US10523352B2
Methods and systems that enable recovery of a lost packet from an incomplete block transmitted over a communication network. In one embodiment, a system includes a first processor configured to: receive a block of packets during a period spanning a certain duration, calculate a parity packet (PP) for the block, and provide in PP an indication of the number of packets in the block, where the block comprises k
US10523351B2
The invention provides a novel and unique system and method for cross channel in-vehicle identification of media, source, and advertisement consumption measurement and analysis. Real-time measurement and analysis of all applicable forms of media that a driver or passenger may consume inside of an automobile can be achieved. This includes real time measurement and analysis of advertisement effectiveness for a large number of users across a specified region.
US10523346B2
A distributed antenna system including a plurality of remote antenna units, a passive element coupled to at least one of the remote antenna units and an RFID system located proximate the passive element. The RFID system includes processing circuitry and measurement circuitry and the processing circuitry is configured for receiving an interrogation signal and processing the interrogation signal and providing a response. The response includes data associated with a measurement made by the measurement circuitry.
US10523343B2
A measuring system for determining a beamforming quality of an antenna array signal of an antenna array of a device under test. The measuring system comprises a measuring device configured to receive an antenna array signal, and to measure the antenna array signal and to determine a beamforming signal quality thereof. The antenna array signal is wirelessly transmitted to the receiver by the antenna array of a device under test. The measuring system further comprises a positioning unit configured to position the device under test in successive predefined orientations. The measuring device is configured to receive and measure the antenna array signal successively in each of the predefined orientations.
US10523340B2
Provided are a transmitting device connected to a receiving device via a channel and the receiving device connected to the transmitting device via a channel. The transmitting device connected to a receiving device includes: a transmitter connected to the channel via an output node and configured to transmit, via the channel, a transmission signal to the receiving device, the transmitter having a transmission impedance associated therewith that is variable; and a monitoring device configured to detect a channel impedance of the channel and a receiving impedance of the receiving device by monitoring a voltage level of the output node, the monitoring device configured to set the transmission impedance based on the channel impedance and the receiving impedance.
US10523337B2
Methods and systems for large silicon photonic interposers by stitching are disclosed and may include, in an optical communication system including a silicon photonic interposer, where the interposer includes a plurality of reticle sections: communicating an optical signal between two of the plurality of reticle sections utilizing a waveguide. The waveguide may include a taper region at a boundary between the two reticle sections, the taper region expanding an optical mode of the communicated optical signal prior to the boundary and narrowing the optical mode after the boundary. A continuous wave (CW) optical signal may be received in a first of the reticle sections from an optical source external to the interposer. The CW optical signal may be received in the interposer from an optical source assembly coupled to a grating coupler in the first of the reticle sections in the silicon photonic interposer.
US10523335B2
Fourier transform is performed on a reception signal to obtain a first calculation value. Fourier transform is performed on a known signal to obtain a second calculation value. The first calculation value is divided by the second calculation value to obtain a third calculation value. Inverse Fourier transform is performed on the third calculation value to obtain a fourth calculation value. A maximum value of an amplitude of the fourth calculation value and a sample point at which the maximum value is obtained are detected. The position of the known signal in the reception signal is detected from the sample point at which the maximum value is obtained.
US10523334B1
An optical system for controlling gain modification, including a first non-linear optical element (NLE) through which an input optical signal and a first pump wavelength are transmitted to generate a first optical signal; a second NLE through which the first optical signal is amplified to generate a second optical signal; a third NLE through which the second optical signal is amplified to generate a third optical signal; a first heating element coupled to the second NLE to adjust a temperature of the second NLE to control a first gain profile of the second optical signal; a second heating element coupled to the third NLE to adjust a temperature of the third NLE to control a second gain profile of the third optical signal, wherein the temperatures of the second and the third NLE minimize a gain modulation of the optical system based on the first and the second gain profiles.
US10523333B2
An optical signal transmission apparatus generates a multi-level optical signal from a multi-level electric signal. The optical signal transmission apparatus detects, based on a supervisory signal generated from an optical signal, an electric-to-optical (E/O) conversion characteristic of an E/O converter configured to convert an electric signal into an optical signal. For example, when the E/O converter generates a multi-level optical signal from a multi-level electric signal based on a bias signal, the optical signal transmission apparatus determines a correspondence relationship between the bias signal and the optical signal. The optical signal transmission apparatus adjusts a use range of intensities of the bias signal based on the determined correspondence relationship so that the E/O converter may linearly operate.
US10523330B2
A communication device of the disclosure includes a phase synchronizer, a modulator, and a controller. The phase synchronizer generates a second signal on a basis of a first signal received from a communication partner by selectively performing one of a closed loop operation and an open loop operation. The modulator is able to modulate the first signal on a basis of the second signal. The controller controls operations of the phase synchronizer and the modulator.
US10523326B2
Embodiments disclosed in the detailed description include analog distributed antenna system (DAS) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (RF) communications signals. Analog RF communications signals received from analog RF signal sources are distributed in the analog DAS without being digitized. The analog DAS is also configured to interface with digital signal sources and compatibly distribute digital communications signals. Hence, a digital signal interface in head-end equipment (HEE) is configured to convert downlink digital communications signals to downlink analog RF communications signals for distribution to a plurality of remote units. The digital signal interface is also configured to convert uplink analog RF communications signals to uplink digital communications signals for distribution to the digital signal source(s). By providing the digital signal interface in the HEE, the analog DAS can be configured to distribute digital communications signals to analog DAS components.
US10523320B2
Disclosed herein are a dual-mode device operating in a visible light communications mode and a wireless network communications mode, and a method performed by the device. The visible light communications device includes a wireless network communications unit including a fixed identifier and performing communications based on a wireless protocol, a visible light transmitting unit transmitting the fixed identifier using a visible light communications protocol, and a controller (control unit) controlling the visible light transmitting unit so that it selectively transmits the fixed identifier using the visible light communications protocol depending on whether the wireless network communications unit is connected to a wireless network.
US10523309B2
Embodiments of the present invention provide improved systems and methods for a programmable portable electronic device for airborne operational communications. In one embodiment, a system for preventing unauthorized access to operational aircraft data comprises a personal electronic device and a plurality of aircraft systems that produce avionic operational data. The system further comprises an airborne server in network communication with the personal electronic device and the plurality of aircraft systems, wherein the airborne server implements security measures to prevent unauthorized electronic devices from accessing the avionic operational data, wherein the airborne server controls the dissemination of avionic operational data to electronic devices.
US10523303B2
This application discloses a method and an apparatus for transmitting a signal in a wireless communications system. The method includes: sending or receiving a signal of a first beam in a first beam set within a communication time of the first beam; and sending or receiving a signal of a third beam in a second beam set within a switching gap for switching from the first beam to a second beam in the first beam set. According to the method and the apparatus for transmitting a signal in a wireless communications system in embodiments of this application, overheads can be reduced.
US10523302B2
The present invention relates to a 5th-generation (5G) or pre-5G communication system which is provided for supporting a higher data transfer rate after a 4th-generation (4G) communication system such as a long term evolution (LTE). The present invention provides a method for selecting, by an access point (AP), a beam in a communication system supporting a beamforming scheme, the method comprising: a step of transmitting information which indicates whether or not a duplicated beacon transmission interval (BTI) is operated; and a step of performing a transmit sector sweep (TXSS) process at least twice during the duplicated BTI.
US10523299B2
There is provided mechanisms for shaping transmission beams in a wireless communications network. A method is performed by a network node. The method comprises acquiring channel measurements for wireless devices served by radio access network nodes using current beam forming parameters and being controlled by the network node. The method comprises determining, based on the channel measurements, desired beam forming parameters for shaping the transmission beams for at least one of the radio access network nodes. The method comprises initiating a gradual change of the current beam forming parameters to the desired beam forming parameters for shaping the transmission beams for the at least one of the radio access network nodes. The gradual change causes a need for network controlled handover to occur for at least some of the wireless devices served by the radio access network nodes.
US10523295B2
Certain aspects of the present disclosure provide methods and apparatus for enhancing a beamforming training procedure. For example, an apparatus can include a processing system that generates a plurality of transmit beamforming refinement frames for a transmit sector sweep that each include a preamble, a data field, at least one beamforming training field, identification of a transmit antenna array to be used for transmitting the at least one beamforming training field, and a status indication of whether the transmit beamforming refinement frame is a last transmit beamforming refinement frame in the transmit sector sweep for one or more receive antenna arrays of a wireless node. The apparatus also includes a first interface that outputs the transmit beamforming refinement frames using a first transmit beamforming sector for the preambles and data fields, and one or more second transmit beamforming sectors for subfields of the beamforming training fields.
US10523286B2
Embodiments have a master eNB with a control plane and optional data plane to user equipment and a secondary eNB with a data plane to the user equipment. The user equipment thus uses both the master eNB and the secondary eNB for data communications while receiving control information from only the master eNB. The master eNB and secondary eNB are connected with an X2 interface. When the secondary eNB desires to refresh its security key, it informs the master eNB using the X2 interface. The master eNB then uses its control plane with the user equipment to initiate a security key refresh for the secondary eNB.
US10523284B2
A transmission apparatus includes processing circuitry that generates a first data sequence representing first data or a second data sequence representing second data different from the first data and selects the first data sequence as an output data sequence. A modulation scheme is determined from a plurality of modulation schemes, and the output data sequence is modulated with the determined modulation scheme. Transmission circuitry transmits the modulated output data sequence. A first time interval associated with selecting the first data sequence for the output data sequence is longer than a second time interval associated with determining the determined modulation scheme.
US10523275B2
A coupling circuit for power line communications includes a coupling transformer having first and second mutually coupled windings, with the first winding connectable to a power line. The second winding includes a pair of intermediate taps with one or more tuning inductor therebetween. The inductor or inductors are set between a first portion and a second portion of the second winding of the coupling transformer. A switch member is provided coupled with the inductor. The switch member is selectively actuatable to short-circuit the inductor.
US10523270B1
Full Duplex (FDX) enhanced node deployment may be provided. First, a first device level may be provided comprising a first plurality of FDX enhanced nodes. The first plurality of FDX enhanced nodes may comprise a first FDX enhanced node and a second FDX enhanced node. The first plurality of FDX enhanced nodes may be operated in a first mode. Next, a second device level may be provided comprising a third FDX enhanced node. The second device level may be upstream from the first device level. The third FDX enhanced node may be operated in a second mode. Then an input port of the first FDX enhanced node and an input port of the second FDX enhanced node may be provided with a same type of input that is being provided to an input port of the third FDX enhanced node. The first plurality of FDX enhanced nodes may then be switched from being operated in the first mode to being operated in the second mode.
US10523261B2
An electronic device includes an antenna configured to receive a wireless signal. The electronic device also includes a first correlator configured to correlate the wireless signal to a communication of a first wireless protocol type and a second correlator configured to correlate the wireless signal to a communication of a second wireless protocol type.
US10523260B2
Base station antennas utilize RF transmitters and receivers, which operate with enhanced bias control to achieve very high speed switching during TDD operation. A radio frequency communication circuit for TDD includes a transmit/receive amplifier (e.g., MMIC) having first and second input terminals, which are responsive to a bias control voltage and radio frequency input signal. A bias control circuit is provided, which is electrically coupled to the first input terminal and a current receiving terminal of the transmit/receive amplifier. The bias control circuit includes a closed-loop feedback path between the current receiving terminal and the first input terminal, which is configured to regulate a magnitude of the bias control voltage with high precision to thereby achieve a substantially constant quiescent bias current at the current receiving terminal when the transmit/receive amplifier is enabled.
US10523257B2
Aspects of the technology relate to a cover (e.g., for a handheld electronic device). The cover may include a cover body configured for securement to a handheld electronic device and comprising an accessory attachment area, wherein the accessory attachment area includes a plurality of receivers, and wherein the accessory attachment area is configured for coupling with an accessory in at least one of a plurality of orientations. In some aspects, each receiver further includes a space recessed into the cover body that is bounded, at least partially, by a recess wall, wherein each receiver includes an engagement surface configured for abutting engagement with a projection associated with an accessory when the projection is disposed in a secured configuration within a respective space. An electrical device cover and various attachment devices are also provided.
US10523256B2
Aspects of the technology relate to a cover (e.g., for a handheld electronic device). The cover may include a cover body configured for securement to a handheld electronic device and comprising an accessory attachment area, wherein the accessory attachment area includes a plurality of receivers, and wherein the accessory attachment area is configured for coupling with an accessory in at least one of a plurality of orientations. In some aspects, each receiver further includes a space recessed into the cover body that is bounded, at least partially, by a recess wall, wherein each receiver includes an engagement surface configured for abutting engagement with a projection associated with an accessory when the projection is disposed in a secured configuration within a respective space. An electrical device cover and various attachment devices are also provided.
US10523253B2
In an illustrative example, an apparatus includes a passive-on-glass (POG) device integrated within a glass substrate. The apparatus further includes a semiconductor die integrated within the glass substrate.
US10523252B2
A system that incorporates aspects of the subject disclosure may perform operations including, for example, obtaining uplink information associated with a downlink path, wherein the uplink information includes operational parameters used by a plurality of communication devices for transmitting wireless signals on a plurality of uplink paths; performing, based on the uplink information, a plurality of measurements of the plurality of uplink paths; identifying a measurement from the plurality of measurements that is below a threshold, thereby indicating an affected uplink path of the plurality of uplink paths; initiating a first filtering of the affected uplink path, wherein the initiating is based on the identifying and wherein the first filtering is based upon one or more first filtering parameters; and receiving instructions comprising one or more updated filtering parameters, wherein the instructions are received by the system at a port of the system. Other embodiments are disclosed.
US10523241B2
A computing device includes an interface configured to interface and communicate with a dispersed storage network (DSN), a memory that stores operational instructions, and a processing module operably coupled to the interface and memory such that the processing module, when operable within the computing device based on the operational instructions, is configured to perform various operations. The computing device receives a request to store a data object and to dispersed error encode the data object to generate a plurality of sets of encoded data slices (EDSs). The computing device then performs a deterministic function on a data object name to generate a plurality of data object names. The computing device then replicates the plurality of sets of EDSs to generate other pluralities of sets of EDSs and to facilitate storage of the plurality of sets of EDSs and the other pluralities of sets of EDSs within a plurality of storage units (SUs).
US10523240B2
Methods, apparatus, systems and articles of manufacture to determine and apply polarity-based error correction code are disclosed. In some examples, the methods and apparatus create an array by setting a first set of bit locations of a code word to have a first value and setting a second set of bit locations of the code word to have a second value different from the first value. In some examples, when the array satisfies a parity check, the methods and apparatus determine that bit locations having the first value from the array form a polarity-based error correction code.
US10523238B2
The present invention discloses a coding and decoding method, apparatus, and system for forward error correction, and pertains to the field of communications. The method includes: determining check matrix parameters of time-varying periodic LDPC convolutional code according to performance a transmission system, complexity of the transmission system, and a synchronization manner for code word alignment, constructing a QC-LDPC check matrix according to the determined check matrix parameters, and obtaining a check matrix (Hc) of the time-varying periodic LDPC convolutional code according to the QC-LDPC check matrix; de-blocking, according to requirements of the Hc, data to be coded, and coding data of each sub-block according to the Hc, so as to obtain multiple code words of the LDPC convolutional code; and adding the multiple code words of the LDPC convolutional code in a data frame and sending the data frame.
US10523231B1
A pipelined analog-to-digital converter (ADC) circuit includes a first ADC stage and a residue stage coupled to the first ADC stage. The residue stage includes a dynamic integrator configured to provide transconductance, wherein the dynamic integrator includes a boost circuit configured to boost an output impedance of the transconductance.
US10523224B2
An integrated circuit includes a signal network and a phase detector circuit. The signal network includes an adjustable delay circuit. The adjustable delay circuit is coupled at an intersection in the signal network between branches of the signal network. The signal network generates a first signal at a first leaf node of the signal network in response to a second signal. The signal network generates a third signal at a second leaf node of the signal network in response to the second signal. The phase detector circuit compares phases of the first and third signals to generate a phase detection signal. The adjustable delay circuit adjusts a delay provided to the first signal relative to the second signal to reduce a skew between the first and third signals based on the phase detection signal indicating that the first and third signals have the skew.
US10523222B1
A phase locked loop (PLL) provides output signals at multiple frequencies. In particular, the PLL includes a phase detector and two voltage controlled oscillators (VCOs). One of the VCOs is selectively enabled depending on a desired output signal. The phase detector receives a reference signal and a feedback signal from the enabled one of the two VCOs. The phase detector outputs a control signal that controls the VCO that provided the feedback signal.
US10523220B1
Disclosed herein are embodiments of an apparatus and a method for generating a quadrature clock signal. In one aspect, the apparatus includes a first delay circuitry to delay a clock signal according to a first control signal to generate a first delayed clock signal. In one aspect, the apparatus includes a second delay circuitry to delay the clock signal according to a second control signal to generate a second delayed clock signal. In one aspect, the apparatus includes a delay controller forming a first feedback loop with the first delay circuitry, and forming a second feedback loop with the second delay circuitry, where the delay controller determines a difference between the first delayed clock signal and the second delayed clock signal and modifies the first control signal and the second control signal according to the determined difference.
US10523217B2
A frequency locked loop is disclosed. The disclosed frequency locked loop may include: a voltage-controlled oscillator configured to output a LO signal; a mixer configured to mix an RF signal with the LO signal to output an IF signal; a first IF path part configured to transfer the IF signal; a second IF path part configured to transfer the IF signal; and an error amplifier configured to receive output signals of the first IF path part and output signals of the second IF part as input, where the voltage-controlled oscillator adjusts a frequency of the LO signal based on an output signal of the error amplifier, the first IF path part has the conversion gain decreased according to an increase in the frequency of the IF signal, and the second IF path part has the conversion gain increased according to an increase in the frequency of the IF signal.
US10523215B2
A semiconductor apparatus may include a synchronization circuit, and a phase detection circuit. The synchronization circuit may be configured to, based on an operation mode of the semiconductor apparatus, divide a first clock signal to generate first and second divided clock signals or divide a phase-locked clock signal to generate first and second divided clock signals. The phase detection circuit may be configured to use, based on the operation mode of the semiconductor apparatus, either the first and second clock signals created from dividing the first clock signal or the first and second clock signals created from dividing the phase-locked clock signal, to compare either the first divided clock signal or the second divided clock signal with a second clock signal to generate a phase detection signal.
US10523212B2
A semiconductor device may include an input control circuit, a counting circuit, an output control circuit, and a counting operation control circuit. The input control circuit may output a counting input signal based on an input signal and a counting over signal. The counting circuit may generate a preliminary counting code based on the counting input signal. The output control circuit may generate a counting code based on the preliminary counting code. The counting operation control circuit may generate the counting over signal based on a part of the counting code.
US10523207B2
Systems and methods relating to a programmable circuit. The programmable circuit includes multiple sectors. Each sector includes configurable functional blocks, configurable routing wires, configuration bits for storing configurations for the functional blocks and routing wires, and local control circuitry for interfacing with the configuration bits to configure the sector. The programmable circuit may include global control circuitry for interfacing with the local control circuitry to configure the sector. Each sector may be independently operable and/or operable in parallel with other sectors. Operating the programmable circuit may include using the local control circuitry to interface with the configurations bit and configure the sector. Additionally, operating the programmable circuit may include using the global control circuitry to interface with respective local control circuitry and configure the sector.
US10523202B2
A user interface device including a floating actuator sub-assembly and a base assembly flexibly coupled to the floating actuator assembly is disclosed. The floating actuator assembly may include a magnet array assembly with a plurality of magnets fixed relative to each other.
US10523197B2
A bi-directional switch circuit includes first and second transistors having their control electrodes coupled at a first common node and the current paths coupled at a second common node in an anti-series arrangement. First and second electrical paths coupled between the first common node and the first and second transistors, respectively, include first and second switches switchable between a conductive state and a non-conductive state. A third electrical path between the first and second common nodes includes a third switch switchable between a conductive state and a non-conductive state. The third switch is coupled with the first and second switches by a logical network configured to switch the third switch to the conductive state with the first and second switches switched to the non-conductive state, and to the non-conductive state with either one of the first and second switches switched to the conductive state.
US10523196B2
An electronic circuit and a method are disclosed. The electronic circuit includes a first supply node and a second supply node configured to receive a supply voltage, an input configured to receive an input signal, and an output configured to be coupled to a control node of a transistor device. The electronic circuit further includes an undervoltage lockout (UVLO) circuit configured to perform a comparison of the supply voltage and a UVLO threshold. The electronic circuit is configured to operate in one of a first operating mode or a second operating mode based on the comparison. The UVLO circuit is configured to generate the UVLO threshold based on the supply voltage, and the electronic circuit is configured to generate the output signal, in the first mode, dependent on the input signal and to generate the output signal, in the second mode, in a predefined fashion independent of the input signal.
US10523193B2
The Robust Safe Switch and Control Device is an “Internet of Things” end effecter that provides a minimally dissipating, robust switch tightly integrated with circuit, life and property automated safety features. The device enables extended sensing and monitoring capabilities that enable the effective management of the “Internet of Things.”
US10523191B2
Aspects of methods and systems for high frequency signal selection are provided. The system for high frequency signal selection comprises a first driver and a second driver. The first driver is able to receive a first high frequency input, and the second driver is able to receive a second high frequency input. The output of the first driver is operably coupled, via a first inductive element, to a first resistive load and a first buffer, and the second driver is operably coupled, via a second inductive element, to the output of the first driver. One or both of the first high frequency input and the second high frequency input may be transferred to the first buffer by selectively enabling a current to one or both of the first driver and the second driver, respectively.
US10523186B1
An apparatus is provided comprising receiving circuitry to receive a representation of a circuit comprising a plurality of flops. Categorisation circuitry determines data dependencies between the flops from the representation and generates a categorisation of the flops into one of at least: a vulnerable category, a conditional category, and an isolated category, in dependence on the data dependencies. The categorisation indicates the vulnerability of the flops to transient errors. Output circuitry outputs the categorisation of the flops. The conditional category comprises those of the flops whose change in value is indicated by a change in a value in a corresponding flop in the flops or corresponding signal. The vulnerable category comprises those of the flops that are absent from the conditional category and whose change in value is affected by one of the flops or a signal and the isolated category comprises the flops that are absent from the conditional category and that are absent from the vulnerable category.
US10523176B2
The present disclosure relates to a front-end module for a telecommunication device with an EBD circuit comprising a hybrid transformer for coupling via a transmit port to the telecommunication device transmitting a first frequency transmit signal, to an antenna, via a receive port to the telecommunication device receiving a second frequency receive signal, and to a tunable impedance circuit. In a first configuration the EBD circuit is configured to isolate the transmit port from the receive port at the first frequency, and the FEM comprises a first filter at the transmit port for attenuating the transmit signal with a predetermined amount at the second frequency. In a second configuration the EBD circuit is configured to isolate the transmit port from the receive port at the second frequency, and the FEM comprises a second filter at the receive port for attenuating the receive signal a predetermined amount at the first frequency.
US10523172B2
The various implementations described herein include methods, devices, and systems for automatic audio equalization. In one aspect, a method is performed at an electronic device that includes speakers, microphones, processors and memory. The electronic device outputs audio user content from the speakers and automatically equalizes subsequent audio output of the device without user input. The automatic equalization includes: (1) obtaining audio content signals, including receiving outputted audio content at each microphone; (2) determining from the audio content signals phase differences between microphones; (3) obtaining a feature vector based on the phase differences; (4) obtaining a frequency correction from a correction database based on the obtained feature vector; and (5) applying the obtained frequency correction to the subsequent audio output.
US10523154B2
An oscillator and method for operation of the oscillator are provided. The oscillator includes a control voltage generator configured to generate a control voltage based on dividing a power voltage that was received, an offset voltage generator configured to generate an offset voltage based on dividing the power voltage that was received, a phase locked loop (PLL) including a varactor circuit configured to modify a capacitance based on the control voltage and the offset voltage, and a calibration logic circuit configured to provide a selection control signal to the control voltage generator based on the oscillation signal, and configured to provide an offset control signal to the offset voltage generator based on the oscillation signal.
US10523146B2
A power generating apparatus is provided. The alternator includes a rotor, a stator, one or more sensors and an electrical circuit. The rotor includes a plurality of symmetric phase windings while the stator has a single phase winding. The excitation control device is configured to control the induced voltage generated in stator by regulating the rotating magnetic field generated in the phase windings of the rotor. The excitation control device is also configured to regulate the engine speed responsive to calculated load power. The electrical circuit connecting the single phase winding of the stator and the load is configured in a way that the induced voltage generated in the single phase winding and the output voltage applied to the load are at the same frequency. This arrangement reduces costs of the apparatus.
US10523141B2
A motor control apparatus that applies a pulse voltage for each phase of a three phase brushless motor to make current flow, the apparatus provided with: a generating unit for causing the pulse voltage to be generated by shifting the phase of the pulse voltage for each phase of the three phase brushless motor; and a detecting unit for detecting a current flowing to a coil of each phase of the three phase brushless motor to which the pulse voltage is applied by switching by a predetermined sampling period for each phase one-by-one, wherein a relationship between the sampling period of the detecting unit and a phase shift amount of the pulse voltage of each phase generated by the generating unit is set so that the detecting unit can detect the current for each phase of the three phase brushless motor.
US10523140B2
A power tool is provided including: an electric brushless direct current (BLDC) motor having rotor and a stator defining phases; a power unit including a first switch circuit connected electrically between a first power supply and the motor, and a second switch circuit connected electrically between a second power supply and the motor; and a controller configured to control a switching operation of the first switch circuit and the second switch circuit to regulate a supply of power from at least one of the first power supply and/or the second power supply to the motor.
US10523135B2
A method of manufacturing a micro-electrical-mechanical system (MEMS) assembly includes mounting a micro-electrical-mechanical system (MEMS) actuator to a metal plate. An image sensor assembly is mounted to the micro-electrical-mechanical system (MEMS) actuator. The image sensor assembly is electrically coupled to the micro-electrical-mechanical system (MEMS) actuator, thus forming a micro-electrical-mechanical system (MEMS) subassembly.
US10523132B2
A method and apparatus for start-up of a voltage source converter (VSC) which is connected to an energized DC link (DC+, DC−). The VSC is connected to a first AC network via a first transformer and an AC isolation switch, the AC isolation switch being coupled between the first transformer and the AC network. The method involves using an auxiliary AC power supply to generate an AC supply to energize the first transformer with the AC isolation switch open. The VSC is then started, with a VSC controller using the AC supply generated by the auxiliary AC power supply as a reference for controlling the VSC. The auxiliary AC power supply may also be used to supply power to at least one VSC load, such as the controller and/or an auxiliary load such as a cooling system. Once the VSC is started the isolation switch 204 can be closed.
US10523120B2
According to some example embodiments, an apparatus includes a buck-boost converter, a first buck converter connected at an output terminal of the buck-boost converter, a second buck converter connected at the output terminal of the buck-boost converter, a first LA including a first supply voltage input connected to the output terminal of the buck-boost converter, and an output terminal connected to an output terminal of the first buck converter, where the first LA is configured to provide a first modulated supply voltage to a first PA of a first transmitter, and a second LA including a second supply voltage input connected to the output terminal of the buck-boost converter, and an output terminal connected to an output terminal of the second buck converter, where the second LA is configured to provide a second modulated supply voltage to a second PA of a second transmitter.
US10523117B2
A photovoltaic power system for supplying power to an electric grid is provided, in which a plurality of photovoltaic panels are each configured for generating a DC power signal. A plurality of DC-DC power converters connected to the photovoltaic panels are provided for converting the DC power signal into a deadband DC signal having a rectified sine waveform with reoccurring deadband periods, which reduces the risk of arcing during power transmission. An electric network interface is used to convert the deadband DC signal received from the plurality of DC-DC power converters into an AC power signal.
US10523106B2
A method for controlling a multi-channel SMPS having N switching circuits. The method is generating a fast system clock and N load indication signals indicative of load statuses of the N switching circuits, then generating N clock control signals based on the preset pulses of the fast system clock and the N load indication signals. If one of the N switching circuits is detected to transit from a heavy load condition to a light load condition, forming the corresponding clock control signal based on the first pulse of the fast system clock after the corresponding load indication signal transits from the first state to the second state.
US10523105B2
In a method for operating an inverter system and a corresponding inverter system, which includes from the network filter to the inverter, values are determined using the data unit, and a value spectrum of the determined values is determined using an evaluation unit. The value spectrum is compared to a predetermined or predefinable limit spectrum using an assessment unit, and a switching frequency of the inverter can be adapted while in operation by using an adapter unit arranged downstream of the data unit, the evaluation unit and the assessment unit in the return path.
US10523094B2
A power inverter with liquid cooled busbars includes multiple AC power outlets. The power inverter also includes a busbar having a busbar arm connected to one of the AC power outlets, and a busbar leg having a first end connected to the busbar arm. The busbar leg is at least partially situated in a cooling channel of the power inverter, which may be a built-in cooling channel or a detachable cooling channel. A second end of the busbar leg extends beyond the cooling channel and is exposed for electrical connection.
US10523093B2
Disclosed is a resolver, which includes a stator having at least one excitation coil and at least one output coil, and a rotor disposed at a center space in the stator with a predetermined gap from the stator, the rotor rotating based on a rotary shaft to change a gap permeance with respect to the stator, wherein a thickness (tr) of the rotor and a thickness (ts) of the stator satisfies the equation: tr−ts≥0.7 [mm], thereby efficiently offsetting an influence caused by an assembly error, which is commonly generated when assembling a resolver, improving the measurement precision, facilitating a resolver designing work and reducing manufacture costs.
US10523092B2
A vehicle AC power generator includes a protection cover disposed at the rear side of a rear bracket included in a housing of the vehicle AC power generator, an attachment bolt that penetrates a through-hole formed in a bottom portion of a protection cover and is fixed to a portion at one axle-direction side of the housing, an output terminal bolt that extends from a rectifier, which rectifies AC electric power, toward the outside of one axle-direction side of the protection cover, and an insert coated conductor that is supported by the output terminal bolt and the attachment bolt and is provided at the rear surface of the protection cover.
US10523087B2
A power tool is provided including a housing; an electric motor disposed within the housing; a power terminal that receives electric power from a battery pack; a power switch circuit disposed between the power terminal and the electric motor; and a controller configured to control a switching operation of the power switch circuit to regulate power being supplied from the power terminal to the electric motor. The controller is configured to receive a temperature signal indicative of a temperature of the battery pack, determine if the temperature of the battery pack is below a lower temperature threshold, and operate the switching operation of the power switch circuit in a normal mode of operation if the temperature of the battery pack is greater than or equal to the low temperature threshold and in a cold mode of operation if the temperature of the battery pack is below the low temperature threshold.
US10523083B2
A motor includes a bearing housing and a stator. The stator includes a stator core, an insulator, and a conductor. The insulator is an insulating body covering at least a part of the stator core. The conductor is wound around the stator core via the insulator. The bearing housing and the stator are connected to each other by a main adhesive and an auxiliary adhesive. A curing time of the auxiliary adhesive is shorter than that of the main adhesive. Therefore, the bearing housing and the stator can be temporarily fixed by the auxiliary adhesive of which the curing time is short until the main adhesive is cured. Therefore, it is possible to suppress that the position of the stator is deviated with respect to the bearing housing until the main adhesive is cured.
US10523074B2
An induction motor assembly for converting an electrical input to a mechanical or rotating work output. A related generator variant converts a rotating work input to a converted electrical output utilizing the same efficiencies achieved by the present design. An outer rotatable component incorporates a plurality of magnets arranged in a circumferentially extending and inwardly facing fashion according to a first perimeter array, the outer component further incorporating a rotating shaft projecting from a central location. An inner concentrically arrayed and stationary component exhibits a plurality of coil sub-assemblies, each including a multi-wire and multiple winding braided configuration. The coil sub-assemblies are supported in an exteriorly facing fashion upon the inner stationary component according to a second perimeter array, such that a determined gap separates coil sub-assemblies from the inwardly facing magnets. A three phase current introduced typically to the outer stationary coils rotating the outer magnetic component with central projecting shaft.
US10523070B2
In a rotor for a rotary electric machine, a claw pole assembly includes first claw poles and second claw poles. An annular cover member covers the outer circumferential surfaces of the first and second claw poles. The pole cover segments and the inter-pole cover segments are alternately arranged in the circumferential direction of the rotor. Each of the pole cover segments has a circular-arc shape around a first center, and each of the inter-pole cover segments has a circular-arc shape around a second center different from the first center. The first circumferential width of each pole cover segment and the second circumferential width of a corresponding one of the inter-pole segment adjacent to the pole cover segment have a predetermined ratio. The predetermined ratio varies in an axial direction of the rotor.
US10523069B2
A bearing assembly for a motor shaft of an electric motor having a stator. The stator is formed by a stator core having a plurality of stator laminations, which are stacked one on the other. The stator core has a first outer partial stator core, a second outer partial stator core, and a central partial stator core. The central partial stator core is arranged between the two outer partial stator cores. A continuous opening is arranged in each of the partial stator cores, in which openings bearings for supporting the motor shaft are arranged and the motor shaft is arranged. A diameter of the opening of the central partial stator core is smaller than a diameter of the opening of the outer partial stator cores such that a diameter transition from the central partial stator core to an outer partial stator core forms an axial stop for a bearing.
US10523065B2
Provided are a wireless ultrasound probe and a method of charging a battery included in the wireless ultrasound probe by receiving wireless power that is directionally transmitted toward a position of the wireless ultrasound probe and focusing received wireless power.
US10523048B2
A power supply covering both power sharing and power backup functions run in a more efficient and flexible way. The power supply adopts a power sharing converter coupled between a first bus terminal and a second bus terminal, so that if one of the bus terminals provides insufficient power, the other bus terminal kicks in by way of the power sharing converter to provide power support. In addition, a storage capacitor may also kick in to provide power support if one of the bus terminals provide insufficient power via or not via the power sharing converter.
US10523043B2
An air powered battery charger uses a large object's weight to drive one or more pistons that are configured to pass air through at least one air motor, which in turn drives one or more generators that supplies electrical power sufficient to recharge at least one battery.
US10523030B2
A charge control method for an alkaline storage battery includes determining whether or not a temperature T of a battery is less than 0° C.; if the temperature T is equal to or higher than 0° C., determining whether or not the battery has been considered to be charged to a maximum capacity that can be stored in the battery; if the battery has not been considered to be charged to the maximum capacity, determining the temperature T of the battery again; if the battery has been considered to be charged to the maximum capacity, finishing the charging; if it is determined that the temperature T is less than 0° C., determining whether or not a specified voltage value has been reached, the specified voltage value having been preset in a range lower than a voltage value when the battery has been considered to be charged to the maximum capacity that can be stored in the battery; if the voltage value of the battery has not reached the specified voltage value, determining the temperature T of the battery again; and if the voltage value of the battery has reached the specified voltage value, finishing the charging.
US10523018B2
A modular energy storage system has: a battery module with a battery and internal circuitry; a control module with a power outlet, internal charge-and-discharge electrical components, and a power inlet for connection to a power source in use; the battery module defining a top seat that has an associated electrical connector; and the battery module being mounted to the control module below the control module by the top seat, whose respective associated electrical connector connects to the internal charge-and-discharge electrical components to permit the control module to: charge the battery module with power from the power source; and discharge the battery module by transferring power from the battery module to the power outlet.
US10523014B2
A solar power inverter includes a number of photovoltaic (PV) inputs for connecting PV modules, a DC-DC converter at each of the PV inputs and a DC-AC inverter for converting the outputs of the DC-DC converters to an AC output power that may be fed into a power grid. The invention provides a method of controlling such a solar power inverter including the steps of identifying a PV input by assigning a priority value to the PV inputs and identifying the PV input with the highest assigned priority value, calculating a set value for the DC-DC converter at the identified PV input that is equal or below a maximum power capacity of the PV module connected to the identified PV input, and applying the set value for the DC-DC converter at the identified PV input.
US10523006B2
The present application relates to a controller arrangement for controlling an inverter for converting an input power from a power source to a multiphase AC output power provided at a power output of the inverter. The power output is connected to a load and additionally to a power grid. The controller arrangement includes a signal input for receiving a power signal per phase representative of at least one of the power per phase provided to the load or the power per phase provided to the power grid. The controller arrangement is further adapted to control each phase of the multiphase AC output power individually according to the corresponding power signal. The invention further relates to an inverter comprising such a controller arrangement, a power distribution arrangement comprising such an inverter and a controller arrangement to control the inverter and the invention further relates to a method for controlling such an inverter.
US10522991B2
A compact busway system for low and medium voltage application is described. In particular, the described compact busway system is designed for low and medium power distribution systems for high current applications. The described compact busway system has a enclosure assembly with at least two side mount supports affixed to the enclosure assembly and at least two horizontal supports, a first horizontal support and a second horizontal support, which are connected and perpendicular to the at least two side mount supports. The compact busway system further includes at least one busbar affixed between the first horizontal support and the second horizontal support, at least one strap connected to the first horizontal support and the second horizontal support, and at least one ground bus connected to the enclosure assembly.
US10522980B2
An electrical load center includes a first mounting rail supporting a first row of circuit breakers, and a second mounting rail supporting a second row of circuit breakers. The load center also includes a first neutral bus bar spaced apart from the first mounting rail, a rail-to-rail link electrically coupled between the first mounting rail and the second mounting rail, and a first rail-to-neutral link electrically coupled between a first end of the rail-to-rail link and the first neutral bus bar.
US10522976B1
An optical device includes a gallium and nitrogen containing substrate comprising a surface region configured in a (20-2-1) orientation, a (30-3-1) orientation, or a (30-31) orientation, within +/−10 degrees toward c-plane and/or a-plane from the orientation. Optical devices having quantum well regions overly the surface region are also disclosed.
US10522974B2
An edge-emitting laser having a small vertical emitting angle includes an upper cladding layer, a lower cladding layer and an active region layer sandwiched between the upper and lower cladding layers. By embedding a passive waveguide layer within the lower cladding to layer, an extended lower cladding layer is formed between the passive waveguide layer and the active region layer. In addition, the refractive index (referred as n-value) of the passive waveguide layer is larger than the n-value of the extended lower cladding layer. The passive waveguide layer with a larger n-value would guide the light field to extend downward. The extended lower cladding layer can separate the passive waveguide layer and the active region layer and thus expand the near-field distribution of laser light field in the resonant cavity, so as to obtain a smaller vertical emitting angle in the far-field laser light field.
US10522971B2
A laser diode-driving power supply includes a constant current source that supplies current to LDs, a switching element connected in parallel to the LDs, and a control unit that controls the constant current source and performs on-off control of the switching element. The control unit compares a first current command value and a second current command value for controlling current output from the constant current source, and when the second current command value input after the first current command value is smaller than the first current command value, applies to the LDs a voltage in the range of a voltage at which current flows through the LDs to a voltage less than the lasing threshold of the LDs when there is no output from the LDs.
US10522964B2
A fiber laser apparatus includes a fiber laser oscillator that performs laser oscillation with laser light from at least one laser diode module, and includes a loop-shaped optical fiber formed with: a combiner in which at least two input side optical fibers are connected to one output side optical fiber that includes one output end; and an optical fiber for connection of both ends in which the output end of the output side optical fiber is connected to the input end of any one of the input side optical fibers, the optical fiber for connection of both ends including a light leakage means formed such that at least one of values among a numerical aperture, a core diameter and a mode field diameter of the optical fiber for connection of both ends is gradually reduced from a side which is connected to the output end toward a side which is connected to the input end.
US10522963B2
A method of laser processing a workpiece includes: focusing a pulsed laser beam into a laser beam focal line directed into the workpiece such that the laser beam focal line generates an induced absorption and produces a defect line along the laser beam focal line within the workpiece. The laser beam focal line has length L and a substantially uniform intensity profile such that the peak intensity distribution over at least 85% of the length L of the focal line does not vary by more 40%, and in some embodiments by no more than 30 or 20% from its mean peak intensity.
US10522955B2
An enhanced safety serial bus connector (100) is provided. The enhanced safety serial bus connector (100) includes a shell (110) with a first end (110a) and a second end (110b), the first end (110a) being a terminal end of the shell (110) and having a terminal centerline (CL), and the second end (110b) being the lead end of the shell (110). The enhanced safety serial bus connector (100) also includes an insulating body (120) disposed inside the shell (110) and extending from approximately the first end (110a) to the second end (110b) and a plurality of conductors (130) substantially disposed in the insulating body (120) and extending from the first end (110a) to the second end (110b). The plurality of conductors (130) include contacts (132) that are proximate the first end (110a) and have contact centerlines (X, Y) that are substantially parallel to the terminal centerline (CL), wherein each conductor (130a-130d) of the plurality of conductors (130) are spaced apart from an adjacent conductor (130a-130d) with a distance that substantially conforms to spacing requirements of a serial bus standard that defines a voltage on the plurality of conductors (130) and is equal to or greater than a minimum enhanced safety distance requirement for the voltage defined by the serial bus standard.
US10522947B2
Embodiments of the present invention relate to designs for network jacks which can be used for cable connectivity. In an embodiment, the present invention is an RJ45 jack that utilizes a thin dielectric film between two layers of PICs that provide crosstalk compensation by way of their geometry. Compensation is achieved by way of capacitor plates which sandwich a thin dielectric film. This allows for the layers of PICs to be in close proximity and achieve higher coupling where desired, allowing a greater amount of compensation to occur close to the plug/jack contact point. This can have the effect of moving compensation closer to the plug/jack contact point, which in turn may reduce the amount of compensation needed further along the data path.
US10522940B2
A method for manufacturing a sealed electrical wire harness includes the steps of providing an equipped connector housing with electrical terminals inserted within the equipped connector housing and with electrical wires attached and electrically connected to the electrical terminals, providing an injection molding tool suitable for injecting sealing material, placing the equipped connector housing into the injection molding tool, closing the injection molding tool, filling the equipped connector housing with sealing material, thereby distributing the sealing material inside the equipped connector housing to a wire inlet portion, a connector position assurance holder portion, and an interface portion, and removing the sealed electrical wire harness from the injection molding tool.
US10522931B2
A connector assembly is provided, which includes a cage that defines a port and a card slot positioned in the port. Also included is a wafer set aligned with the card slot, the wafer set including a plurality of wafers that each support at least four terminals. The terminals are arranged so that two rows of contacts are provided, one row on a first side and one row on a second side of the card slot. Each wafer of the plurality of wafers includes an insulative frame, each terminal includes a beam portion cantilevered from the insulative frame supporting that terminal, and the cantilevered beam portion of at least one terminal of the at least four terminals has a molded material thereon.
US10522912B2
Disclosed herein is an antenna device including a first metal layer having first and second areas, a coil pattern having first and second terminals, a first wiring pattern connected between the first area of the first metal layer and the first terminal of the coil pattern, and a second wiring pattern connected between the second area of the first metal layer and the second terminal of the coil pattern. The first metal layer, the first wiring pattern, and the second wiring pattern constitute at least a part of a loop antenna.
US10522911B2
An antenna device includes a coil antenna including coil conductors that are wound around a winding axis and include a first coil end and a second coil end, a first planar conductor, a second planar conductor, and a third planar conductor. The first planar conductor includes a surface extending along the winding axis in proximity to the first coil end. The second planar conductor includes a surface extending along the winding axis is in proximity to the second coil end. The third planar conductor is in proximity to the first planar conductor and to the second planar conductor, with at least a portion of the third planar conductor being positioned between the first planar conductor and the second planar conductor in plan view.
US10522909B2
A wireless device includes an antenna structure having at least one parallel resonance element and a plurality of serial resonance components. The at least one parallel resonance element may be configured to radiate in at least one frequency. The plurality of serial resonance components may be configured to radiate in a plurality of frequencies. The antenna structure may further include a distributed feed element configured to couple to the parallel resonance element and the serial resonance components and serve as a radiofrequency signal feed. The wireless device may include two or more similar antenna structures.
US10522908B2
An antenna unit, an antenna system and an antenna control method are disclosed. The antenna unit includes a first radiation metal element, a second radiation metal element, and a third radiation metal element. The first radiation metal element includes a signal feed point, a first ground point, and a second ground point. The signal feed point, the first ground point, and the second ground point are disposed approximately in a straight line. The second radiation metal element is disposed away from the first radiation metal element with a gap and includes a third ground point. The third radiation metal element surrounds the first radiation metal element and the second radiation metal element and includes a fourth ground point.
US10522906B2
Various antennas and systems of antennas can benefit from meta-material construction. For example, avionics antennas including weather antennas may benefit from being constructed of meta-materials. A method can include, for example, electronically scanning, by an antenna of an aircraft, an environment of the aircraft. The electronically scanning can include transmitting or receiving an electrical frequency over the antenna. The antenna can include a negative index of refraction meta-material. The electronically scanning can also include applying an electric field to control a dielectric constant of the antenna.
US10522901B2
A terminal casing and a terminal are provided. A bottom frame is divided into a horizontal part and two perpendicular parts by two gaps in the bottom frame of a metal frame; and a first feeder unit and a second feeder unit are arranged in a clearance area, the first feeder unit and the horizontal part of the bottom frame form a first antenna unit, and the second feeder unit and any perpendicular part form a second antenna unit orthogonal to the first antenna unit.
US10522894B2
A coaxial microstrip line conversion circuit includes: a waveguide including first and second through holes, spaced apart from each other, the second through hole having a dimension to cut off a used frequency; a coaxial connector including a central conductor including a projection projecting from an axial end of an outer conductor; and a microstrip line including a ground conductor provided on one surface of an insulating substrate, and a strip line provided on the other surface of the insulating substrate and including a projection projecting axially from the ground conductor. The outer conductor is connected to an outer wall of the waveguide. The projection of the central conductor is inserted through the first through hole into the waveguide, the ground conductor is connected to an inner wall of the second through hole, and the projection of the strip line is inserted through the second through hole into the waveguide.
US10522888B2
A microwave branching switch for selectively interconnecting terminals of a plurality of microwave transmission lines, involving microwave transmission lines with a terminal; a housing in which the terminals are arranged; a switching portion with a junction portion for selectively interconnecting terminals of the microwave transmission lines through selective interconnection. The switching portion is switchable between a first position and a second position; wherein the switching portion with the junction portion is dimensioned and positioned inside the housing in dependence of an arrangement of the microwave transmission lines such that the junction portion interconnects a first group of terminals when the switching portion is in the first position and interconnects a second group of terminals when the switching portion is in the second position. The first and second groups of terminals differ in at least one terminal and the first group of terminals involves at least three terminals.
US10522884B2
Cathode material from exhausted lithium ion batteries are dissolved in a solution for extracting the useful elements Co (cobalt), Ni (nickel), Al (Aluminum) and Mn (manganese) to produce active cathode materials for new batteries. The solution includes compounds of desirable materials such as cobalt, nickel, aluminum and manganese dissolved as compounds from the exhausted cathode material of spent cells. Depending on a desired proportion, or ratio, of the desired materials, raw materials are added to the solution to achieve the desired ratio of the commingled compounds for the recycled cathode material for new cells. The desired materials precipitate out of solution without extensive heating or separation of the desired materials into individual compounds or elements. The resulting active cathode material has the predetermined ratio for use in new cells, and avoids high heat typically required to separate the useful elements because the desired materials remain commingled in solution.
US10522876B2
Detection of corrosion within an at least partially electrically conductive housing of an electric energy storage unit. The electric energy storage unit has a positive terminal and a resistance element between the positive terminal and the housing. State of charge values of the electric energy storage unit for at least one first instant of time and at least one second instant of time are determined. An electrical isolation resistance value between the housing of the electric energy storage unit and at least one reference point for at least one third instant of time may also be determined. A first comparison of a difference of the determined state of charge values with a predefined state of charge difference value for the electric energy storage unit and/or a second comparison of the determined electrical isolation resistance value with a predefined electrical isolation resistance value for the electric energy storage unit are performed.
US10522868B2
The present invention provides a sequential and efficient method of assembling a battery with a desired number of layers while reliably separating positive and negative electrode sides from each other with one or more separator structures. According to the invention, the method of assembling a battery includes stacking one or multiple combinations each comprising a frame and a positive electrode plate to be disposed in a region defined by the frame and one or multiple combinations each comprising a frame and a negative electrode plate to be disposed in a region defined by the frame, once or alternately, such that the positive and adjacent negative electrode plates are separated from each other by a separator structure and the periphery of the separator structure is held between the adjacent frames. The separator structure includes a separator exhibiting hydroxide ion conductivity and water impermeability.
US10522864B1
Devices powered by fuel cells can be operated for extended durations when the fuel cells are adapted to extract the necessary reactants for generating power from the surrounding environment and when the concentration of reactants in that environment is maintained at a sufficient level by interaction between the environment and a reactant-enriched atmosphere.
US10522862B2
A thermo-electro-chemical converter direct heat to electricity engine has a monolithic co-sintered ceramic structure or a monolithic fused polymer structure that contains a working fluid within a continuous closed flow loop. The co-sintered ceramic or fused polymer structure includes a conduit system containing a heat exchanger, a first high density electrochemical cell stack, and a second high density electrochemical cell stack.
US10522855B2
A method for creating an oxygen depleted gas in a fuel cell system, including operating a fuel cell stack at a desired cathode stoichiometry at fuel cell system shutdown to displace a cathode exhaust gas with an oxygen depleted gas. The method further includes closing a cathode flow valve and turning off a compressor to stop the flow of cathode air.
US10522844B2
The invention relates to a catalyst which is suitable for use in an anode of a fuel cell. The catalyst comprises (i) nickel metal and (ii) at least one metal selected from transition metals and may optionally also comprise (iii) at least one metal selected from alkaline earth metals. Metals (i), (ii) and, if present, (iii) are supported on (iv) a finely divided electrically conductive carrier. The weight ratio (i):((ii)+(iii)) is at least 3:1.
US10522836B2
The present application is directed to blends comprising a plurality of carbon particles and a plurality of lead particles. The blends find utility in any number of electrical devices, for example, in lead acid batteries. Methods for making and using the blends are also disclosed.
US10522825B2
The present disclosure relates to a positive electrode active material and a positive electrode comprising metal nano particles, and a lithium-sulfur battery comprising the same, and in particular, to a positive electrode for a lithium-sulfur battery comprising a positive electrode active material of a sulfur-metal catalyst-carbon composite, and a lithium-sulfur battery comprising the same. The lithium-sulfur battery using a positive electrode comprising metal nano particles according to the present disclosure increases reactivity of sulfur, a positive electrode active material, and increases electrical conductivity of an electrode by the dispersion of the metal nano particles in the electrode so as to increase reactivity and electric capacity of the positive electrode. In addition, battery reaction products such as lithium sulfide (Li2S) are readily decomposed by a catalyst reaction, and therefore, lifespan characteristics can be improved.
US10522822B2
The present disclosure relates to improved LMO composition suitable for use as cathode material in rechargeable lithium ion batteries. The LMO composition may be doped with an additional metal or undoped. The LMO composition carries a surface treatment of LiF that protects the LMO from acid degradation. Cathodes prepared from the improved LMO have improved fade characteristics.
US10522803B2
A battery pack that includes a plurality of battery modules arranged adjacent to each other and mounted on a base plate, the base plate including a module receiving part on which the battery modules are mounted, and a cooling assembly that is disposed between the base plate and bottom portions of the battery modules and through which a refrigerant flows so as to cool the battery modules. In order to couple the battery modules to the base plate, bolt fastening grooves are drilled in the height direction of the battery module at respective corners on the horizontal surface of the battery module, and welding nuts are inserted through openings and fitted to the base plate at positions corresponding to the bolt fastening grooves.
US10522802B2
An exemplary traction battery assembly includes, among other things, a first portion of an enclosure, a second portion of the enclosure, and a compression limiter. The first portion is overmolded to the compression limiter. An exemplary method includes, among other things, securing a first portion of an enclosure for a traction battery to a second portion, and limiting compression of the first portion during the securing using a compression limiter. The first portion is overmolded to the compression limiter.
US10522796B2
A battery structure has structure anode and cathode contacts on a front face and on a rear face. The battery structure includes a battery having battery anode and cathode contacts only on a front face thereof. A film including a conductive layer and an insulating layer jackets the battery. The conductive layer extends over the battery anode and cathode contacts and is interrupted therebetween. Openings are provided in the insulating layer on the front and rear faces of the battery structure to form the structure anode and cathode contacts of the battery structure.
US10522795B2
Disclosed is a pouch type secondary cell. The pouch type secondary cell includes an electrode assembly including a cell and an electrode, a pouch having a receiving space configured to receive the electrode assembly therein, the pouch including upper and lower sheets configured to surround upper and lower plate surfaces of the electrode assembly respectively, and a terrace sealing formed by compressing the upper and lower sheets, which surround a terrace, in a thickness direction thereof so that the upper and lower sheets come into contact with each other, the terrace being an empty space in the receiving space excluding a space occupied by the electrode assembly.
US10522784B2
A method for producing an organic EL device in this disclosure includes the steps of providing an element substrate including a substrate and a plurality of organic EL devices arranged on the substrate; and forming a thin film encapsulation structure over the element substrate. The step of forming the thin film encapsulation structure includes the steps of forming a first inorganic barrier layer over the element substrate; condensing a photocurable resin on the first inorganic barrier layer; irradiating a plurality of selected regions of the photocurable resin with a laser beam to cure at least a part of the photocurable resin, thus to form a photocurable resin layer; removing an uncured part of the photocurable resin; and forming a second inorganic barrier layer, covering the photocurable resin layer, on the first inorganic barrier layer.
US10522775B2
A hole injection layer provided between a first electrode and each of light emitting layers, and an electron injection layer provided between a second electrode and each of light emitting layers, overlap only inward from an end portions each of the light emitting layers when viewed in plan view.
US10522772B2
A photoelectric conversion element according to an embodiment of the present disclosure includes a first electrode and a second electrode opposed to each other; and a photoelectric conversion layer provided between the first electrode and the second electrode, and including a first organic semiconductor material and a second semiconductor material that have mutually different mother skeletons, in which the first organic semiconductor material is fullerene or a fullerene derivative, and the second organic semiconductor material has a deeper HOMO level than the first organic semiconductor material.
US10522763B2
A compound represented by formula (I) or formula (II): in formula (I), R3 represents an electron donating group, R4 represents a hydrogen atom, a substituted or unsubstituted aryl group or an electron donating group, L3 represents a substituted or unsubstituted heteroarylene group or a substituted or unsubstituted arylene group, L4 represents a single bond, a substituted or unsubstituted heteroarylene group or a substituted or unsubstituted arylene group, L3 and L4 may bond together to form a ring with the carbon atoms to which they are bonded, in formula (II), R5 represents an electron donating group, R6 represents a hydrogen atom, a substituted or unsubstituted aryl group or an electron donating group, L5 represents a substituted or unsubstituted heteroarylene group or a substituted or unsubstituted arylene group, L6 represents a single bond, a substituted or unsubstituted heteroarylene group or a substituted or unsubstituted arylene group.
US10522760B2
A polycyclic compound and an organic electroluminescence device, the polycyclic compound being represented by the following Formula 1:
US10522754B2
Two-terminal memory devices can be formed in part within a dielectric material that is electrically insulating and operates as a blocking layer to mitigate diffusion of metal particles employed in integrated circuit fabrication. This dielectric material can be protected from other fabrication processes corrosive to the dielectric material (e.g., CMP, HF clean, etc) by a silicon containing liner. Use of the silicon containing liner can enable a minimum thickness of the dielectric material to be preserved and can facilitate step height differences between adjacent material surfaces that form a two-terminal memory device to be on the order of less than about five angstroms. This small step height difference, particularly when underlying a switching layer of the two-terminal memory device, can yield excellent switching characteristics.
US10522753B2
A via connection is provided through a dielectric layer to a bottom electrode. A MTJ stack is deposited on the dielectric layer and via connection. A top electrode is deposited on the MTJ stack. A selective hard mask and then a dielectric hard mask are deposited on the top electrode. The dielectric and selective hard masks are patterned and etched. The dielectric and selective hard masks and the top electrode are etched wherein the dielectric hard mask is removed. The top electrode is trimmed using IBE at an angle of 70 to 90 degrees. The selective hard mask, top electrode, and MTJ stack are etched to form a MTJ device wherein over etching into the dielectric layer surrounding the via connection is performed and re-deposition material is formed on sidewalls of the dielectric layer underlying the MTJ device and not on sidewalls of a barrier layer of the MTJ device.
US10522748B2
The present invention relates to a magnetic device including a spin-current pattern generating a spin current perpendicular to a main plane of the spin-current pattern by an in-plane current, and a free magnetic layer disposed in contact with the spin-current pattern and having a perpendicular magnetic anisotropy magnetically switchable by the spin current.
US10522745B2
A magnetic tunnel junction (MTJ) is disclosed wherein a free layer (FL) interfaces with a first metal oxide (Mox) layer and second metal oxide (tunnel barrier) to produce perpendicular magnetic anisotropy (PMA) in the FL. In some embodiments, conductive metal channels made of a noble metal are formed in the Mox that is MgO to reduce parasitic resistance. In a second embodiment, a discontinuous MgO layer with a plurality of islands is formed as the Mox layer and a non-magnetic hard mask layer is deposited to fill spaces between adjacent islands and form shorting pathways through the Mox. In another embodiment, end portions between the sides of a center Mox portion and the MTJ sidewall are reduced to form shorting pathways by depositing a reducing metal layer on Mox sidewalls, or performing a reduction process with forming gas, H2, or a reducing species.
US10522741B1
A method for fabricating a magnetic tunneling junction (MTJ) structure is described. A first dielectric layer is deposited on a bottom electrode and partially etched through to form a first via opening having straight sidewalls, then etched all the way through to the bottom electrode to form a second via opening having tapered sidewalls. A metal layer is deposited in the second via opening and planarized to the level of the first dielectric layer. The remaining first dielectric layer is removed leaving an electrode plug on the bottom electrode. MTJ stacks are deposited on the electrode plug and on the bottom electrode wherein the MTJ stacks are discontinuous. A second dielectric layer is deposited over the MTJ stacks and polished to expose a top surface of the MTJ stack on the electrode plug. A top electrode layer is deposited to complete the MTJ structure.
US10522738B2
An electronic device includes a semiconductor memory, wherein the semiconductor memory includes a variable resistance element formed over a substrate, and a multi-layer passivation layer positioned over sidewalls of the variable resistance element and having two or more insulating layers formed over the sidewalls of the variable resistance element.
US10522734B2
An inkjet printing head includes a piezoelectric element having a lower electrode, a piezoelectric film formed above the lower electrode, and an upper electrode formed above the piezoelectric film, a hydrogen barrier film covering an entirety of a side surface of the upper electrode and the piezoelectric film, and an interlayer insulating film that has an opening at an upper surface center of the upper electrode, is laminated on the hydrogen barrier film, and faces the entirety of the side surface of the upper electrode and the piezoelectric film across the hydrogen barrier film.
US10522711B2
A manufacturing method of a quantum dot, a light-emitting material, a light-emitting device, and a display apparatus are provided. The manufacturing method of a quantum dot includes the following steps. A first solution including at least one element selected from the group consisting of an element in Group XII and an element in Group XIII is provided. A second solution including at least one element selected from the group consisting of an element in Group XV and an element in Group XVI is provided. The first solution and the second solution are mixed. A thermal treatment is performed on the mixed solution. A range of the heating rate of the thermal treatment is 2° C./min to 10° C./min.
US10522697B2
A composition for forming an electrode for a solar cell includes a conductive powder, a glass frit, and an organic vehicle, the organic vehicle including a thickener including a structural unit represented by Chemical Formula 1,
US10522683B2
An embodiment includes an apparatus comprising: a transistor including an epitaxial source, a channel, and an epitaxial drain; a fin that includes the channel, the channel including a long axis and a short axis; a source contact corresponding to the source; and a drain contact corresponding to the drain; wherein (a) an additional axis intersects each of the source contact, the source, the drain, and the drain contact, and (b) the additional axis is parallel to the long axis. Other embodiments are described herein.
US10522674B2
A semiconductor device includes a semiconductor layer that has a transistor structure including a p type source region, a p type drain region, an n type body region between the p type source region and the p type drain region, and a gate electrode facing the n type body region and a voltage-regulator diode that is disposed at the semiconductor layer and that has an n type portion connected to the p type source region and a p type portion connected to the gate electrode, in which the transistor structure and the voltage-regulator diode are unified into a single-chip configuration.
US10522667B2
The SiC-IGBT includes a p-type collector layer, an n−-type voltage-blocking-layer provided on the collector layer, p-type base regions provided on the n−-type voltage-blocking-layer, n+-type emitter regions provided in an upper portion of the p-type base region, a gate insulating film provided in an upper portion of the voltage-blocking-layer, and a gate electrode provided on the gate insulating film. The p-type buffer layer has thickness of five micrometers or more and 20 micrometers or less and is doped with Al at impurity concentration of 5×1017 cm−3 or more and 5×1018 cm−3 or less and doped with B at impurity concentration of 2×1016 cm−3 or more and less than 5×1017 cm−3.
US10522665B2
Semiconductor circuits are provided for emulating neuron firing process using a positive feedback transistor having first and second gate electrodes in the longitudinal direction of a channel region. The first gate electrode is connected to a gate electrode of a first p-channel MOSFET to be an input terminal and the second gate electrode is connected to a drain to be applied with a supply voltage. Thus electrons and holes can accumulate separately in a channel region (i.e., a body) under each of the gate electrodes by applying input signals to the input terminal and drastically reduce the wasted power consumption in the non-fired neurons because the current is turned on and off only at a moment that corresponds to a firing of the neuron. Thus, the semiconductor circuits can be driven by low power and have the same level of endurance as a general MOSFET.
US10522664B2
An electronic device includes a semiconductor layer, a tunneling layer formed of a material including a two-dimensional (2D) material so as to directly contact a certain region of the semiconductor layer, and a metal layer formed on the tunneling layer.
US10522631B2
A semiconductor device includes a transistor having a source/drain region. A conductive contact is disposed over the source/drain region. A silicide element is disposed below the conductive contact. The silicide element has a non-angular cross-sectional profile. In some embodiments, the silicide element may have an approximately curved cross-sectional profile, for example an ellipse-like profile. The silicide element is formed at least in part by forming an amorphous region in the source/drain region via an implantation process. The implantation process may be a cold implantation process.
US10522627B2
A semiconductor device may be provided with a semiconductor substrate, an upper electrode, a lower electrode and a gate electrode provided within a trench via a gate insulator film. The semiconductor substrate may include a p-type body layer being in contact with the upper electrode, an n-type drift layer intervening between the body layer and the lower electrode, a p-type floating region provided along a bottom surface of the trench, and a p-type connection region extending between the body layer and the floating region along a side surface of the trench. The trench may include a first section where the connection region is not provided and a second section where the connection region is provided. An inclination angle of the side surface of the trench in the second section may be greater than an inclination angle of the side surface of the trench in the first section.
US10522619B2
The disclosed subject matter provides a method for fabricating a three-dimensional transistor. The method includes forming an active region and two isolation structures on a semiconductor substrate. The active region is formed between the two isolation structures. The method further includes forming a photoresist layer on the active region and the isolation structures, forming an opening in the photoresist layer to expose a top surface of the active region and a portion of a top surface of each isolation structure, and then forming a trench on each side of the active region by removing a portion of the corresponding isolation structure exposed in the opening through an etching process using the photoresist layer as an etch mask. After the etching process, the portion of the active region between the two trenches becomes a three-dimensional fin structure. The disclosed method simplifies fabrication process for three-dimensional transistors and reduces product cost.
US10522616B2
A semiconductor device includes: a fin-type active region protruding from a substrate and extending in a first direction; at least one nano-sheet spaced apart from an upper surface of the fin-type active region and facing the upper surface of the fin-type active region, the at least one nano-sheet having a channel region; a gate extending on the fin-type active region in a second direction crossing the first direction and surrounding at least a portion of the at least one nano-sheet; a source/drain region on the fin-type active region on both sides of the at least one nano-sheet; and a source/drain protection layer on a sidewall of the at least one nano-sheet and between the source/drain region and the at least one nano-sheet.
US10522614B2
Methods for producing FETs with negative capacitance and the resulting device are disclosed. Embodiments include forming a gate stack over a semiconductor substrate by: forming a gate oxide over the semiconductor substrate; forming a first metal gate electrode over the gate oxide; forming a dummy gate over the metal gate electrode; and forming sidewall spacers on first and second sides of the gate stack; forming an ILD over the substrate and gate stack; removing the dummy gate and at least a portion of sidewall spacers to form an opening; forming a ferro-electric (FE) layer in the opening; and forming a second metal gate electrode over the FE layer.
US10522610B2
The present disclosure discloses a display device and a manufacturing method thereof. The display device is provided with a chip-on-film package and a sealant in a wiring area of the display device, with first surface of the chip-on-film package connected to the active area of the display device to provide a driving signal to the active area, and the second surface of the chip-on-film package provided with a concave-convex structure, a sealant covering the concave-convex structure of the chip-on-film package.
US10522602B1
Provided are an organic light-emitting display panel and a display device. The organic light-emitting display panel includes: a display area; an organic light-emitting component located in the display area; a pixel defining layer located in the display area and including an aperture region defining the organic light-emitting component; a color resist layer located at a light-emitting side of the organic light-emitting component. The color resist layer includes a color resist corresponding to the aperture region, and a black resist located outside of the color resist in the display area. The color resist has a same color as the color of the organic light-emitting component corresponding to the corresponding aperture region.
US10522601B2
In accordance with an exemplary embodiment of the present disclosure, a method of manufacturing an organic light-emissive display can be provided. A plurality of electrodes can be provided on a substrate. A first hole conducting layer can be deposited via inkjet printing over the plurality of electrodes on the substrate. A liquid affinity property of selected surface portions of the first hole conducting layer can be altered to define emissive layer confinement regions. Each emissive layer confinement region can have a portion that respectively corresponds to each of the plurality of electrodes provided on the substrate. An organic light-emissive layer can be deposited via inkjet printing within each emissive layer confinement region.
US10522599B2
A foldable, flexible display apparatus includes a flexible display panel which displays an image and includes a display side on which the image is displayed and of which portions thereof face each other in a folded state of the flexible display apparatus; a cover window on the display side of the flexible display panel and including: a window film comprising a transparent plastic film having a modulus of elasticity of about 6.3 gigapascals or more; and a coating layer on the window film, and configured to be transparent and to protect the window film from physical damage thereto; and an adhesive layer between the window film and the display side of the flexible display panel, and configured to have elasticity and bond the window film and the flexible display panel to each other.
US10522595B2
A semiconductor device includes: a first memory cell, a bit line and a second memory cell. The first memory cell has a first stack structure including a first memory layer between a first heater electrode and a first ovonic threshold switching device. The bit line is on the first memory cell. The second memory cell is on the bit line, and has a second stack structure including a second memory layer between a second ovonic threshold switching device and a second heater electrode. The first and second stack structures are symmetrical with respect to the bit line.
US10522590B2
The present invention is directed to a memory device including a magnetic memory element; a horizontal conductive line disposed above the magnetic memory element; a bottom electrode formed beneath the magnetic memory element and having a top, first and second sides that are opposite to each other; a first vertical conductive line formed adjacent to the first side of the bottom electrode with a first volatile switching layer and a first electrode layer interposed therebetween; and a second vertical conductive line formed adjacent to the second side of the bottom electrode with a second volatile switching layer and a second electrode layer interposed therebetween. The magnetic memory element is electrically connected to the horizontal conductive line at one end and to the bottom electrode at the other end.
US10522582B2
The present technology relates to an imaging apparatus and a manufacturing method which enables sensitivity of an imaging apparatus using infrared rays to be improved. The imaging apparatus includes: a light-receiving element array in which a plurality of light-receiving elements including a compound semiconductor having light-receiving sensitivity in an infrared range are arrayed; a signal processing circuit that processes a signal from the light-receiving element; an upper electrode formed on a light-receiving surface side of the light-receiving element; and a lower electrode that is paired with the upper electrode, in which the light-receiving element array and the signal processing circuit are joined to each other with a film of a predetermined material, the upper electrode and the signal processing circuit are connected to each other through a through-via-hole penetrating a part of the light-receiving element, and the lower electrode is made as an electrode common to the light-receiving elements arrayed in the light-receiving element array. The present technology can be applied to an infrared sensor.
US10522579B2
The present disclosure is directed to a method for forming a light blocking material layer on a back side illuminated image sensor device. The light blocking material layer can block or absorb light rays incoming to the back side illuminated image sensor device at grazing incident angles. The light blocking material layer can be formed using a self-aligned process that does not require the use of a photolithography mask or photolithography operations. For example, the light blocking material layer can be formed over an image sensor device and subsequently etched so that the light blocking material layer remains in areas where light rays incoming at grazing incident angles enter the back side illuminated image sensor device.
US10522576B2
Some embodiments described herein are directed to a photo sensor and a method of operating a photo sensor. In an embodiment, a photo sensor comprises a photo diode, a filter circuit, and an output circuit. The filter circuit has an input node configured to be electrically coupled to an output node of the photo diode, and has an output node. The filter circuit has an adjustable gain, and the adjustable gain is adjustable based on a signal output from the filter circuit. The output circuit has an input node configured to be electrically coupled to the output node of the filter circuit.
US10522569B2
Display panels including mirror pixel layouts and power rail bridges are described. In an embodiment, a display panel includes a plurality of power rail bridges joining together a subset of power rails for a plurality of adjacent mirror pixels within a row of mirror pixels.
US10522565B2
An array substrate provided comprises a gate insulating layer, touch control element and first conducting wire disposed on a substrate; insulating interlayer covering gate insulating layer, touch control element and first conducting wire; protective wire arranged along the surface periphery of insulating interlayer; planarization layer covering insulating interlayer and protective wire, and second conducting wire disposed on surface of planarization layer; wherein touch control element is insulated from first conducting wire comprising an extension section, and free end of extension section is a first end; protective wire is electrically connected with first end; second conducting wire comprises a second and third end arranged oppositely and a contact position between second and third end; second end is electrically connected with touch control element, and contact position is electrically connected with a portion of first conducting wire inner substrate. A display panel and manufacturing method thereof are further provided.
US10522563B2
A semiconductor device includes a first channel layer and a second channel layer, each extending from an upper portion to a lower portion; and word lines stacked toward the upper portion from the lower portion, the word lines spaced apart from each other, the word lines each extending to surround the first channel layer and the second layer; a first lower select group surrounding a portion of the first channel layer that further protrudes toward the lower portion than the word lines; and a second lower select group surrounding a portion of the second channel layer that further protrudes toward the lower portion than the word lines.
US10522557B2
A wafer having a first region and a second region is provided. A first topography variation exists between the first region and the second region. A first layer is formed over the first region and over the second region of the wafer. The first layer is patterned. A patterned first layer causes a second topography variation to exist between the first region and the second region. The second topography variation is smoother than the first topography variation. A second layer is formed over the first region and the second region. At least a portion of the second layer is formed over the patterned first layer.
US10522554B2
A Static Random Access Memory (SRAM) cell includes a first and a second pull-up transistor, a first and a second pull-down transistor forming cross-latched inverters with the first and the second pull-up transistors, and a first and a second pass-gate transistor. Each of the first and the second pull-up transistors, the first and the second pull-down transistors, and the first and the second pass-gate transistors includes a bottom plate as a first source/drain region, a channel over the bottom plate, and a top plate as a second source/drain region. A first isolated active region is in the SRAM cell and acts as the bottom plate of the first pull-down transistor and the bottom plate of the first pass-gate transistor. A second isolated active region is in the SRAM cell and acts as the bottom plate of the second pull-down transistor and the bottom plate of the second pass-gate transistor.
US10522552B2
The disclosed technology generally relates semiconductor devices and more particularly to a vertical transistor device, and a method of fabricating the same. In one aspect, the method includes providing, on a substrate, a fin formed of a stack of a first layer, a second layer and a third layer, wherein the second layer is positioned above the first layer and the third layer is positioned above the second layer. The method additionally includes forming a dielectric on the sidewalls of the first and third layers of the fin selectively against a sidewall of the second layer, and the method additionally includes forming a gate contacting layer for contacting a sidewall of the second layer. The first and third layers define a source region and a drain region, respectively, of the vertical transistor device. The second layer defines a channel region of the vertical transistor device. The dielectric on the sidewalls of the first and third layers electrically isolates the source and drain regions from the gate contacting layer.
US10522550B2
A semiconductor device includes a substrate including spaced-apart active regions, and device isolating regions isolating the active regions from each other, and a pillar array pattern including a plurality of pillar patterns overlapping the active regions, the plurality of pillar patterns being spaced apart from each other at an equal distance in a first direction and in a second direction intersecting the first direction, wherein the plurality of pillar patterns include first pillar patterns and second pillar patterns disposed alternatingly in the first direction and in the second direction, a shape of a horizontal cross section of the first pillar patterns being different from a shape of a horizontal cross section of the second pillar patterns.
US10522549B2
Provided herein are approaches for forming a gate dielectric layer for a DRAM device, the method including providing a substrate having a recess formed therein, the recess including a sidewall surface and a bottom surface. The method may further include performing an ion implant into just the bottom surface of the recess, and forming a gate dielectric layer along the bottom surface of the recess and along the sidewall surface of the recess. Once formed, a thickness of the gate dielectric layer along the sidewall surface is approximately the same as a thickness of the gate dielectric layer along the bottom surface of the recess. In some embodiments, the gate dielectric layer is thermally grown within the recess. In some embodiments, the ion implant is performed after a mask layer atop the substrate is removed.
US10522536B2
Structures and formation methods of a semiconductor device are provided. The semiconductor device includes a substrate and a first fin structure and a second fin structure over the substrate. The semiconductor device also includes a first gate stack and a second gate stack partially covering the first fin structure and the second fin structure, respectively, and a stack structure over the substrate. The stack structure is between the first gate stack and the second gate stack. The stack structure includes a semiconductor layer over the substrate and a protection layer over the semiconductor layer.
US10522529B2
A circuit providing electrostatic discharge (ESD) protection and a method and an apparatus for testing ESD protection on an integrated circuit are described. The circuit includes a first ESD protection circuit and a test pad and a second ESD protection circuit and a second pad for the application, not probed during manufacturing of the integrated circuit. In some examples, the method includes providing a first, second, third, and fourth test current to the circuit providing ESD protection, measuring a first second, third, and fourth voltage drop across the circuit, and determining an operating condition for the first ESD protection circuit and the test pad and the second ESD protection circuit and the second bond pad based on expected values of the first voltage drop, the second voltage drop, the third voltage drop, and the fourth voltage drop.
US10522524B2
Disclosed herein are a display device with a reduced bezel area and a method for fabricating the same. A wiring electrode disposed on a substrate is electrically connected to a connection electrode disposed on an inclined surface of a circuit board in contact with the substrate, and the connection electrode is electrically connected to a circuit wiring disposed on the circuit board. Therefore, an inactive area such as a pad portion for connecting the substrate with the circuit board is not required, such that the bezel area can be reduced.
US10522521B2
An illumination assembly includes a substrate, a wiring structure, a reflecting layer and a plurality of light-emitting diodes. The wiring structure is formed on a part of the substrate, and includes a catalyst layer covering the part of the substrate, and a conducting layer formed on the catalyst layer. The reflecting layer is formed on another part of the substrate that is exposed from the wiring structure. The light-emitting diodes are disposed on the wiring structure and are electrically connected to the wiring structure.
US10522512B2
A semiconductor package including an ultra-thin redistribution structure, a semiconductor die, a first insulating encapsulant, a semiconductor chip stack, and a second insulating encapsulant is provided. The semiconductor die is disposed on and electrically coupled to the ultra-thin redistribution structure. The first insulating encapsulant is disposed on the ultra-thin redistribution structure and encapsulates the semiconductor die. The semiconductor chip stack is disposed on the first insulating encapsulant and electrically coupled to the ultra-thin redistribution structure. The second insulating encapsulant is disposed on the ultra-thin redistribution structure and encapsulates the semiconductor chip stack and the first insulating encapsulant. A manufacturing method of a semiconductor package is also provided.
US10522509B2
A device includes a semiconductor die. The semiconductor die has formed thereon a plurality of multi-phase voltage regulator modules of the same design formed on a common semiconductor substrate.
US10522504B2
In an embodiment, a semiconductor device includes: a mounting substrate having electrically conductive formations thereon, a semiconductor die coupled with the mounting substrate, the semiconductor die with electrical contact pillars facing towards the mounting substrate, an anisotropic conductive membrane between the semiconductor die and the mounting substrate, the membrane compressed between the electrical contact pillars and the mounting substrate to provide electrical contact between the electrical contact pillars of the semiconductor die and the electrically conductive formations on the mounting substrate.
US10522502B2
Anisotropic conductive films, each including an insulating adhesive layer and conductive particles insulating adhesive layer in a lattice-like manner. Among center distances between an arbitrary conductive particle and conductive particles adjacent to the conductive particle, the shortest distance to the conductive particle is a first center distance; the next shortest distance is a second center distance. These center distances are 1.5 to 5 times the conductive particles' diameter. The arbitrary conductive particle, conductive particle spaced apart from the conductive particle by the first center distance, conductive particle spaced apart from the conductive particle by first center distance or second center distance form an acute triangle. Regarding this acute triangle, an acute angle formed between a straight line orthogonal to a first array direction passing through the conductive particles and second array direction passing through conductive particles being 18 to 35° . These anisotropic conductive films have stable connection reliability in COG connection.
US10522497B2
A fan-out semiconductor package includes: a frame including insulating layers, wiring layers, and connection via layers, and having a recess portion having a stopper layer; a semiconductor chip having connection pads, an active surface on which the connection pads are disposed, and an inactive surface opposing the active surface, and disposed in the recess portion so that the inactive surface is connected to the stopper layer; an encapsulant covering at least portions of the semiconductor chip and filling at least portions of the recess portion; and a connection member disposed on the frame and the active surface of the semiconductor chip and including a redistribution layer electrically connecting the wiring layers of the frame and the connection pads of the semiconductor chip to each other, wherein the stopper layer includes an insulating material.
US10522492B2
A wiring structure includes a dielectric layer and a first patterned conductive layer on the dielectric layer. The dielectric layer has a first region and a second region. The first patterned conductive layer includes a number of fine conductive lines and a number of dummy conductive structures. The number of conductive lines include a first number of conductive lines on the first region and a second number of conductive lines on the second region, and the number of dummy conductive structures include a first number of dummy conductive structures on the second region. The first number of conductive lines occupy a first area on the first region, and the second number of conductive lines and the first number of dummy conductive structures occupy a second area on the second region. A ratio of the second area to the first area is greater than or equal to about 80%.
US10522490B2
An embodiment is a method including forming a first passive device in a first wafer, forming a first dielectric layer over a first side of the first wafer, forming a first plurality of bond pads in the first dielectric layer, planarizing the first dielectric layer and the first plurality of bond pads to level top surfaces of the first dielectric layer and the first plurality of bond pads with each other, hybrid bonding a first device die to the first dielectric layer and at least some of the first plurality of bond pads, and encapsulating the first device die in a first encapsulant.
US10522489B1
A semiconductor device is disclosed including an integrated memory module. The integrated memory module may include a pair of semiconductor die, which together, operate as a single, integrated flash memory. In one example, the first die may include the memory cell array and the second die may include the logic circuit such as CMOS integrated circuits. In one example, the second die may be flip-chip bonded to the first die. The flip-chip bond pads on the first and second dies may be made small, with a small pitch, to allow a large number of electrical interconnections between the first and second semiconductor dies.
US10522487B2
The present disclosure provides a semiconductor structure. The semiconductor structure comprises a semiconductive substrate and an interconnect structure over the semiconductive substrate. The semiconductor structure also comprises a bond pad in the semiconductive substrate and coupled to the metal layer. The bond pad comprises two conductive layers.
US10522483B2
Embodiments of the present disclosure are directed towards a package assembly for embedded die and associated techniques and configurations. In one embodiment, an apparatus includes a package assembly comprising a die attach layer, a die coupled with the die attach layer, the die having an active side including active devices of the die and an inactive side disposed opposite to the active side, a reinforced plate coupled with the die attach layer, the reinforced plate having a first side and a second side disposed opposite to the first side and a cavity disposed in the reinforced plate and one or more build-up layers coupled with the second side of the reinforced plate, the one or more build-up layers including an insulator and conductive features disposed in the insulator, the conductive features being electrically coupled with the die, wherein the inactive side of the die is in direct contact with the die attach layer, the first side of the reinforced plate is in direct contact with the die attach layer and the die is disposed in the cavity. Other embodiments may be described and/or claimed.
US10522473B2
A package includes a device die, a molding material molding the device die therein, a through-via penetrating through the molding material, and an alignment mark penetrating through the molding material. A redistribution line is on a side of the molding material. The redistribution line is electrically coupled to the through-via.
US10522468B2
An embodiment includes a method. The method includes: forming a first conductive line over a substrate; depositing a first dielectric layer over the first conductive line; depositing a second dielectric layer over the first dielectric layer, the second dielectric layer including a different dielectric material than the first dielectric layer; patterning a via opening in the first dielectric layer and the second dielectric layer, where the first dielectric layer is patterned using first etching process parameters, and the second dielectric layer is patterned using the first etching process parameters; patterning a trench opening in the second dielectric layer; depositing a diffusion barrier layer over a bottom and along sidewalls of the via opening, and over a bottom and along sidewalls of the trench opening; and filling the via opening and the trench opening with a conductive material.
US10522451B2
A fan-out semiconductor package includes: a first connection member having a through-hole; a semiconductor chip disposed in the through-hole of the first connection member and having an active surface having connection pads disposed thereon and an inactive surface opposing the active surface; an encapsulant encapsulating at least portions of the first connection member and the inactive surface of the semiconductor chip; a second connection member disposed on the first connection member and the active surface of the semiconductor chip; and a heat dissipation layer embedded in the encapsulant so that one surface thereof is exposed. The first connection member and the second connection member include, respectively, redistribution layers electrically connected to the connection pads of the semiconductor chip.
US10522447B2
Various embodiments provide for a chip package including a carrier; a layer over the carrier; a further carrier material over the layer, the further carrier material comprising a foil; one or more openings in the further carrier material, wherein the one or more openings expose at least one or more portions of the layer from the further carrier material; and a chip comprising one or more contact pads, wherein the chip is adhered to the carrier via the one or more exposed portions of the layer.
US10522437B2
An interposer may comprise a metal layer above a substrate. A dam or a plurality of dams may be formed above the metal layer. A dam surrounds an area of a size larger than a size of a die which may be connected to a contact pad above the metal layer within the area. A dam may comprise a conductive material, or a non-conductive material, or both. An underfill may be formed under the die, above the metal layer, and contained within the area surrounded by the dam, so that no underfill may overflow outside the area surrounded by the dam. Additional package may be placed above the die connected to the interposer to form a package-on-package structure.
US10522432B2
According to various embodiments, a semiconductor chip may include: a semiconductor body region including a first surface and a second surface opposite the first surface; a capacitive structure for detecting crack propagation into the semiconductor body region; wherein the capacitive structure may include a first electrode region at least partially surrounding the semiconductor body region and at least substantially extending from the first surface to the second surface; wherein the capacitive structure further may include a second electrode region disposed next to the first electrode region and an electrically insulating region extending between the first electrode region and the second electrode region.
US10522422B2
A semiconductor device structure and method for forming the same are provided. The semiconductor device structure includes a substrate and a gate stack structure formed on the substrate. The semiconductor device structure also includes gate spacers formed on the sidewall of the gate stack structure, and the gate spacers include a top portion and a bottom portion adjoined to the top portion, and the bottom portion slopes to a top surface of the substrate. The semiconductor device structure further includes an epitaxial structure formed adjacent to the gate spacers, and the epitaxial structure is formed below the gate spacers.
US10522418B2
A method for manufacturing a semiconductor device is provided. A semiconductor substrate is received. The semiconductor substrate is patterned to form a plurality of protrusions spaced from one another, wherein the protrusion comprises a base section, and a seed section stacked on the base section. A plurality of first insulative structures are formed, covering sidewalls of the base sections and exposing sidewalls of the seed sections. A plurality of spacers are formed, covering the sidewalls of the seed sections. The first insulative structures are partially removed to partially expose the sidewalls of the base sections. The base sections exposed from the first insulative structures are removed. A plurality of second insulative structures are formed under the seed sections.
US10522414B2
A method of forming a semiconductor device includes receiving a substrate having a fin extending from the substrate, first and second dummy gate stacks over the substrate and engaging the fin; removing the first and second dummy gate stacks thereby forming a first trench and a second trench, wherein the first and second trenches expose first and second portions of the fin respectively; removing the first portion of the fin; and forming a gate stack in the second trench, the gate stack engaging the second portion of the fin.
US10522413B2
Methods are disclosed herein for fabricating semiconductor devices having shared source/drain contacts. An exemplary semiconductor device includes a high-k/metal gate stack disposed over a substrate. The high-k/metal gate stack is disposed between a first source/drain feature and a second source/drain feature. A first spacer set is disposed along sidewalls of the high-k/metal gate stack. A first interlevel dielectric (ILD) layer is disposed over the substrate. Upper portions of the first spacer set that extend above the first ILD layer have a tapered width. A second spacer set is disposed on the upper portions of the first spacer set and over the first ILD layer. A second ILD layer is disposed over the first ILD layer. A contact feature extends through the second ILD layer to the first source/drain feature and the second source/drain feature. The contact feature spans uninterrupted between the first source/drain feature and the second source/drain feature.
US10522405B2
A method of processing a plate-shaped workpiece that includes layered bodies containing metal which are formed in superposed relation to projected dicing lines, includes the steps of holding the workpiece on a holding table, and thereafter, cutting the workpiece along the projected dicing lines with an annular cutting blade, thereby separating the layered bodies. The cutting blade has a slit which is open at an outer peripheral edge thereof. The step of cutting the workpiece includes the step of cutting the workpiece while supplying a cutting fluid containing an organic acid and an oxidizing agent to the workpiece.
US10522393B2
Semiconductor devices and methods of forming thereof by post layer transfer fabrication of device isolation structures are described. A substrate with first and second major surfaces is provided. Circuit components may be formed on the first major surface of the substrate and a back-end-of-line (BEOL) dielectric layer is formed over the first major surface of the substrate which covers the circuit components. A single layer transfer is performed to expose the second major surface of the substrate for processing. The second major surface of the semiconductor substrate is processed to thin down the wafer, followed by a wafer thickness uniformity improvement process. One or more device isolation structures are formed through the semiconductor substrate from the second major surface of the semiconductor substrate.
US10522390B1
The present disclosure describes a fabrication method that can form air-gaps in shallow trench isolation structures (STI) structures. For example, the method includes patterning a semiconductor layer over a substrate to form semiconductor islands and oxidizing the sidewall surfaces of the semiconductor islands to form first liners on the sidewall surfaces. Further, the method includes depositing a second liner over the first liners and the substrate and depositing a first dielectric layer between the semiconductor islands. The second liner between the first dielectric layer and the first liners is removed to form openings between the first dielectric layer and the first liners. A second dielectric layer is deposited over the first dielectric layer to enclose the openings and form air-gaps between the first dielectric layer and the first liners so that the gaps are positioned along the first liners.
US10522386B2
Provided are a susceptor that, in forming a thin film on a wafer, can reduce impurities or the like adhering to the wafer and a method for manufacturing the same. A susceptor includes a base material (10) with a recess (11), a tantalum carbide layer (22) formed directly on a bottom surface (11a) and a side surface (11b) of the recess (11), and a silicon carbide layer (20) formed on a surface of the base material (10) except for the recess (11).
US10522378B2
A storage rack includes: a plurality of supporting pillars and a platform on which an object to be stored is to be placed. The platform includes a platform body, and a pair of attachment plates each having a plate shape. A pair of surfaces that face each other of a pair of supporting pillars are respectively provided with a pair of recessed grooves into which the pair of attachment plates are inserted. Each recessed groove includes a groove-side abutting portion that extends linearly in a direction orthogonal to the left-right direction. An outer edge of the attachment plate includes a plate-side abutting portion that is parallel with the groove-side abutting portion. The platform is fixed to the pair of supporting pillars such that the plate-side abutting portion abuts against the groove-side abutting portion.
US10522370B2
A substrate processing apparatus includes a substrate stage that supports a substrate, a follower stage disposed on a same plane as the substrate stage, a first driving unit that moves the follower stage in parallel with a first direction, and a second driving unit that moves the substrate stage in parallel with the first direction. The second driving unit includes a voice magnet member disposed on the substrate stage, and a voice coil member disposed on the follower stage and spaced apart from the voice magnet member.
US10522368B2
A semiconductor device includes an isolation insulating layer disposed over a substrate, a fin structure disposed over the substrate, and extending in a first direction in plan view, an upper portion of the fin structure being exposed from the isolation insulating layer, a gate structure disposed over a part of the fin structure, the gate structure extending in a second direction crossing the first direction, and a source/drain structure formed on the upper portion of the fin structure, which is not covered by the gate structure and exposed from the isolation insulating layer. The source/drain structure includes a SiP layer, and an upper portion of the source/drain structure includes an alloy layer of Si, Ge and Ti.
US10522367B2
An integrated circuit (IC) device may include a substrate having an active device layer. The integrated circuit may also include a first defect layer. The first defect layer may have a first surface facing a backside of the active device layer. The integrated circuit may further include a second defect layer. The second defect layer may face a second surface opposite the first surface of the first defect layer.
US10522360B2
A method for forming a semiconductor device structure is provided. The method includes disposing a semiconductor substrate in a physical vapor deposition (PVD) chamber. The method also includes introducing a plasma-forming gas into the PVD chamber, and the plasma-forming gas contains an oxygen-containing gas. The method further includes applying a radio frequency (RF) power to a metal target in the PVD chamber to excite the plasma-forming gas to generate plasma. In addition, the method includes directing the plasma towards the metal target positioned in the PVD chamber such that an etch stop layer is formed over the semiconductor substrate.
US10522358B2
A FinFET device and method of forming the same are disclosed. The method includes forming a gate dielectric layer and depositing a metal oxide layer over the gate dielectric layer. The method also includes annealing the gate dielectric layer and the metal oxide layer, causing ions to diffuse from the metal oxide layer to the gate dielectric layer to form a doped gate dielectric layer. The method also includes forming a work function layer over the doped gate dielectric layer, and forming a gate electrode over the work function layer.
US10522349B2
A method includes depositing a target layer over a substrate; reducing a reflection of a light incident upon the target layer by implanting ions into the target layer, resulting in an ion-implanted target layer; coating a photoresist layer over the ion-implanted target layer; exposing the photoresist layer to the light using a photolithography process, wherein the target layer reduces reflection of the light at an interface between the ion-implanted target layer and the photoresist layer during the photolithography process; developing the photoresist layer to form a resist pattern; etching the ion-implanted target layer with the resist pattern as an etch mask; processing the substrate using at least the etched ion-implanted target layer as a process mask; and removing the etched ion-implanted target layer.
US10522331B2
A plasma processing apparatus includes a processing chamber for processing a sample with a plasma, an RF power supply for generating the plasma within the processing chamber, an RF bias power supply for supplying RF bias power to a sample stage on which the sample is mounted, a pulse generation unit for creating first pulses for modulating the output from the RF power supply for generating the plasma and second pulses for modulating the output from the RF bias power supply, and a controller for providing control of the processing of the sample with the sample. The pulse generation unit creates the first pulses and the second pulses synchronized based on a pulse delay time transmitted from the controller. The pulse delay time is established to delay the second pulses relative to the first pulses.
US10522320B2
The objective of the present invention is to propose a charged particle beam device with which an imaging optical system and an irradiation optical system can be adjusted with high precision. In order to achieve this objective, provided is a charged particle beam device comprising: a first charged particle column which serves as an irradiation optical signal; a deflector that deflects charged particles which have passed through the inside of the first charged particle column toward an object; and a second charged particle column which serves as an imaging optical system. The charged particle beam device is provided with: a light source that emits light toward the object; and a control device that obtains, on the basis of detection charged particles generated according to irradiation of light emitted from the light source, a plurality of deflection signals which maintain a certain deflection state, and that selects or calculates, from the plurality of deflection signals or from relationship information produced from the plurality of deflection signals, a deflection signal that satisfies a predetermined condition.
US10522319B2
An electron beam apparatus which can stably achieve high spatial resolution also during low acceleration observation using CeB6 for the CFE electron source is provided. In an electron beam apparatus having a CFE electron source, the emitter of the electron beam of the CFE electron source is Ce hexaboride or a hexaboride of a lanthanoid metal heavier than Ce, the hexaboride emits the electron beam from the {310} plane, and the number of the atoms of the lanthanoid metal on the {310} plane is larger than the number of boron molecules comprising six boron atoms on the {310} plane.
US10522317B2
An X-ray tube includes an anode that conducts a high voltage that can be greater than 120 kV, and in particular greater than 300 kV, and heats up during operation. The anode is connected in a thermally conductive way to a heat sink, which has a base body composed of a metal with a heat absorbing surface for coupling to the anode as a heat source and a heat dissipating surface that is enlarged by means of heat dissipating elements that are connected to the base body. The heat dissipating elements are composed of an electrically insulating material having a thermal conductivity on the same order of magnitude as that of the metal of the base body, and have a height (H) starting from the base body of the heat sink so that there is a sufficient insulation breakdown resistance relative to the surroundings of the X-ray tube.
US10522304B2
A spring operated actuator for an electric switching apparatus including an actuator spring and a rotary air damper. The damper has components that are rotatable relative to each other and is arranged to decelerate the actuating movement during an end portion. The damper has a toroidal working chamber with internal wall surfaces formed by two circumferential housing parts. They are rotatable relative to each other and are meeting each other such that a first and a second gap are formed. There is a seal between the two housing parts, which bridges the respective gap. The seal has a first circumferential seal at the first gap and a second circumferential seal at the second gap. At least one of the first and second seals includes a sealing body fitted in a groove formed in the internal walls of at least one housing part.
US10522303B2
A contact assembly for connecting electrically and mechanically a first terminal of a first apparatus to a second terminal of a second apparatus, wherein at least one of the first and the second apparatus is movable with respect to the other along a connection/disconnection direction, includes: a plurality of electrically conducting contact-finger-elements, each including a main contact portion configured for engaging the second terminal and an auxiliary contact portion for engaging the first terminal, wherein the finger-contact-elements are supported by a support frame of the contact assembly connectable to the first terminal or are configured for being directly connectable and supportable by the first terminal; one or more spring elements configured for acting on the contact-finger-elements so to urge the main contact portions against the second terminal when the first and the second apparatus are connected. The main contact portions of at least two of the plurality of contact-finger-elements are shifted one relative to the other in such a manner so to engage the second terminal in subsequent moments when the first apparatus is being connected to the second apparatus by a relative movement thereof along the connection/disconnection direction.
US10522293B2
A multi-layer ceramic capacitor includes a multi-layer unit, a side margin, and a bonding unit. The multi-layer unit includes ceramic layers laminated in a first direction, and internal electrodes disposed between the ceramic layers and mainly containing nickel. The side margin covers the multi-layer unit from a second direction orthogonal to the first direction. The bonding unit is disposed between the multi-layer unit and the side margin and has a higher concentration of magnesium than the ceramic layers and the side margin.
US10522289B2
An electronic component includes a component main body including an embedded internal conductor and an outer electrode. The component main body includes an end surface on which the internal conductor is exposed, and a main surface that is continuous with the end surface and intersects with the end surface. The outer electrode includes an end surface covering portion connected to the internal conductor by covering at least a portion of the internal conductor exposed on the end surface, and a main surface covering portion that covers at least a portion of the main surface. At least a portion of an exposed surface of the main surface covering portion includes a Sn plating layer, and at least a portion of an exposed surface of the end surface covering portion includes a Sn—Ni layer.
US10522280B2
The subject disclosure relates to improved integrated connector module (ICM) designs for Ethernet applications. Some aspects provide an improved integrated connector module transformer (ICMt), including a wafer configured to hold a plurality of toroid elements, wherein the wafer is comprised of two or more mechanically coupled wafer portions. The ICMt can include one or more Electro Magnetic Interference (EMI) fingers that are configured to contact a ground pad of a printed circuit board (PCB) in order to provide a low-inductance connection between the ICMt and the ground pad of the PCB.
US10522277B1
A diamagnetic levitation system having an open torus magnet segment with a pair of arms extending from a central base. The ends of the arms form a gap. The arms are superconducting magnets and the base is an electromagnet. The magnet segment creates a planar magnetic field which forms a flat ellipse as the planar magnetic field crosses from one arm to the other and which is positioned only across the gap. The electromagnet oscillates the planar magnetic field. The magnet segment levitates a diamagnetic object within and/or above the gap. A plurality of magnet segments can be arranged in series to form a levitation system of defined length. The magnet segments are rotatable so that the planar magnetic field may be tilted.
US10522274B2
The present invention provides a ferromagnetic metal nanowire dispersion having an excellent dispersibility, from which a ferromagnetic metal nanowire film having an excellent electrical conductivity can be made. The present invention relates to a ferromagnetic metal nanowire dispersion comprising a ferromagnetic metal nanowire and a polymer compound.
US10522265B2
The invention relates to a solid, in particular strip-shaped insulation material, to the use thereof in a vacuum impregnation method and a thus produced insulation system and to an electric machine using the insulation system, in particular for the medium and high voltage range, that is for medium and high voltage machines, in particular rotating electric machines in the medium and high voltage range and to semi-finished products for electric switching systems. According to the invention, the curing catalyst is a covalently-bridged di-imidazol derivative and/or a covalently-bridged di-pyrazol derivative.
US10522264B2
A cable separator comprising a preshaped article having a longitudinal length, wherein said preshaped article is substantially entirely formed of a foamed polymer material having a glass transition temperature greater than 160° C. and being halogen-free is provided. A data communications cable comprising a plurality of conductors and the cable separator of the present invention, wherein said cable separator separates the plurality of conductors is provided. A method of manufacturing a cable comprising the separator of the invention is also provided.
US10522255B2
A method of manufacturing nuclear fuel elements may include: forming a base portion of the fuel element by depositing a powdered matrix material including a mixture of a graphite material and a fibrous material; depositing particles on the base portion in a predetermined pattern to form a first particle layer, by controlling the position of each particle in the first particle layer; depositing the matrix material on the first particle layer to form a first matrix layer; depositing particles on the first matrix layer in a predetermined pattern to form a second particle layer by controlling positions of each particle in the second particle layer; depositing the matrix material on the second particle layer to form a second matrix layer; and forming a cap portion of the fuel pebble by depositing the matrix material. The particles in the first particle layer and the second particle layer include nuclear fuel particles.
US10522251B2
Methods and systems for activity monitoring include capturing an infrared image of an environment that comprises at least one patient being monitored and at least one infrared-emitting tag. A relationship between the patient being monitored and the at least one infrared-emitting tag is determined. An activity conducted by the patient being monitored is determined based on the relationship between the patient being monitored and the at least one infrared-emitting tag. A course of treatment for the patient being monitored is adjusted based on the determined activity.
US10522249B2
A method of providing changes in healthcare policy information is provided, including: providing a first database, the first database containing a plurality of records, each record containing a copy of a website and tags associated with the website, the website pertaining to healthcare policy information; retrieving current versions of tags associated with the websites on the Internet; for each website, determining if the tags associated with the website have changed by comparing the current version of the tags to the copy of the tags in the first database; if the tags have changed, updating the copy of the website associated with the tags in the first database; determining the changes in the website, and providing access to reports generated to reflect changes in the website.
US10522245B2
Systems, methods, and devices for detecting infections in a clinical sample are provided. Small-volume clinical samples obtained at a point-of-service (POS) location and may be tested at the POS location for multiple markers for multiple diseases, including upper and lower respiratory diseases. Samples may be tested for cytokines, or for inflammation indicators. Dilution of samples, or levels of detection, may be determined by the condition or past history of a subject. Test results may be obtained within a short amount of time after sample placement in a testing device, or within a short amount of time after being obtained from the subject. A prescription for treatment of a detected disorder may be provided, and may be filled, at the POS location. A bill may be automatically generated for the testing, or for the prescription, may be automatically sent to an insurance provider, and payment may be automatically obtained.
US10522243B2
A method for determining a sequence of a target nucleic acid is described. The method uses a plurality of control oligonucleotides with known sequence and unique identifications to map hybridization signals associated with a plurality of sequencing probes to a loosely packed multi-dimensional dye space, such that a region in the dye space can be associated with one or more sequencing probes. When a detected target hybridization signal of a sequencing probe and a target nucleic acid is mapped to the multi-dimensional dye space, the sequencing probe and thus the corresponding nucleotides in the target nucleic acid can be determined based on the one or more sequencing probes associated with the region that the detected target hybridization signal is mapped to.
US10522237B2
Low power very large scale integrated (VLSI) designs using a circuit failure in sequential cells as low voltage check for limit of operation of a design are provided. One such method involves the adding a plurality of bits for sequential elements in the design including sets of flip-flops, RAMs, ROMs and register files to add parity or single error correct and double error detect mechanism, a method to detect the parity errors or a single bit error and a double bit error in the sequential elements, starting at a voltage of operation at a nominal value and gradually lowering voltage setting till a first error is detected in the sequential elements, increasing the voltage of operation by predetermined step above a voltage of first fail to achieve an optimal voltage setting of a correct operation of the design, storing this optimal voltage setting in anon-volatile memory for a subsequent use.
US10522236B2
A method and apparatus for repairing a memory is provided. At least one memory is tested using a production test pattern. After the production test, a passing or failing status is determined for each memory tested. This determination may be made using a built-in repair analysis (BIRA) program. After the analysis the location of each failing memory is determined. A fuse register pattern is then determined for the failing memory, and at least one fuse is blown to repair the failed memory. The repair utilizes at least one of the redundant memories present in the semiconductor device. The apparatus includes a semiconductor device having repairable memories, a fuse programmable read-only memory (FPROM) that contains multiple redundant memories, and a fuse box memory repair apparatus that is in communication with the FRPOM and the multiple repairable memories.
US10522234B2
A bit tagging method, a memory control circuit unit and a memory storage device are provided. The method includes: reading first memory cells according to a first reading voltage to generate a first codeword and determining whether the first codeword is a valid codeword, and the first codeword includes X bits; if not, reading the first memory cells according to a second reading voltage to generate a second codeword and determining whether the second codeword is the valid codeword, and the second codeword includes X bits; and if the second codeword is not the valid codeword and a Yth bit in the X bits of the first codeword is different from a Yth bit in the X bits of the second codeword, recording the Yth bit in the X bits as an unreliable bit, and Y is a positive integer less than or equal to X.
US10522233B2
According to one embodiment, a semiconductor storage device includes: a NAND string with a first set of memory cells including a first memory cell; and a second set of memory cells including a second memory cell disposed above the first memory cell. The number of memory cells included in the first set is different from that of memory cells included in the second set. During a program verify operation when a data item of a level is written to a memory cell of the first set and a memory cell of the second set, a first verify voltage is applied to the gate of the memory cell of the first set and a second verify voltage different from the first verify voltage is applied to the gate of the memory cell of the second set.
US10522224B2
A method for programming a ReRAM cell including a ReRAM device connected in series with an access transistor includes biasing the ReRAM cell with a programming potential that configures the access transistor in a common-source configuration and applying at least one programming voltage pulse to a gate of the access transistor, the programming voltage pulse having a magnitude selected to limit programming current to a preselected value.
US10522223B1
A matrix-vector multiplication device includes a memory crossbar array with row lines, column lines, and junctions. Each junction comprises a programmable resistive element and an access element. A signal generator is configured to apply programming signals to the resistive elements to program conductance values for the matrix-vector multiplication and a readout circuit is configured to apply read voltages to the row lines and to read out current values of the column lines. Control circuitry is configured to control the signal generator and the readout circuit and to select, via the access terminals, a plurality of resistive elements in parallel according to a predefined selection scheme which applies the signals and/or the read voltages in parallel to resistive elements which do not share the same row and column line and applies the programming signals and/or the read voltages to at most one resistive element per row line and column line.
US10522220B2
According to one embodiment, a PCM memory device includes a memory matrix having memory cells of the phase-change type organized in a plurality of word lines and bit lines. Each memory cell has a storage element and an access element including at least one MOS transistor, which is controlled to allow access to the storage element and to carry out read/programming storage operations, in which source terminals of the MOS transistors of access elements of the memory cells of the same word line are connected to the same source line. The source lines of the memory matrix are electrically short-circuited in groups. A single source line driver element for each group of source lines is configured in such a manner as to generate a respective source line driver signal in order to bias in a corresponding manner all the source lines of the respective group.
US10522214B2
A reliability aware negative bit-line write assist (RA-NBL) circuit comprises a coupling capacitor to provide a negative bump for write assist, and a control input generator control charging of the coupling capacitor, such that the negative bump is high at a low voltage, and the negative bump is low at a high voltage.
US10522210B2
Systems, apparatuses and methods related to subarray addressing for electronic memory and/or storage are described. Concurrent access to different rows within different subarrays may be enabled via independent subarray addressing such that each of the subarrays may serve as a “virtual bank.” Accessing the different rows as such may provide improved throughput of data values accessed from the respective rows being sent to a destination location. For instance, one such apparatus includes a plurality of subarrays within a bank of a memory device. Circuitry within the bank is coupled to the plurality of subarrays. The circuitry may be configured to activate a row at a particular ordinal position in a first subarray during a time period and a row at a different ordinal position in a second subarray of the plurality of subarrays during the same time period.
US10522191B2
Embodiments of the present disclosure provide a method for managing a storage device and a storage device, the storage device including a chassis and a hard disk assembly. The method comprises: receiving a signal indicating a position of the hard disk assembly relative to the chassis, the hard disk assembly being slidably coupled to the chassis, and the signal being generated by an electromechanical element disposed on the hard disk assembly; and controlling a rotating speed of a fan based at least in part on the signal, the fan being disposed in the chassis and configured to blow wind to the hard disk assembly.
US10522188B2
A method is provided for identifying and displaying video data of a user, either alone or together (in synchronization) with other data, such as biometric data acquired during a time that the video data was captured/received. The method includes storing biometric data separately from the video data, allowing the biometric data to be search quickly to identify at least one value (e.g., a value corresponding to at least one biometric event). At least one biometric time-stamp (e.g., a time, a sample rate, a position within a plurality of values, etc.) linked to the identified value can then be used to identify a corresponding video time-frame, which can then be used to play the video data, either alone or together with biometric data, starting at a particular time (e.g., at a time that the event occurred, shortly before the event occurred, etc.).
US10522185B1
A data storage device is disclosed comprising a head actuated over a disk. A plurality of access commands are stored in a command queue, wherein the access commands are for accessing the disk using the head. A future access command is predicted, and an execution order for the access commands in the command queue is determined based on an associated execution cost of at least some of the access commands in the command queue and an associated execution cost of the future access command. At least one of the access commands in the command queue is executed based on the execution order.
US10522182B1
A method of operating a magnetic tape within a tape drive. The tape drive comprises a tape head, which shows a tape-bearing surface meant to face a front side of a magnetic tape, in operation. The tape-bearing surface comprises a transducer area. This area includes at least one transducer, which is a read or write element configured to read or write to the magnetic tape, respectively. The method may include driving the tape (along a longitudinal direction of circulation thereof above the tape-bearing surface) and concomitantly ejecting a gas flow toward the transducer area. The gas flow ejected impinges on the back side of the driven tape (e.g., opposite to the front side of the tape), so as to locally urge the front side of the tape against the transducer area and thereby read or write to the tape via said at least one transducer.
US10522177B1
Systems and methods are disclosed for timing servo operations within a channel based on a counter for a disc locked clock. In certain embodiments, an apparatus may comprise a servo channel configured to lock a frequency of a servo channel clock to a rotational velocity of a disc data storage medium, and maintain a counter of clock cycles for the servo channel clock. The servo channel may perform operations to read servo data from a servo sector on the disc data storage medium at a first counter value selected relative to a target counter value corresponding to an expected location of a servo timing mark (STM).
US10522173B1
A bottom shield in a read head is modified by including a non-magnetic decoupling layer and second magnetic layer on a conventional first magnetic layer. The second magnetic layer has a magnetization that is not exchange coupled to the first magnetic layer, and a domain structure that is not directly affected by stray fields due to domain wall motion in the first magnetic layer. Accordingly, the modified bottom shield reduces shield related noise on the reader and will provide improved signal to noise (SNR) ratio and better reader stability. The second magnetic layer may be further stabilized with one or both of an antiferromagnetic coupling scheme, and insertion of an antiferromagnetic pinning layer. In dual readers, the modified bottom shield is used in either the bottom or top reader although in the latter, first magnetic layer thickness is reduced to maintain reader-to-reader spacing and acceptable bit error rate (BER).
US10522169B2
A system is provided to determine teaching technique based upon sound amplitude comprising: processor; and a memory device holding an instruction set executable on the processor to cause the computer system to perform operations comprising: sampling amplitude of sound at a sampling rate; assigning a respective sound amplitude and a respective amplitude variation to the respective sound sample; and classifying the sound samples based upon the assigned sound amplitude and sound sample variation.
US10522166B2
In some embodiments, a method, apparatus and computer program for reducing noise from an audio signal captured by a drone (e.g., canceling the noise signature of a drone from the audio signal) using a model of noise emitted by the drone's propulsion system set, where the propulsion system set includes one or more propulsion systems, each of the propulsion systems including an electric motor, and wherein the noise reduction is performed in response to voltage data indicative of instantaneous voltage supplied to each electric motor of the propulsion system set. In some other embodiments, a method, apparatus and computer program for generating a noise model by determining the noise signature of at least one drone based upon a database of noise signals corresponding to at least one propulsion system and canceling the noise signature of the drone in an audio signal based upon the noise model.
US10522150B2
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for collaboration between multiple voice controlled devices are disclosed. In one aspect, a method includes the actions of identifying, by a first computing device, a second computing device that is configured to respond to a particular, predefined hotword; receiving audio data that corresponds to an utterance; receiving a transcription of additional audio data outputted by the second computing device in response to the utterance; based on the transcription of the additional audio data and based on the utterance, generating a transcription that corresponds to a response to the additional audio data; and providing, for output, the transcription that corresponds to the response.
US10522140B2
An information processing system includes an output controller that causes an output portion to output a start condition for speech recognition processing to be performed by a speech recognition portion on sound information input from a sound collecting portion, in which the output controller dynamically changes the start condition for the speech recognition processing to be output from the output portion.
US10522131B2
A hearing protection headset that can be worn by a user includes left and right earcups. The headset includes a radio communication system enabling at least one radio signal to be received and played through one or both of the earcups. Noise control circuitry in the headset is configurable by a user between at least three active modes of operation—the circuitry having a first active mode in which the headset provides automatic noise reduction, a second active mode in which the headset provides automatic noise cancellation, and a third active mode in which the headset provides both automatic noise reduction and automatic noise cancellation. A switch is manually operable by the user to configure the circuitry between the first active mode and the second active mode and the third active mode.
US10522128B2
An attenuation device for attenuating sound waves, and a corresponding system and method, generated by a source emitting sound waves having frequencies between f1 and f2 and wherein the pressure levels are between n1 and n2. The attenuation device comprising at least one acoustic absorber comprising at least one non-linear membrane; the attenuation device being configured in such a way that the first face of the absorber is in acoustic communication with the source. The attenuation device also comprises at least one coupling element for coupling the second face with the source, the coupling element being configured to transmit to the second face sound waves according to the sound waves emitted by the source, and of which the phase and/or the amplitude leads to a pressure differential of the sound waves arriving respectively on the first and second face at the same time.
US10522124B2
An infotainment system for a vehicle may include a controllable audio reproduction arrangement that is configured to be fixed in the vehicle and to acoustically reproduce an audio signal under the control of a control signal. It may further include a portable device that is freely movable in the vehicle and that is configured to provide the audio and control signals for the audio reproduction arrangement, as well as a wireless connection between the portable device and the audio reproduction arrangement configured to transmit the audio and control signals from the portable device to the audio reproduction arrangement. The audio reproduction arrangement has amplification, quiescent power consumption and a maximum output power, of which at least one is controllable by the portable device via the control signal.
US10522122B2
Provided is a novel music box device that can play music for a long time and can also suppress a thickness.The present invention relates to a music box device including: a sheet that has a playing engagement part and is rotated by a driving means; a star wheel arranged oppositely to the sheet and having two or more claws on an outer peripheral surface; and a vibration valve arranged adjacent to the star wheel. In the music box device, as the sheet is rotated by the driving means, the playing engagement part is linked with one claw to rotate the star wheel while another claw plucks the vibration valve to play music, and the sheet has a helical plate shape.
US10522120B2
A key unit includes: a base portion that is fixable to a musical instrument body that includes a tube body; a key post that projects from the base portion; a key shaft that is attached to the key post; and a key that is attached to the key shaft.
US10522117B2
An automotive theater apparatus and a related operating method are disclosed. In one aspect, an example embodiment is disclosed that includes an image generating device configured to generate an image and a surface structure whereon the image is formed. The example embodiment further includes a substantially transparent optical element configurable to be positioned in a line-of-sight of a user, wherein the substantially transparent optical element is configured to enable the user to view a virtual image of the generated image.
US10522114B2
In accordance with some embodiments, a command streamer may use a cache of programmable size to cache commands to improve memory bandwidth and reduce latency. The size of the command cache may be programmably set by the command streamer.
US10522113B2
Systems, methods and apparatuses may provide for technology to reduce rendering overhead associated with light field displays. The technology may conduct data formatting, re-projection, foveation, tile binning and/or image warping operations with respect to a plurality of display planes in a light field display.
US10522111B2
An electronic apparatus and method of operating the electronic apparatus, to simultaneously display execution screen images of a first OS and a second OS are provided. The method includes obtaining screen image data of the second OS based on graphic data processed by the second OS; obtaining, by the first OS, at least one of control information related to the screen image data of the second OS and memory mapping information of the second OS; converting the screen image data of the second OS into graphic data of the first OS based on the at least one of the control information and the memory mapping information; generating screen image data of the first OS based on the graphic data of the first OS, the screen image data of the first OS including the screen image data of the second OS; and displaying the screen image data of the first OS.
US10522109B2
Apparatuses, systems, methods, and computer program products are disclosed for adjusting brightness settings based on proximity and context data. A proximity module determines a proximity of a first information handling device to a second information handling device. A context module determines context data associated with one or more of the second information handling device and a user of the second information handling device. An adjustment module adjusts a brightness setting of the first information handling device based on the determined proximity and the context data.
US10522088B2
A signal processing circuit includes an accumulator circuit that accumulates display history information regarding light-emitting devices, and a detection circuit that detects the degree of deterioration of a display panel by the accumulated display history information and detects a rotation-recommended state of the display panel on the basis of the degree of deterioration. In the case where the display panel is divided into a plurality of blocks each including the same number of pixel circuits, the detection circuit detects the degree of deterioration for each of the blocks, and if the number of the blocks whose degrees of deterioration are greater than or equal to a first threshold value determined in advance is greater than or equal to a predetermined number, detects that the display panel is in the rotation-recommended state.
US10522085B2
An organic light-emitting display device includes: a display panel including: a plurality of pixels configured to display an image, each pixel among the plurality of pixels including a driving transistor and a sensing transistor, a plurality of data lines respectively connected to each driving transistor, and a plurality of sensing signal lines respectively connected to each sensing transistor, a plurality of source drive integrated circuits (ICs) configured to: supply data voltages to the plurality of data lines, and supply sensing voltages to the plurality of sensing signal lines, and a timing controller configured to supply digital video data and a data timing control signal to the source driver ICs, wherein each of the plurality of source driver ICs includes a sensing voltage supply unit configured to generate the sensing voltages.
US10522076B2
A display system in which the luminance of light-emitting elements in a light-emitting device is adjusted based on information on an environment. A sensor obtains information on an environment as an electrical signal. A CPU converts, based on comparison data set in advance, the information signal into a correction signal for correcting the luminance of EL elements. Upon receiving this correction signal, a voltage changer applies a predetermined corrected potential to the EL elements. Thus, this display system enables control of the luminance of the EL elements.
US10522057B2
According to an embodiment of the present disclosure, a method of labeling a plurality of products includes coating a pressure sensitive adhesive to a roll of face stock, the roll of face stock configured to be converted to a plurality of individual labels aligned in a single lane; singulating an individual label from the roll of face stock; and applying the individual label to a product of the plurality of products, wherein the coating, singulating and applying are conducted sequentially in a single continuous operation with a single continuous web of material.
US10522053B2
Embodiments of a system and method for improving conference call speech clarity are generally described herein. A method may include receiving presenter speech from a presenter to be cast to one or more participants. The method may include transcribing the speech to text and determining a readability score of the text. The method may include displaying the readability score, using a speech clarity indicator, to the presenter used as a metric to gauge participants' understanding.
US10522040B2
A video analytics algorithm, system, and method for use in real time allowing accurate, reliable, and timely warnings that facilitate traffic safety and efficiency. The system and method are readily implemented with minimal computational resources, providing broad applicability. In an embodiment, a video analytics method may include (a) obtaining a sequence of real-time images as input from a traffic monitoring system; (b) identifying a plurality of vehicles within a pre-defined region of interest; (c) tracking vehicles within the predefined region of interest; and (d) detecting a conflict event when the vehicles are located within a pre-determined maximum separation threshold based on each vehicles coordinates in a spatial-temporal domain.
US10522037B1
An example method described herein includes receiving an image stream of a non-demarcated parking zone; identifying dimensions of the non-demarcated parking zone; determining an overall area of the non-demarcated parking zone based on the dimensions of the non-demarcated parking zone; calculating a capacity of the non-demarcated parking zone based on the dimensions of the overall area and predetermined vehicle dimensions; determining a number of vehicles parked in the non-demarcated parking zone based on the image stream and an object detection model, wherein the object detection model is configured to detect vehicles in the image stream that are parked in the non-demarcated parking zone; determining a parking availability of the non-demarcated parking zone based on the number of vehicles parked in the non-demarcated parking zone and the capacity; and performing an action associated with the parking availability.
US10522032B2
In a driving-state data storage apparatus, a collector collects, from each of vehicles on a target travelling road, a value of data indicative of a driving state of the corresponding vehicle to correspondingly obtain driving-state data values for the target road. A data allocator divides, based on similarity among the driving-state data values, the target traveling road into a plurality of traveling segments, and extracts, from the driving-state data values, data values for each of the divided travelling segments. The data values extracted for each of the travelling segments are similar to each other. The data allocator allocates a distribution of the extracted data values for each of the divided travelling segments to the corresponding one of the divided travelling segments as a feature distribution. A storage unit stores the feature distribution allocated for each of the travelling segments.
US10522030B2
A system includes at least one processor to receive an emergency request from a first client computing device that indicates that a first responder is to be dispatched to a particular physical address, transmit the floorplan associated with the particular physical address to a second client computing device associated with the first responder, request a confirmation of the emergency request from the first client computing device and receive the confirmation of the emergency request from the first client computing device, and determine that the second computing device is within a particular distance from the particular physical address and display on a display of the second client computing device a location of a person in a particular space of the floorplan at the particular physical address, the location of the person in the particular space of the floorplan at the particular physical address obtained from the first client computing device.
US10522022B2
The invention provides a system and method for receiving hazard and event information in a mobile unit and using that information to warn a user of an event or future hazard with reference to the mobile unit's location and/or intended direction of travel. A hazard location algorithm compares a forecast location of each mobile unit with a forecast hazard and transmits a warning to each mobile unit that is predicted to encounter the hazard. As the mobile unit moves, its actual position is updated in an event center, and a revised warning is transmitted to the mobile unit as applicable. Warnings include audio warnings for playback and/or visual warnings for display on the mobile device. Users may also wirelessly report events or hazards to a central server in an event center by sending data to the event center via a wireless communications network. Secondary information may be included, based on the selected event type.
US10522009B1
Methods and systems for generating a response to detecting a fire on a property are provided. In certain aspects, a smart home controller (or other smart controller) may analyze data received from smart devices disposed on, within, or proximate to a property. If it is determined that a fire is present on the premises of the property, the smart home controller may determine a location of the fire as compared to the smart devices. The smart home controller may then generate and transmit instructions causing a portion of the smart devices to perform a set of actions to mitigate risks associated with the presence of the fire on the property. The smart home controller may also compare the location of the fire with a location of an occupant, and generate an escape route for the occupant. Insurance policies, premiums, or discounts may be adjusted based upon the fire response/mitigation functionality.
US10522008B1
An improved pinpoint alarm system for sound localization comprising a voltage regulator logic controller, and sounder comprising a piezoelectric plate mounted in a Helmholtz generator, the logic controller configured and programmed to generate repetitively a pseudorandom frequency within a predetermined range of frequencies based on the peak or resonant frequencies of the sounder to directly or indirectly drive the sounder. The pinpoint alarm system can be used in a variety of applications, including vehicles and tracking devices.
US10522001B1
The present disclosure relates generally to a system that utilizes an application running on a mobile device to collect game-based data regarding a player's experience at a gaming establishment.
US10521997B1
A gaming system and particularly electronic gaming machines including a housing, a display device supported by the housing, and a force sensitive multi-touch input device supported by the housing that are configured to enable a player to use the force sensitive multi-touch input device to control the rates of movement of each of one or more of the symbol displays and in certain embodiments to determine awards based on the rates of movement of each of one or more of the symbol displays when the player makes an input.
US10521993B1
A machine that operates responsive at least in part to data bearing records (10) presents user selection contest options to users through at least one output device such as a display (14) and receives user contest option selection inputs and machine instruction inputs through input devices such as a touch screen overlay (16), keypad (18) or other input devices. The machine may further include a device that reads data bearing records such as a bar code reader or a card reader (30). The machine records the user's selections and also user/machine interaction data which describes each user interaction with the machine during the user's session with the machine to facilitate verifying proper operation of the machine and recording of user selections.
US10521985B2
A method securely opens a door connected to a system and includes a central unit, a mobile terminal, a local control unit and a door opening device that are configured to transmit data. The method includes transmitting a first key to the mobile terminal by the central unit; transmitting the first key to the control unit by the mobile terminal via the door opening device; generating a second key by the control unit depending on the first key; transmitting the second key from the control unit to the mobile terminal via the door opening device; generating a third key by the mobile terminal depending on the second key; transmitting the third key to the central unit by the mobile terminal via the door opening device; and controlling opening of the door depending on the third key by the central unit by transmitting a request to the door opening device.
US10521983B1
Methods, computer-readable media, software, and apparatuses that may facilitate communications to rate driver performance and provide a driver rating to a driver in a competitive manner are provided. Driver computing devices may collect drive data (e.g., vehicle telematics data) to determine whether conditions are met (i.e., whether a driver speeds, brakes hard, or drives at night). The system may generate a driver rating based on these conditions. The rating may be used in a competitive manner (such as by sharing ratings with friends) and rewards given for good performance (such as new levels for display in a social environment, or financial incentives such as charitable donation or sweepstakes entry).
US10521979B2
A system for providing fleet analytic services for a fleet includes a fleet interface to receive fleet data associated with operation and maintenance of the fleet; a memory to store the fleet data; a processor to implement a plurality of fleet analytic services modules to process and analyze fleet data for opportunities to improve maintenance, operations, costs, readiness, health and supply/logistics; a user input/output interface to receive commands from a user and output results of the plurality of fleet analytic services modules.
US10521961B2
A method, apparatus and computer program for presenting locations of individuals in an interface are described. A region of interest is determined by a location and an orientation of a portable device in an environment. The region of interest is a cone of interest radiating away from the location of the portable device in a direction of orientation of the portable device. A set of locations of one or more individuals of interest with respect to the cone of interest in the environment is determined. An orienting background and a first set of representations against the orienting background are presented in an interface on the display. Each representation is of a respective individual of interest in the cone of interest. The interface is presented according to the location and orientation of the display. The orienting background contains a positional cue of a landmark of the environment which the portable device is oriented toward. The representation of the respective individual of interest is displayed only if the portable device is oriented toward the respective individual of interest.
US10521959B2
To reduce structure noise, input data representing an input structure is obtained and boundary conditions are set by classifying data of each of multiple structure elements of the input data as a signal component or a noise component. A smoothing operation is performed with respect to the input data and based on the boundary conditions. Output data representing an output structure is provided by reducing noise from the input structure.
US10521958B2
A computer implemented method for determining a silhouette volume of a 3D object, e.g. for mesh simplification, comprises: receiving a computer representation of a 3D object; determining a silhouette volume of the object, wherein the silhouette volume is the maximal volume of space having a silhouette from every viewing direction which is identical to the silhouette of the object from the same viewing direction, and wherein points of the object which lie on the boundary of the silhouette volume also lie on the boundary of the object's projected silhouette from at least one viewing direction; determining, based on the silhouette volume, the extent to which features of the object are silhouette features; determining, for a plurality of planes and for a plurality of different axes, at least one intersection loop, wherein each intersection loop corresponds to a planar cross-section of the boundary of the object in its respective plane; and determining the convex hull of each intersection loop.
US10521953B2
A three-dimensional (3D) image rendering method and an apparatus are provided. The 3D image rendering method includes determining optical images associated with candidate viewpoint positions in a viewing zone, determining virtual rays intersecting a pixel of a display panel based on the determined optical images, and assigning a pixel value to the pixel based on respective distances between intersection points between the rays and an optical layer and optical elements of the optical layer.
US10521949B2
A graphics animation and compositing operations framework has a layer tree for interfacing with the application and a render tree for interfacing with a render engine. Layers in the layer tree can be content, windows, views, video, images, text, media or other type of objects for an application's user interface. The application commits state changes of the layers of the layer tree. The application does not need to include explicit code for animating the changes to the layers. Instead, after a synchronization threshold has been met, an animation is determined for animating the change in state by the framework which can define a set of predetermined animations based on motion, visibility and transition. The determined animation is explicitly applied to the affected layers in the render tree. A render engine renders from the render tree into a frame buffer, synchronized with the display. Portions of the render tree changing relative to prior versions can be tracked to improve resource management.
US10521943B1
A facility for computing a combined view that superimposes a graphic image representing lots onto a reference map is described. The facility identifies a set of distinguishing features in the graphic image and a set of distinguishing features in the reference map. These sets are used to compute a set of common distinguishing features using various techniques, such a cross-referencing. The facility then computes a combined view of the graphic image of lots and the reference map using the set of common distinguishing features. The facility further determines geographic coordinates of location markers on the graphic image scaled to the reference map.
US10521942B2
Systems and methods for low power virtual reality (VR) presence monitoring and notification via a VR headset worn by a user entail a number of aspects. In an embodiment, a person is detected entering a physical location occupied by the user of the VR headset during a VR session. This detection may occur via one or more sensors on the VR headset. In response to detecting that a person has entered the location, a representation of the person is generated and displayed to the user via the VR headset as part of the VR session. In this way, the headset user may be made aware of people in their physical environment without leaving the VR session.
US10521940B2
A method, apparatus, and computer product for: determining that the location of a user satisfies at least one spatial boundary condition; and in response to said determination, causing the presentation of an avatar to the user, wherein the presentation of the avatar comprises presenting an instruction given by the avatar to the user.
US10521937B2
Vector format based computer graphics tools have become very powerful tools allowing artists, designers etc. to mimic many artistic styles, exploit automated techniques, etc. and across different simulated physical media and digital media. However, hand-drawing and sketching in vector format graphics is unnatural and a user's strokes rendered by software are generally unnatural and appear artificial. In contrast to today's hand-drawing and sketching which requires significant training of and understanding by the user of complex vector graphics methods embodiments of the invention lower the barrier to accessing computer graphics applications for users in respect of making hand-drawing or sketching easier to perform. Accordingly, the inventors have established a direct vector-based hand-drawing/sketching entry format supporting any input methodology.
US10521936B2
The present invention provides a device and a method for image reconstruction at different X-ray energies that make it possible to achieve image reconstruction with higher accuracy. A device for image reconstruction at different X-ray energies includes: an X-ray source 1 that irradiates a specimen to be imaged 2 with X-rays; an energy-dispersive detector 4 that detects a characteristic X-ray emitted from the specimen to be imaged 2; a signal processing means that quantifies the peak of the characteristic X-ray detected by the detector 4; and an image reconstruction means that reconstructs an image on the basis of a signal from the signal processing means.
US10521934B2
A method for determining a three-dimensional image data set from a plurality of two-dimensional projection images of an object under examination applies at least one morphological operation to each projection image in order to provide a processing image associated with the respective projection image. At least one respective imaging segment is segmented, in which a highly absorbent region is mapped, depending on the associated processing image, and a respective mask image is generated in which pixels belonging to the imaging segment are marked. An associated synthetic image for each projection image is determined, the image data of which within the imaging segment is set to predetermined values. The projection images and the synthetic images are separately filtered. The three-dimensional image data set is determined by backprojecting the mask images to determine a mask value for each voxel of the image data set.
US10521929B2
A system for determining the location of a toolpiece, wherein: the toolpiece is carried by a tool and the tool comprises an imaging device for capturing images of the environment around the tool; and the system comprises an image processor communicatively coupled to the imaging device for receiving images therefrom and having access to one or more reference images of an expected environment, the image processor being configured to compare an image captured by the imaging device with at least one reference image to identify a match therebetween and to determine in dependence on characteristics of that match the location of the toolpiece.
US10521922B2
Provided is an end face inspection device capable of inspecting different end face shapes without replacing an adapter for attachment. An end face inspection device includes: an optical system that forms an image of an end face of a test object, which is fixed at a predetermined position, at a position of an image sensor; and a focus detection section that acquires image data, which is output by the image sensor, and determines whether or not the end face is brought into focus in the image data. The focus detection section acquires a plurality of the image data pieces, in which parts of the end face are brought into focus by changing a focal position of the optical system by a predetermined distance at a time, and acquires focused image data by synthesizing the respective parts brought into focus in the plurality of image data pieces.
US10521920B2
Systems, devices, and techniques related to removing infrared texture patterns used for depth sensors are discussed. Such techniques may include applying a color correction transform to raw input image data including a residual infrared texture pattern to generate output image data such that the output image data has a reduced IR texture pattern residual with respect to the raw input image data.
US10521914B2
A method of object detection includes obtaining a set of images depicting overlapping regions of an area containing a plurality of objects. Each image includes input object indicators defined by input bounding boxes, input confidence level values, and object identifiers. The method includes identifying candidate subsets of input object indicators in adjacent images. Each candidate subset has input overlapping bounding boxes in a common frame of reference, and a common object identifier. The method includes adjusting the input confidence levels for each input object indicator in the candidate subsets; selecting clusters of the input object indicators satisfying a minimum input confidence threshold, having a common object identifier, and having a degree of overlap satisfying a predefined threshold; and detecting an object by generating a single output object indicator for each cluster, the output object indicator having an output bounding box, an output confidence level value, and the common object identifier.
US10521913B2
A relative atlas graph is generated to store mapping data used by an autonomous vehicle. The relative atlas graph may be generated for a geographical area based on observations collected from the geographical area, and may include element nodes corresponding to elements detected from the observations along with edges that connect pairs of element nodes and define relative poses between the elements for connected pairs of element nodes.
US10521912B2
An image processing apparatus according to an embodiment includes processing circuitry. The processing circuitry is configured to acquire pieces of change information indicating temporal changes in computed tomography (CT) values of a myocardium and a right ventricular of a subject based on a plurality of chronologically consecutive images that are generated by an X-ray CT apparatus by scanning the subject to which a contrast agent is administered. The processing circuitry is configured to correct the piece of change information on the myocardium based on the piece of change information on the right ventricular.
US10521909B2
An information processing system includes one or more processors; a receiving unit configured to receive a divide instruction for dividing first medical information corresponding to a first display image representing a target region to extract a part of details of the first medical information if the first medical information and the first display image are displayed in association with each other on a display unit; and a display processing unit configured to, if the divide instruction has been received, display the part of details on the display unit newly as second medical information that is different from the first medical information and to display a second display image representing a target region corresponding to the part of details in association with the second medical information on the display unit.
US10521900B2
The present invention relates to a camera (1, 1′) for generating a biometrical signal of a living being comprising: a filter (11) for blocking incident visible light in a wavelength range up to at least 550 nm, a color sensor (12, 12′) for receiving said filtered incident light and generating at least two different color signals (5, 6, 9), a combination unit (15) for generating at least one combined color signal (7a, 7b) by combining said at least two color signals, and a processing unit (16) for processing said at least one combined color signal and extracting at least one biometrical signal (8) of said living being (3).
US10521893B2
An image processing apparatus includes: an acquisition unit configured to acquire band images of an object, using filters of which transmission center wavelengths are different from each another; a detection unit configured to select a first band image from the band images, and detect a target region that is to be improved with respect to visibility; a selection unit configured to select a second band image, which includes information, originated from a structure of the object, within the target region, from among the band images other than the first band image; and a generation unit configured to generate a spectral image from a band image. The generation unit uses at least a band image that has been captured using a same filter as the second band image, upon generating a spectral image of the object.
US10521890B2
A method and device for detecting image artifacts. Pixel transition values of camera images are computed in a first direction by comparing intensity differences between neighboring pixels with an upper threshold and a lower threshold and setting a corresponding pixel transition value. A low pass filter with respect to time and a spatial filter are applied to the pixel transition values. Pixels of potential artifact regions are identified by comparing magnitude values of the smoothed pixel transition values with a predetermined detection threshold.
US10521888B2
An aerothermal-radiation correction method, including: using a Gaussian surface to approximate a thermal radiation noise, performing a Fourier transform on the Gaussian surface so as to obtain a centralized spectrum of the thermal radiation noise, constructing a filter function H based on the centralized spectrum of the thermal radiation noise; performing a Fourier transform on the aerothermal-radiation degraded image f so as to obtain a centralized spectrum F, taking dot product of F and H to obtain a filtered spectrum G; and performing an inverse Fourier transform on filtered spectrum G to obtain a modulus, and acquire a corrected image. The method effectively removes background noise generated by aerothermal radiation, greatly improves image quality and image signal-to-noise ratio. The method features reduced computational complexity and a shorter operation time, and is suited for real-time processing.
US10521885B2
Provided is an image processing apparatus that can reduce degradation in image quality due to heat haze and the like. An input image memory 110 stores an input image group 200 and an input image 210. A time-series smoothed image memory 112 stores a time-series smoothed image 220 obtained by time series smoothing. A moving body removed image memory 113 stores a moving body removed image 230 that is a background image. A histogram analyzing unit 130 computes a differential of histograms of partial images for the input image 210 and the time-series smoothed image 220 or the moving body removed image 230, and calculates similarity information between the images. On the basis of the similarity information, a region dividing unit 140 divides the input image 210 into a moving body region, and a region other than the moving body region. An image correcting unit 150 performs image synthesis of the input image 210 or the time series-smoothed image 220, for each of the regions.
US10521876B2
Systems, methods and apparatuses may provide for deferred geometry rasterization technology that includes a decision controller to determine, based on available resources in a graphics processor and a view frustum, a first portion of graphics information to be output to the graphics processor and a storage device communicatively coupled to the decision controller to store a second portion of the graphics information for future use. Additionally, an output handler may output the first portion of the graphics information to the graphics processor and swap out the second portion for unused graphics information on the graphics processor.
US10521866B2
A computer-implemented method for associating a merchant with an aggregate merchant uses a computing device having a processor and a memory. The method includes identifying an association rule for the aggregate merchant, including one or more antecedents. Each antecedent includes a model value for the antecedent associated with the aggregate merchant. The method also includes identifying one or more merchant data values associated with the merchant. Each of the one or more merchant data values correspond to one of the one or more antecedents. The method further includes applying the association rule to the one or more merchant data values by comparing the model value for each antecedent with a merchant data value associated with the corresponding antecedent, thereby generating a confidence score for the merchant. The confidence score represents a likelihood the merchant is associated with the aggregate merchant. The method also includes outputting the confidence score.
US10521865B1
An insurance server for generating a quote associated with an object pictured in a three-dimensional (3D) image may be provided. The insurance server may include a processor in communication with a memory. The insurance server may be configured to receive the 3D image including the object from a structural analysis computing device, and analyze the received 3D image. The insurance server may also be configured to determine a value of the object based upon the analysis, and generate a quote associated with the object based upon the determined value of the object. The insurance server may be further configured to transmit the quote for display at the structural analysis computing device for the customer's review and/or approval.
US10521863B2
The present disclosure generally relates to assessing climate change risk at a security level. A computing system receives a selection of a climate change scenario from a user operating a remote client device. The computing system generates one or more environmental metrics for one or more energy sources based on the scenario selected by the user. The computing system converts the one or more environmental metrics for the one or more energy sources into one or more profitability indicators. The computing system correlates at least one energy source of the one or more energy sources to each security. The computing system generates a projected climate change risk for each security based on the one or more environmental metrics for the one or more energy sources. The computing system provides a data set representing the projected climate change risk to the remote client device.
US10521858B2
A reprice-to-block order and related market center and process are disclosed which automatically reprice a posted limit order to the price of a block trade executed at an inferior price on a market away from the market center that posted the limit order.
US10521852B2
The present invention is a method and system for a network-based grocery store. The invention provides for network-based order placement, fulfillment, and delivery.
US10521851B2
Disclosed is a system and method for fulfilling orders for multiple entities located on websites with distinct entity checkout systems with a single user input. The process for fulfilling orders for two entities includes receiving a first indication to purchase a first entity and a second indication to purchase a second entity, where the first entity is associated with a first retailer and the second entity is associated with a second retailer. The method also includes extracting information associated with the first and second entities from the respective web pages where the entities are available for purchase, and receiving a user input to initiate order fulfillment. The method further includes checking the availability of the entities at their respective retailers and providing alternate entities and/or retailers, if applicable. The method is completed by deploying fulfillment agents and purchase agents for completing the transactions.
US10521841B2
A computer implemented method and apparatus for integrating e-commerce providers with third-party vendors. The method comprises receiving an order from one vendor of a plurality of vendors, wherein the order comprises a vendor identification, a fulfillment identification, and a vendor stock keeping unit (SKU), and wherein a plurality of the vendors each has a unique communication protocol; mapping the fulfillment identification to a user identification (userID) known to a provider; mapping the vendor SKU to a provider SKU; generating a provisioning call responsive to the mapping; and provisioning the SKU for the userID in a database of the provider in response to the provisioning call.
US10521836B2
Methods and systems are provided for facilitating purchases by one person for another person. A user can take advantage of one or more social networks to facilitate purchases by proxy shoppers for the user. For example, the user can designate what products can be purchased by a proxy shopper and what stores can be used by the proxy shopper to make the purchases. The products can be listed in a registry on the user's social network. When the proxy shopper is in a designated store, the proxy shopper can purchase a designated products for the user.
US10521829B2
At a bid determination platform, an initial sequence having an initial order of software steps for filtering advertisements in response to receiving an advertisement bid request is selected. Until a trigger event occurs, the initial sequence of software steps is implemented in the initial order in response to receiving advertisement bid requests. Implementing the initial sequence comprises automatically tracking a failure (or success) metric and resource requirement metric for each of the software steps. After the trigger event occurs, a first optimum sequence of the software steps is automatically selected in a first optimum order so as to optimize a total resource usage for execution of the software steps. Selecting the first optimum sequence of the software steps in the first optimum order is based on the tracked failure (or success) metric and resource requirement metric for each of the software steps during implementation of the initial sequence.
US10521828B2
Systems and methods are disclosed herein for distributing online ads with electronic content according to online ad request targeting parameters. One embodiment of this technique involves placing online test ads across multiple online ad request dimensions and tracking a performance metric for the online test ads. The performance of the online ad request dimensions is estimated based on the tracking of the performance metric for the online test ads and online ad request targeting parameters are established for spending a budget of a campaign to place online ads in response to online ad requests having particular online ad request dimensions. Online ads are then distributed based on using the online ad request targeting parameters to select online ad requests.
US10521823B2
Systems and methods for providing promotional materials to potential customers are described. In some cases, the described methods include obtaining GPS coordinates of a merchant's location. In some cases, the methods further include providing a map showing the locations of customers in a promotion area, wherein a merchant is able to resize the promotion area to increase or decrease how many customers are in the promotion area. In some cases, the merchant further produces a text or other electronic promotion, optionally sets a time period in which such promotion is effective, and provides the promotion to customers within the promotion area. In some cases, as customers enter the merchant's location with their electronic devices that received the promotion, and during the promotion's effective period, the described systems match such devices' GPS coordinates with the GPS coordinates of the merchant's location to register conversions on the promotion. Other implementations are described.
US10521816B2
Systems, methods and computer-readable storage media for determining an outcome of a content promotional message are described. For example, a media network may be configured to transmit content to a plurality of content playback devices, such as a television or a computing device. The content may include a content promotion message configured to promote content, such as a television program or a website, available through the media network. The content promotion message and the content may be associated with network identifiers generated by the media network for tracked content. When the content is played by the content playback device, a device identifier may be generated for the content. The device identifiers may be compared with the network identifiers to determine which, if any, content tracked by the media network has been played by the plurality of content playback devices.
US10521815B1
An apparatus, computer program product, and method are disclosed for generating immediate gratification promotions. An example apparatus includes communications circuitry configured to receive contextual data regarding a set of consumer devices, wherein the contextual data identifies locations of each consumer device of the set of consumer devices, receive resource management data regarding a set of merchant locations, transmit, to a consumer device of the set of consumer devices, a message indicating terms of an immediate gratification promotion redeemable at a merchant location of the set of merchant locations, wherein the immediate gratification promotion comprises a promotion for which purchase automatically initiates redemption, and receive, from the consumer device, a message requesting purchase of the immediate gratification promotion. The example apparatus further includes design circuitry configured to generate the terms of the immediate gratification promotion based on the received contextual data and the received resource management data.
US10521812B2
Systems, graphical user interfaces and methods for upgrading from one or more digital media assets to a set of digital media assets over a network are described. A potential purchaser can be notified of available upgrade opportunities that are available for purchase. The potential purchaser can elect to pursue an upgrade opportunity so as to purchase a set of digital media assets. Upon upgrading to the set of digital media assets, the digital media assets within the set of digital media assets are made available to the purchaser. According to one aspect, a graphical user interface facilitates presenting and requesting upgrade opportunities. According to another aspect, equivalency rules and/or eligibility rules can be used to control which sets of digital media assets are available for upgrade by respective potential purchasers.
US10521809B2
A system and method for grouping units for forecasting purposes is presented. A plurality of stock keeping units (SKUs) is presented to an embodiment. Initial medoids are chosen based on a vertex within a set of vertices, each of which represent a SKU. Then, each vertex within the set of vertices is associated with its closest medoid to form initial clusters. There can be a cap on the number of vertices in each cluster. Thereafter, an iterative algorithm is performed wherein a probability is assigned to each vertex. One or more vertices are randomly chosen, with the weights of the vertices weighting the random choice. The chosen one or more vertices are moved to another cluster. The algorithm is performed until no further improvements result from moving one or more vertices to another cluster. Other embodiments are also disclosed herein.
US10521806B2
A blockchain-based method includes: receiving, by a smart label via accessing a block of a blockchain stored on a computer system, a cold chain requirement for a product, wherein the smart label is affixed to a package containing the product, the cold chain requirement for the product is specified and stored by a manufacturer of the product in the block of the blockchain; storing, by the smart label, the cold chain requirement in a memory of the smart label; receiving, by the smart label, from a temperature sensor a temperature of the product, wherein the temperature sensor is affixed to the package containing the product; comparing, by the smart label, the temperature of the product with a temperature range of the product specified in the cold chain requirement; and adding, by the smart label, the temperature of the product and a time at which the temperature of the product is received by the smart label, to the blockchain, if the temperature of the product is outside of the temperature range specified in the cold chain requirement.
US10521804B2
An interaction manager assigns messages posted on a social media website to a support case in a database system. A support agent may tag a message posted by a user for directing to the support case. The interaction manger assigns the tagged message to the support case and activates a timer to track a time period. During the time period, the interaction manager assigns other messages posted by the same user to the support case. The interaction manager may reset the time period whenever the support agent replies to one of the messages posted by the user or the support agent tags another one of the user messages for directing to the support case. The interaction manager reduces the burden of having to manually review and manage every message posted on the social media website.
US10521800B2
The present invention refers to the field of networked computer telecommunication, and in particular to a method and system for processing services associated with a contract between a service requester (SC) and a service provider (SP) wherein said services are to be provided via a network, wherein at least one service contract is defined between said service requester and said service provider. In order to improve the processing of web services, license management facilities (75A) are included into the prior art method cooperating closely with a Contract Management component (74A) and a Service Metering Component (76A). Preferably, a plurality of different license types are provided for selection to be used, which may further be combined also, in order to match best the needs of a customer.
US10521791B2
A computer-based method for communicating liability acceptance for payment card transactions is provided. The method uses a computer device including a processor and a memory. The method includes receiving, by the processor, a transaction authorization request message for a payment card transaction having a default-liable party. The transaction authorization request message includes a shifted-liability acceptance indicator identifying a different party to the transaction that accepts liability for the payment card transaction. The method also includes authorizing the payment card transaction based at least in part on the shifted-liability acceptance indicator. The shifted-liability acceptance indicator changes the liability for the payment card transaction from the default-liable party to the different party accepting liability.
US10521790B1
Example embodiments of systems and methods for data transmission system between transmitting and receiving devices are provided. In an embodiment, each of the transmitting and receiving devices can contain a master key. The transmitting device can generate a diversified key using the master key, protect a counter value and encrypt data prior to transmitting to the receiving device, which can generate the diversified key based on the master key and can decrypt the data and validate the protected counter value using the diversified key.
US10521773B1
Disclosed herein are methods, computer program products, and systems to generate graphical user interfaces displays on user devices to analyze the effects of costs associated with an aging workforce that is not adequately ready for retirement. These systems will also generate graphical user interfaces displaying the total present value liability of retirement plans over a plan time period, that takes into account retirement savings options, healthcare plan options, target retirement ages, a retirement age ranges, and a replacement age ranges.
US10521771B2
Visualization tools, and systems and software underlying such tools, for allowing user to visualize organizations of people. Members of an organization are represented by unabstracted nodes. In some embodiments, visualization diagrams are efficiently created by abstracting the unabstracted nodes in a manner that reduces the number of nodes needing to be rendered, while retaining the visual character of a similar diagram composed of the original, unabstracted nodes. In these embodiments, regions of abstraction diagrams can be selectively de-abstracted in response to a user's selection within the abstraction diagram. In response to such a selection, in some instances only a particular hierarchical reporting chain within the organization, or a portion thereof, is de-abstracted to allow the user to view unabstracted nodes within that chain. Also disclosed are other visualization tools, such as attribute-overlay tools, time-scrubbing tools, and geographic distribution tools, among others.
US10521766B2
A wine inventory management system is provided to assist a user in selecting and locating a wine from a wine collection. In one example, a wine inventory management system may comprise a smart cap having an indicator portion and a processor in communication with the smart cap. The processor in communication with the smart cap may comprise a determining module that determines a set of criteria, a matching module that matches wines to the set of criteria to form a wine set, and an illuminating module that illuminates smart caps of the wine set. The smart caps may be illuminated with different colors, light animation patterns, and with different images in some examples.
US10521764B1
Multi-server control processes including receiving controls from various control memory structures, comparing the received controls, transitioning a machine state based upon those comparisons, and sending further control signals to affect the operation of one or more servers.
US10521762B2
A computer system for defining attributes associated with attended delivery/pickup locations is described. In various embodiments, the system is configured to enable an authorized user (e.g., a manager of an attended delivery/pickup location) to define certain attributes of a particular attended delivery/pickup location. In some embodiments, the system is configured to verify that the particular user is authorized to define the one or more attributes associated with the particular attended delivery/pickup location (e.g., by checking a list of one or more authorized users). Once the one or more attributes are defined, in one or more embodiments, the system is configured to accept or reject parcel delivery requests based at least in part on the attributes. In further embodiments, the system is configured to facilitate a return of a particular item to a retailer via the attended delivery/pickup location.
US10521749B2
A risk information processing method used in a risk information processing system that manages a degree of risk at a spot where a moving object is located includes: storing, as risk information in a storage, a degree of risk for a combination of spot and situation; and estimating first risk information for a first combination for which a degree of risk has not been input by using three or more pieces of risk information including degrees of risk for a second combination whose spot is the same as the first combination and whose situation is different from the first combination, for a third combination whose situation is the same as the first combination and whose spot is different from the first combination, and for a fourth combination whose situation is the same as the second combination and whose spot is the same as the third combination.
US10521745B2
Subject matter disclosed herein relates to video content editing, and in particular, to video review workflow.
US10521742B2
The invention comprises a system for collecting batches of food from food suppliers. The system comprises at least one movable collecting unit with an associated data receiver; a food parameter determining system for determining at least one batch parameter of a collected food batch; a database system for storing food supplier data comprising at least one food collecting address identification for each food supplier, food receiver data comprising at least one food delivering address identification for each of at least one food receiver station and reference data comprising threshold data for said at least one batch parameter or derived parameter correlated to said batch parameter. The system further comprises a server system coupled to said database system and being in data communication with said data receiver. The server system receives at least data from the database system and batch parameter data and calculates logistic plan(s) for the movable collecting unit(s).
US10521737B2
Embodiments of the present invention address deficiencies of the art in respect to project management tools and provide a method, system and computer program product for an activity-centric project management tool. In one embodiment of the invention, an activity-centric project management tool data processing system can be provided. The system can include an activity-centric project management tool, one or more ad-hoc communications tools externally coupled to the activity-centric project management tool, and ad hoc communications activity objectification logic coupled to both the activity-centric project management tool and the ad-hoc communications tools. The logic can include program code enabled to integrate external ad-hoc communications among task nodes of an activity hierarchy modeling a project plan.
US10521736B2
A method of authorizing access and operation for vehicle sharing via a portable device. A request reservation is generated to reserve a vehicle via a portable device carried by a user. The reservation includes a portable device identifier and reservation details. Authentication keys are transmitted to the portable device and a plug-in device coupled to the vehicle in response to a successful authorization. The plug-in device is used to perform vehicle access and vehicle operations of the vehicle. The authentication keys enable the portable device and the plug-in device to be paired for enabling vehicle access and operations. An authorization is executed between the portable device carried by a user and a plug-in device coupled to the vehicle. Access to the vehicle operations are enabled in response to a successful authorization.
US10521733B2
One or more braking event detection computing devices and methods are disclosed herein based on fused sensor data collected during a window of time from various sensors of a mobile device found within an interior of a vehicle. The various sensors of the mobile device may include a GPS receiver, an accelerometer, a gyroscope, a microphone, a camera, and a magnetometer. Data from vehicle sensors and other external systems may also be used. The braking event detection computing devices may adjust the polling frequency of the GPS receiver of the mobile device to capture non-consecutive data points based on the speed of the vehicle, the battery status of the mobile device, traffic-related information, and weather-related information. The braking event detection computing devices may use classification machine learning algorithms on the fused sensor data to determine whether or not to classify a window of time as a braking event.
US10521732B2
Systems, methods, and non-transitory computer-readable media can obtain a plurality of content items that are available to be presented in a content feed of a first user, wherein each content item has a corresponding lifespan that indicates when the content item expires and is no longer available for presentation. A content feed having at least a first content item from the plurality of content items can be provided to a computing device of the first user. A determination can be made that at least one second user has provided feedback for the first content item, the feedback indicating an up-vote or a down-vote of the first content item. The lifespan of the first content item can be adjusted based at least in part on the feedback.
US10521731B2
Unique users and/or the current user of a non-computer product are identified. Sensor data is collected from sensors on the non-computer product. The sensor data provides data regarding settings and/or usage patterns of the non-computer product. The sensor data is provided to an analytics engine, which analyzes the sensor data using machine-learning techniques to identify unique users of the non-computer product and/or a current user of the non-computer product. Analytics that include at least an indication of the unique users are provided to a product manufacturer and/or other entity (e.g., a retailer).
US10521727B2
A method for generating hypotheses in a corpus of data comprises selecting a form of ontology; coding the corpus of data based on the form of the ontology; generating ontology space based on coding results and the ontology; transforming the ontology space into a hypothesis space by grouping hypotheses; weighing hypotheses included in the hypothesis space; and applying a science-based sorting algorithm configured to model a science-based treatment of the weighted hypotheses.
US10521715B1
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for implementing long-short term memory cells with saturating gating functions. One of the systems includes a first Long Short-Term Memory (LSTM) cell, wherein the first LSTM cell is configured to, for each of the plurality of time steps, generate a new cell state and a new cell output by applying a plurality of gates to a current cell input, a current cell state, and a current cell output, each of the plurality of gates being configured to, for each of the plurality of time steps: receive a gate input vector, generate a respective intermediate gate output vector from the gate input, and apply a respective gating function to each component of the respective intermediate gate output vector, wherein the respective gating function for at least one of the plurality of gates is a saturating gating function.
US10521709B2
A transaction card may power on the transaction card using electric current induced from an interaction of the transaction card with an electromagnetic field. The transaction card may establish a communication with a device. The communication may indicate that the transaction card has powered. The transaction card may receive, from the device, a set of instructions to configure a set of applets on the transaction card after notifying the device that the transaction card has powered on. The set of applets to be configured may be related to completing one or more different transactions. The set of applets to be configured may be different than another set of applets already configured on the transaction card. The transaction card may configure the set of applets on the transaction card according to the set of instructions after receiving the set of instructions.
US10521707B2
A printing apparatus includes a reception unit that receives outline information representing an outline of a character, a generation unit that generates, using the outline information, a bitmap including pixels corresponding to the character, the pixels being associated with a graphic attribute, a changing unit that refers an attribute associated with a pixel adjacent to one of the pixels corresponding to the character, and changes a density value of the adjacent pixel associated with the referred attribute being different from a graphic attribute and a character attribute to a density which is based on a density value of the one pixel, and a printing unit that prints an image based on the bitmap after the change.
US10521706B2
A color verification apparatus according to an embodiment of the present invention uses a color measuring instrument to measure an estimation object in a printed matter including a RIP image formed by an image forming apparatus and thereby acquires a measured color value of the estimation object. The color verification apparatus calculates an estimated color value of a color verification target object from the measured color value of the estimation object and a conversion coefficient. The color verification apparatus performs color verification on the color verification target object in the printed matter based on the estimated color value of the color verification target object and a theoretical color value of the color verification target object when it is determined that color measurement is unavailable to the color verification target object.
US10521700B2
The system includes a memory that stores instructions for executing processes converting line drawings to rendered images. The system also includes a processor configured to execute the instructions. The instructions cause the processor to: train a neural network to account for irregularities in the line drawings by introducing noise data into training data of the neural network; receive a first line drawing from an input device; generate a first rendered image based on features identified in the first line drawing; and display the first rendered image on an output device.
US10521694B2
Disclosed is a method for 3D building extraction, comprising: extracting building footprints from one or more stereo images for a building; determining, from rational polynomial coefficient of the stereo images, first height estimation of the extracted building footprints; obtaining, from multi-temporal SAR images for the building, scatters with stable attributes; determining second height estimation for the determined scatters; and combining the first height estimation and the second height estimation to generate a fused height for each of the extracted building footprints.
US10521692B2
Techniques for intelligent image search results summarization and browsing scheme are described. Images having visual attributes are evaluated for similarities based in part on their visual attributes. At least one preference score indicating a probability of an image to be selected into a summary is calculated for each image. Images are selected based on the similarity of the selected images to the other images and the preference scores of the selected images. A summary of the plurality of images is generated including the selected one individual image.
US10521686B2
An image processing apparatus including: a processor; and memory storing computer-readable instructions therein, the computer-readable instructions, when executed by the processor, causing the image processing apparatus to perform: acquiring target image data configured by a plurality of pixels and representing a target image including a character; acquiring a character code corresponding to the character in the target image; acquiring an index value relating to a number of a plurality of character pixels configuring the character in the target image by using the character code corresponding to the character in the target image; determining a first extraction condition by using the index value; and extracting the plurality of character pixels satisfying the first extraction condition from the plurality of pixels in the target image.
US10521679B2
A human detection device comprises an image acquiring unit configured to acquire an image captured by an imaging device, a human detecting unit configured to detect a human from the acquired image, a ground contact position identifying unit configured to identify a ground contact position of the human on the basis of a lower end portion of the detected human, a feature portion extracting unit configured to extract a feature portion of the detected human, a ratio calculating unit configured to calculate a ratio of the feature portion on the basis of a vertical size of the detected human and a vertical size of the extracted feature portion and a correction determining unit configured to determine whether the identified ground contact position is to be corrected on the basis of the identified ground contact position or the calculated ratio.
US10521678B2
A vision system (10) for a motor vehicle including an imaging system (11) adapted to capture images from a surrounding of the motor vehicle and a data processing device (14) establishing an object detector (15) adapted to detect an object in images captured by the imaging system (11) through image processing. The object detector (15) includes a wheel detector (20) adapted to detect a wheel (22; 27), a wheel-like structure, or a characteristic part thereof, of another vehicle.
US10521677B2
A method for generating training data is disclosed. The method may include executing a simulation process. The simulation process may include traversing a virtual camera through a virtual driving environment comprising at least one virtual precipitation condition and at least one virtual no precipitation condition. During the traversing, the virtual camera may be moved with respect to the virtual driving environment as dictated by a vehicle-motion model modeling motion of a vehicle driving through the virtual driving environment while carrying the virtual camera. Virtual sensor data characterizing the virtual driving environment in both virtual precipitation and virtual no precipitation conditions may be recorded. The virtual sensor data may correspond to what a real sensor would have output had it sensed the virtual driving environment in the real world.
US10521675B2
A system and method for legible capture of vehicle identification data includes video cameras and a computer. Recording attributes such as gain, gain shutter speed, and white balance are adjusted throughout ranges to maximize the likelihood of capturing at least one frame in which characters, such as those on the license plate, are legible. Successful capture of a legible frame may trigger storage of the data, while unsuccessful capture may trigger additional scans.