving (S40) information indicating a plurality of sub-videos selected from among the sub-videos that are cropped out from the base dataset, the plurality of selected sub-videos including the cellular event; training (S50) an artificial neural network, ANN, model, using the plurality of selected sub-videos as training data, to perform unsupervised video alignment; obtaining (S602) a query sub-video, the query sub-video being: one of the sub-videos that are cropped out from the base dataset, or a sub-video cropped out from a video that is captured with microscopic imaging and that is not included in the base dataset; aligning (S604), using the trained ANN model, the query sub-video with a reference sub-video that is one of the plurality of selected sub-videos; and determining (S606), according to a result of the aligning, whether or not the query sub-video includes the cellular event.

    DETERMINING PUDDLE SEVERITY FOR AUTONOMOUS VEHICLES

    公开(公告)号:WO2021231355A1

    公开(公告)日:2021-11-18

    申请号:PCT/US2021/031682

    申请日:2021-05-11

    Applicant: WAYMO LLC

    Abstract: Aspects of the disclosure provide methods for controlling a first vehicle (100) having an autonomous driving mode. In one instance, sensor data generated by one or more sensors of the first vehicle may be received. A splash and characteristics of the splash may be detected from the sensor data using a classifier. A severity of a puddle (680), (682) may be determined based on the characteristics of the splash and a speed of a second vehicle (670), (672) that caused the splash. The first vehicle may be controlled based on the severity. In another instance, a location of a puddle relative to a tire (870) of a second vehicle is estimated using sensor data generated by one or more sensors of the first vehicle. A severity of the puddle may be determined based on the estimated location. The first vehicle may be controlled based on the severity.

    大脑中线识别方法、装置、计算机设备及存储介质

    公开(公告)号:WO2021189959A1

    公开(公告)日:2021-09-30

    申请号:PCT/CN2020/135333

    申请日:2020-12-10

    Abstract: 涉及人工智能技术领域,一种大脑中线识别方法、装置、计算机设备及存储介质,所述方法包括:通过对与用户标识码关联的脑部图像进行图像预处理得到待识别图像;通过多尺度深度网络模型进行中线特征提取,生成待处理特征图和分类识别结果;通过特征金字塔网络模型对所有待处理特征图进行特征融合,生成融合特征图组;运用双线性插值法,通过加权融合模型对所有融合特征图组进行插值及加权融合,生成待分割特征图像,并对待分割特征图像进行中线分割,得到大脑中线分割识别结果;并合成得到大脑中线图像,输出最终识别结果。该方法自动识别出大脑中线并标明,适用于智慧医疗等领域,可进一步推动智慧城市的建设。

Patent Agency Ranking