Abstract:
A level control circuit uses a reference voltage generated from a mains voltage signal by a reference circuit to provide a feedforward control signal. This control signal is used to generate a control signal for controlling a switched mode power converter. The reference circuit comprises a combining circuit adapted to apply a pulse width modulation control signal indicative of said level such that said reference voltage contains the level information. In an embodiment, the reference circuit comprises a voltage divider comprising a resistor circuit and the combining circuit comprises an adjustment module to which a pulse width modulation control signal is applied thereby to change the effective voltage divider ratio to implement level control. The level control further comprises a buffering capacitor or a buffered low pass filter coupled to the output (SET) of the voltage divider. This provides a power factor correction approach for active level control, and which can be implemented very simply and with low cost. It can be used for controlling lighting dimming.
Abstract:
A monolithic interface circuit for use with a linear variable differential transformer (LVDT) position transducer. The interface circuit includes a drive circuit for providing an excitation signal of selectable frequency and amplitude to the LVDT primary winding. The interface circuit further includes a decoder responsive to signals induced in the LVDT secondary windings for computing the position p of the LVDT core as a solution to the equation p= K(A-B)/(A+B), where A and B represent the signals induced in the primary winding and K is a constant scale factor. The decoder includes circuitry for rectifying and filtering the secondary signals, a charge balance loop responsive to the detected signals for providing a binary signal having a duty cycle representative of B/(A+B), and an output circuit responsive to the binary signal for providing the position output. The decoder provides excellent scale factor stability and linearity and is relatively insensitive to variations in primary drive amplitude.
Abstract:
An improved integrator for use in physical analog-computing systems is disclosed, featuring real-time dynamic amplitude scaling schemas that make use of an injected correction factor responsive to a contemporaneous change in an input dynamic-amplitude-scaling compensation factor. The injected correction factor is designed to reduce or eliminate transient output perturbations due to the amplitude scaling change. The disclosures discussed have real-world applications for physical analog computers and hybrid computers used to control and manage many types of industrial-control systems.
Abstract:
A method of converting a periodic pulse width modulated input signal into a voltage output signal wherein the input signal is in an active state for a first portion of each of successive time periods and in an inactive state for a second portion of each time period. A first and second input is supplied to an integrator circuit and a first capacitor is coupled between a first output of the integrator circuit and the first input and a second capacitor is coupled between a second output and the second input of the integrator circuit during a first time period of the pulse width modulated signal. A third capacitor is coupled between a first output of the integrator circuit and the first input and a fourth capacitor is coupled between a second output of the integrator circuit and the second input during a successive second time period of the pulse width modulated signal. Said coupled capacitors are charged during the active state of the first and second time periods and discharged during the inactive state of the first and second time periods.
Abstract:
Die vorliegende Erfindung betrifft ein Verfahren zur analogen Multiplikation und/oder Berechnung eines Skalarprodukts mit einer Schaltungsanordnung, die eine Serienschaltung aus einem ersten FET und einem als Stromquelle dienenden zweiten FET oder FET-Array, eine Ladeeinrichtung und eine Kapazität aufweist, die über die Ladeeinrichtung vorgeladen und über die Serienschaltung aus dem ersten FET und dem zweiten FET oder FET-Array entladen werden kann. Die Kapazität wird hierbei zur Multiplikation eines ersten Wertes mit einem zweiten Wert zunächst vorgeladen. Der erste Wert wird als Pulslänge eines Spannungspulses kodiert an das Gate des ersten FET und der zweite Wert als Spannungsamplitude kodiert an das Gate des zweiten FET angelegt. Dadurch wird die Kapazität für den Zeitraum des Spannungspulses mit einem Entladungsstrom entladen, der durch die am zweiten FET anliegende Spannungsamplitude vorgegeben wird. Das Ergebnis der Multiplikation lässt sich dann aus der Restladung oder Restspannung der Kapazität bestimmen. Das Verfahren arbeitet sehr energieeffizient und lässt sich vorteilhaft für die Durchführung von Berechnungen in Neuronen eines künstlichen neuronalen Netzwerkes einsetzen.
Abstract:
A user programmable integrated circuit includes a user-programmable routing network including a plurality of interconnect conductors selectively couplable to one another by user-programmable elements. A plurality of matrix vector multipliers, each have a plurality of word lines, each word line coupled to a different first one of the one of the interconnect conductors of the user-programmable routing network, the word lines forming intersections with a plurality of summing bit lines, a programmable Vt transistor at each intersection having a gate connected to the intersecting word line, a source connected to a fixed potential and a drain connected to the intersecting summing bit line. A charge-to-pulse-width converter circuit is associated with each one of the matrix vector multipliers, each having an input coupled to one of the summing bit lines, and a pulse output coupled to a different second one of the interconnect conductors of the user-programmable routing network.
Abstract:
The voltage-sensing circuit structure is intended to avoid fast-scale subharmonic instabilities in switching power converters, comprising a compact circuit structure to be connected at the output of a switching power converter, by means of which the sensed feedback voltage is altered with a double transfer function so that concurrently the ripple component is amplified to obtain an enhanced fast- scale stability margin while attenuating the converter output voltage ripple in the power path.
Abstract:
A power factor correction circuit (22) for a boost power supply, wherein the boost power supply includes a boost converter responsive to a rectified AC line voltage. According to one embodiment, the power factor correction circuit includes a voltage feedback amplifier (40) having a first input terminal responsive to an output voltage of the boost converter, a switching multiplier circuit (46) having a first input terminal connected to an output terminal of the voltage feedback amplifier (48) and a second input terminal responsive to the rectified AC line voltage, a current feedback amplifier (48) having a first input terminal connected to an output terminal of the switching multiplier circuit and having a second input terminal responsive to an input current of the boost converter, and a pulse width modulator control circuit (20) having an input terminal connected to an output terminal of the current feedback amplifier (48) and having an output terminal for connection to a pulse width modulated switch of the boost converter.