US10716238B2
A device comprising heat producing electronic components (2), such as server memory boards, processors and/or switches, said device comprising a container (1) wherein said heat producing components are mounted, a liquid in said container in which liquid said components are submerged for extracting heat from said components, at least one heat exchanger (7) having a surface which is in contact with said liquid and arranged to extract heat from said liquid, wherein between said heat exchanger and said components a vertical wall (6) is present for guiding and separating a vertical circulation of said liquid in said container which is caused by a temperature difference in said liquid.
US10716237B2
The present invention relates to a device for driving a motor, the device comprising: a main housing for accommodating a circuit module therein, wherein a top of the main housing is partially opened to define an open portion; an input/output (IO) cover coupled to the main housing so as to occupy the open portion; and an auxiliary housing coupled to the main housing at an vertical side face of the main housing.
US10716229B2
An electrified wire containing a plurality of integrated hubs populated along the wire's span providing mechanical and electrical and data connectivity to an array of removable device platforms with IoT device assemblies whereas the devices assemblies operate in real time, are either networked or stand-alone, and can be placed where and when needed.
US10716228B2
A support mechanism and a mobile terminal are provided. The support mechanism comprises: a first support plate, a second support plate, and a transmission mechanism for connecting the first support plate with the second support plate. When the support mechanism is in a support state, the first support plate and the second support plate are in a first relative position with respect to each other to form a support surface. The mobile terminal includes a first body, a second body connected to the first body, a support mechanism and a display screen. The display screen comprises: fixed portions fixed to at least one of the first body or the second body, and a deformable portion. The support mechanism is arranged on the second body.
US10716225B1
A storage device includes a circuit board configured to store data and a connector mounted horizontally to the first surface of the circuit board. The connector comprises an insertion portion configured to be inserted into a port of an electronic device and a connection portion connected to the circuit board. An offset thickness between a thickness of the connection portion and a thickness of the insertion portion is at least 1 millimeter (mm). The storage device also comprises a housing enclosing the circuit board. A length of the housing does not exceed 8 mm.
US10716220B2
A soldering iron system with automatic variable temperature control comprising a hand piece or robot arm including a soldering cartridge having a soldering tip, a coil that generates a magnetic field, and a temperature sensor for sensing a temperature of the soldering tip; a variable power supply for delivering variable power to the coil to heat the soldering tip; a processor including associated circuits for accepting a set temperature input and the sensed temperature of the soldering tip, and providing a control signal to control the variable power supply to deliver a suitable power to the coil to keep the temperature of the soldering tip at a substantially constant level of the set temperature input.
US10716213B2
To eliminate signal loss and sources of signal attenuation, a connection methodology is utilized which enables high-speed signals to be directly communicated from particular integrated circuits housed on a printed circuit board, to other locations within a system. More specifically, a signal escape strategy directly connects a high-speed cable to a point on the circuit board which is very close to the integrated circuit itself. A back-side connection methodology is utilized so that electrical signals pass directly from the integrated circuit through a via, to a connection point on the backside of the circuit board. To accommodate this connection, a specially designed interposer and related paddle cards are utilized so the high-speed communication cable can be easily attached.
US10716211B2
A printed wiring board includes a plurality of first wirings and a plurality of second wirings. The plurality of first wirings each include a first via conductor disposed outside a first region, a second region, and a third region in a plan view, and a first conductor pattern extending from the first via conductor to the first region. The plurality of second wirings each include a second via conductor disposed outside the first region, the second region, and the third region, and a second conductor pattern extending from the second via conductor to the first region. A fourth region overlaps with a fifth region in the plan view, the fourth region being a region in which a plurality of first conductor patterns are disposed, the fifth region being a region in which a plurality of second conductor patterns are disposed.
US10716209B2
To overcome the problem of the fiber weave effect desynchronizing differential signals in a pair of traces of approximately the same length in a printed circuit board, the pair of traces can be routed to traverse largely parallel paths that are above one another in the printed circuit board. The material between the paths can include weaved fiber bundles. The material on opposite sides of the paths, surrounding the pair of traces and the weaved fiber bundles, can include resin-rich material. As a result, the pair of traces are directly adjacent to the same materials, which can allow signals in the traces to propagate at the same speed, and prevent desynchronization of differential signals traversing the paths. The path length difference associated with traversing to different depths can be compensated with a relatively small in-plane diagonal jog of one of the traces.
US10716201B2
The invention relates to a component carrier for an electronic device, the component carrier comprising at least one heat-releasing component that is embedded within at least one carrier layer of the component carrier, and wherein the at least one embedded heat-releasing component is thermoconductively coupled to a heat spreader layer, characterized in that the heat spreader layer forms at least an outside section of a casing of said electronic device. Also an electronic device that comprises at least one component carrier according to the invention, as well as a method to produce a respective component carrier are indicated.
US10716200B2
A liquid cooled shield assembly for a plasma arc torch includes an inner cap and a shield. The inner cap includes a substantially hollow body having a proximal end and a distal end that define a longitudinal axis, the distal end including an annular portion about the longitudinal axis. The inner cap also includes a liquid passage defined, at least in part, by an interior surface of the body, the liquid passage including a first set of ports in the annular portion, the first set of ports extending between an interior portion of the body and an exterior portion of the body to convey a liquid therethrough. The shield at least partially surrounds the inner cap and has a liquid impingement region on an interior surface of the shield adjacent to the first set of ports, the liquid impingement region for receiving the cooling liquid.
US10716188B2
A luminaire may include a plurality of different light engines. Light engines having different light distributions can be included in a single luminaire and a subset of the light engines selectively driven to dynamically change the light distribution of the luminaire. In this way, a single luminaire is capable of illuminating an area with a variety of different light distributions.
US10716187B1
An LED driving structure includes an LED module, a power supply circuit, a voltage stabilizing circuit, a temperature compensation circuit and a gallium nitride field-effect transistor that are electrically connected. The power supply circuit is configured to supply a current to the LED module. The voltage stabilizing circuit includes a rectifying diode, a resistor and a Zener diode, and is connected to a gate of the gallium nitride field-effect transistor through the temperature compensation circuit for providing a stable voltage. The temperature compensation circuit includes at least one resistor, a thermistor and a transistor connected to the gate of the gallium nitride field-effect transistor for the LED module after being energized to maintain its power stably when there are voltage fluctuations and temperature fluctuations.
US10716185B2
A load control device may be configured to control an electrical load, such as a lighting load. The load control device may include a first terminal adapted to be coupled to an alternating-current (AC) power source, and a second terminal adapted to be coupled to the electrical load. The load control device may include a bidirectional semiconductor switch, a filter circuit, and a control circuit. The bidirectional semiconductor switch may be coupled in series between the first terminal and the second terminal, and be configured to provide a phase-control voltage to the electrical load. The filter circuit may be coupled between the first terminal and the second terminal. The control circuit may be configured to render the bidirectional semiconductor switch conductive and non-conductive to control an amount of power delivered to the electrical load, and be configured to adjust the impedance and/or filtering characteristics of the filter circuit.
US10716175B2
A door assembly for a microwave oven includes a door covering an opening of an oven housing. The door includes a bezel forming an outer frame to conceal internal door components and an inner door portion within the bezel made of a transparent material. An electromagnetic interference (EMI) attenuation device positioned around outer edges of the door includes folded transformer sections with dimensions based on an operative wavelength of electromagnetic energy generated by the oven. The EMI attenuation device attenuates EMI waves escaping the oven through a gap between the housing and the door. The transformer sections are positioned at an incline angle from a horizontal plane in which the transformer sections extend a greater distance in the horizontal plane than in a vertical plane to allow for a reduced bezel size and an increased area of the inner door portion.
US10716174B2
A heating cooker includes shooting section (201) for shooting an image inside a heating chamber that accommodates a heat-target object, and controller (200) that sets a shooting condition for shooting the image of an interior of the heating chamber and carries out an image recognition to the image. Controller (200) analyzes the image of the interior of the heating chamber, thereby recognizing a state inside the heating chamber, and then changes the shooting condition in response to the state inside the heating chamber for shooting the image. The structure discussed above allows this heating cooker (100a), which carries out the image recognition to the image of the interior of the heating chamber, to achieve a greater accuracy in the image recognition.
US10716152B2
A method for determining an access point name (APN) for mission critical services includes determining, at a user equipment (UE), APN information of a packet data network (PDN) based on at least one of a mission critical organization name, a registered public land mobile network identifier, or a home public land mobile network identifier currently associated with the UE; and connecting to the PDN based on the determined APN information.
US10716145B2
A system for transmitting data packets includes at least one access point and at least one terminal. The access point receives data packets transmitted by the terminal in compliance with a multiple access protocol including carrier detection, and transmits to the terminal at least the width of the contention window that the terminal is to observe for transmitting a packet. The transmitted packets are coded using an erasure code and the access point is further adapted to decode the received packets. The system may be applied to networks such as WLANs.
US10716144B2
A terminal apparatus capable of efficiently performing a random access procedure is a terminal apparatus that communicates with a base station apparatus by using multiple serving cells including a primary cell and one or multiple secondary cells, and includes a medium access control layer processing unit (15) for starting a random access procedure in any one of the multiple serving cells based on a PDCCH order, a transmitter (10) for transmitting a random access preamble in any one of the multiple serving cells, and a receiver (10) for receiving a random access response, in which the medium access control layer processing unit (15), in a case that reception of the random access response is considered not successful, determines whether to automatically resume transmission of the random access preamble or not, at least based on which of the primary cell and the secondary cell is used to transmit the random access preamble.
US10716134B2
According to one aspect of the disclosure, a first method, a first computer-readable medium, and a first apparatus are provided. The first apparatus may be a UE. The first apparatus may receive, from a base station, a first grant associated with a first set of resource available to the first apparatus for transmission on a first sidelink channel. The first apparatus may determine whether to request, from the base station, a second grant associated with a second set of resources available to the first apparatus for transmission on the first sidelink channel. The first apparatus may send, to the base station, a request for the second grant when determining to request the second grant. Further, the first apparatus may send information on the first sidelink channel based on the first grant when determining not to request the second grant.
US10716130B2
The embodiments of the application provide a communication method, terminal equipment, and network equipment. The method comprises: determining a first data transmission format used to generate first transmission version of uplink data; selecting, from a data resource pool, a first data transmission resource used to transmit the first transmission version; transmitting, to network equipment, a first scheduling configuration message containing information of the first data transmission resource and the first data transmission format; encoding and modulating, according to the first data transmission format, the uplink data, to generate the first transmission version; and transmitting, to the network equipment, by means of the first data transmission resource, the first transmission version, so as to facilitate the network equipment to receive, demodulate and decode, according to the first scheduling configuration message, the first transmission version. The embodiments of the invention can reduce communication latency without decreasing communication reliability.
US10716127B2
Various solutions with respect to uplink control information (UCI) feedback timing signaling in wireless communications are described. A user equipment (UE) identifies a type of uplink (UL) transmission to perform with respect to a network node of a wireless network. The UE receives a control signal from the network node and determines, based on the control signal, a timing offset of a transmission schedule for the identified type of the UL transmission. The UE performs the UL transmission to the network node according to the transmission schedule such that a first type of the UL transmission is performed with a first timing offset and a second type of the UL transmission is performed with a second timing offset different than the first timing offset.
US10716125B2
Methods, systems, and devices for wireless communication are described. A method at a user equipment (UE) includes receiving signaling that indicates a carrier aggregation (CA) configuration (having carriers configured for UL and downlink (DL) data transmissions) and an auxiliary uplink (UL) configuration (having carriers configured for UL reference signal transmissions). The method also includes receiving a resource assignment on a DL carrier of the CA configuration, and transmitting an aperiodic sounding reference signal (A-SRS) using the one or more carriers of the auxiliary UL configuration based at least in part on the received resource assignment. Another method is performed by a UE having a CA configuration and an A-SRS configuration, including receiving a resource assignment on a DL carrier in the CA configuration, detecting a trigger for transmitting an A-SRS, determining UL resources of the A-SRS configuration for transmitting the A-SRS, and transmitting the A-SRS on the determined UL resources.
US10716124B1
A base station will group UEs together for MU-MIMO service with the grouping being based at least in part on the UEs of the group being at least a threshold Euclidian distance from each other. Further, the base station could dynamically set the threshold Euclidian distance based on consideration of coverage quality. And the base station could additionally base the UE grouping on the UEs of the group having threshold angular separation, having reported threshold high SINR, and/or on one or more other factors.
US10716116B2
The embodiments herein relate to a method in a base station (603) for communicating with a user equipment (605) in the communication network (600). The base station (603) is configured to communicate with the user equipment (605) according to a selectable of at least two user equipment categories. Based on information about a selected user equipment category, the base station (603) determines a first number of maximum transmission layers supported by the base station (603). The base station (603) communicates with the user equipment (605) according to up to the determined first number of maximum transmission layers and according to the selected user equipment category.
US10716108B2
The present application discloses a cellular network access method and apparatus. An embodiment of the cellular network access method for a base station comprises: receiving, from a pair of D2D devices, a result of a spectrum detection which indicates a load level of a detected spectrum; selecting a cellular communication mode or a D2D communication mode based on the received result of the spectrum detection; and notifying the pair of D2D devices of the selected mode. Through dynamic switching between the cellular communication mode and the D2D communication mode, it is possible to make full use of the available spectrum, thereby increasing the throughput of the system.
US10716100B2
A method for reporting uplink control information (UCI) by a user equipment (UE) is disclosed. The method includes storing information on whether a simultaneous physical uplink control channel (PUCCH) and physical uplink shared channel (PUSCH) transmission is supported. The method also includes, when the simultaneous PUCCH and PUSCH transmission is not supported and in case of a channel collision between a PUCCH and a PUSCH, transmitting, by the UE, the UCI using the PUCCH in an overlapping portion between the PUCCH and the PUSCH, and dropping the overlapping portion of the PUSCH.
US10716098B2
A mechanism is described herein for enhancing the radio coverage for a wireless device based on an exchange of uplink and downlink radio condition information, referred to as uplink and downlink Radio Coverage Category (RCC) values, between the wireless device and a network (e.g., a Radio Access Network (RAN) node, Core Network (CN) node) for use in data transmission (e.g., control plane related signaling or user plane related payload transmission).
US10716094B2
A wireless device receives message(s) comprising configuration parameters for a first radio bearer; and a first information element indicating that packet duplication is configured for the first radio bearer. A control element indicates activation of the packet duplication for the first radio bearer corresponding to a first logical channel and a second logical channel may be received. A first uplink grant for transmission of one or more first transport blocks (TBs) is received. The one or more first TBs is be transmitted. The one or more first TBs comprise data of one or more first buffers associated with the first logical channels. Acknowledgement for the one or more first TBs is received. One or more second buffers associated with the second logical channel are flushed in response to the one or more first buffers being emptied in response to the transmission of the one or more first TBs.
US10716092B2
A pedestrian user equipment (P-UE) which participates in P-UE related V2X communications comprises processor circuitry and a transmitter. The processor circuitry is configured to select a resource pool for a P-UE related V2X communication and to make a determination. The determination, based on a first indicator and/or a second indicator, is whether to transmit the sidelink signal based on sensing using the selected resource pool; or whether to transmit the sidelink signal based on random selection using the selected resource pool. The transmitter is configured to transmit the sidelink signal.
US10716089B1
A method and system of deploying a trained neural network-based RSS fingerprint dataset for mobile device indoor navigation and positioning. The method comprises: based on RSS parameters acquired from a plurality of mobile devices acquired at a set of positions within an indoor area, accumulating the RSS parameters as a trained neural network-based RSS fingerprint dataset in a fingerprint database of the indoor area; and when a density of points represented by the set of positions having accumulated RSS parameters exceeds a deployment threshold density, deploying the RSS fingerprint dataset within a fingerprint map for mobile device navigation of the indoor area, the fingerprint map encompassing the set of positions.
US10716085B2
A system and method determines a geographic position of a mobile device in communication with an IP-based wireless telecommunications network. A wireless connection between the mobile device and the IP-based wireless telecommunications network is established when the mobile device registers with a network controller (NC) through an access point (AP). When a geographical position is needed for the mobile device (e.g., a 911 call), messages are exchanged between the NC and the SMLC where the SMLC retrieves information from a database that is used to identify the geographic position of the mobile device. The database can store a variety of information related to mobile devices such as: last known position, IP address, MAC address, device or subscriber identifier, last CGI, etc. The geographical position is communicated back to the NC, which can then forward the position information to a switch for processing such as for 911 calls.
US10716076B2
A method for controlling an uplink transmit power, a base station and a device are disclosed. In an embodiment an apparatus includes a processor and a computer-readable storage medium storing a program to be executed by the processor, the program including instructions for sending, to a first base station, a first maximum uplink transmit power of a terminal configured for the first base station, wherein the first maximum uplink transmit power is based on a status of an uplink resource configured by a second base station for the terminal.
US10716075B1
The present disclosure is directed to the use of active feedback from client devices to limit/regulate transmission power control of access points from the perspective of the client device. The instant transmission power control beneficially ensures that clients located at a cell edge still receive sufficient coverage from access points and have sufficient overlap with adjacent cells for seamless roaming for the wireless stations while minimizing co-channel interference. In some embodiments, the present disclosure beneficially leverages 802.11h TPC Constraint to dynamically report client's view of the RF environment and cell size estimation.
US10716072B2
Techniques for regulating a radio frequency (RF) output power of an antenna of a computing device are described. In an example a physical signal filter unit (PSFU) to filter a detection signal from a proximity sensor for regulating an RF output power of a device is described. The PSFU includes a first filter circuit to filter the detection signal and generate a first filter output signal and a logical inverter gate to generate an inverted detection signal based on the detection signal. The PSFU also includes a second filter circuit to generate a second filter output signal based on the inverted detection signal. The PSFU also includes a logical AND gate to perform a logical AND operation on the first filter output signal and the second filter output signal to generate a control signal for regulating the RF output power of an antenna of the computing device.
US10716071B2
A radio node may transmit a signal using a transmit power. Then, the radio node may adjust the transmit power within a range of values. The adjustment may include reducing the transmit power when a spatial received signal strength indication (RSSI) metric of the radio node is greater than a first threshold value and a coverage criterion is met. Note that the spatial RSSI metric of the radio node may correspond to a set of temporal RSSI metrics of the radio node received from neighboring radio nodes. Moreover, the coverage criterion may be that less than a portion of RSSI measurements of the radio node associated with electronic devices, which are communicatively attached with the radio node, is less than a second threshold value. Alternatively, the adjustment may include increasing the transmit power when the spatial RSSI metric is less than the first threshold value.
US10716069B2
The present disclosure provides a power control method and a power control apparatus for uplink channels. The power control method includes steps of: determining, by a UE, target transmission powers for the uplink channels in each carrier group, the UE being configured with at least two carrier groups, UCI in each carrier group being fed back via PUCCH(s) and/or PUSCH(s) on at least one uplink carrier corresponding to the carrier group; determining, by the UE, whether or not a sum of the target transmission powers for the simultaneous transmission uplink channels exceeds an allowable maximum transmission power of the UE; and in the case that the sum of the target transmission powers for the simultaneous transmission uplink channels exceeds the allowable maximum transmission power of the UE, reducing, by the UE, powers for the PUCCH(s) and/or PUSCH(s) carrying the UCI of different carrier groups among the simultaneous transmission uplink channels at least in accordance with priorities of types of the UCI, so that a sum of the transmission powers for all the uplink channels in a current uplink subframe does not exceed the allowable maximum transmission power of the UE. According to the present disclosure, it is able to perform uplink power control in the case that the UE supports the independent UCI feedback for different carrier groups.
US10716068B2
Systems and methods are provided and include a control module that establishes a secure wireless communication connection with a portable device. A sensor receives connection information about the secure wireless communication connection, eavesdrops on the wireless secure communication connection based on the connection information, measures signal information of a communication signal sent from the portable device to the control module during the secure wireless communication connection, compares the measured signal information with wakeup criteria information, and reports the measured signal information to the control module in response to the measured signal information satisfying the wakeup criteria. The control module receives the measured signal information from the sensor and determines a location of the portable device based on the measured signal information. The measured signal information includes at least one of received signal strength indicator information, angle of arrival information, and time difference of arrival information.
US10716065B2
A method for activating a connected object intended to function in an low power wide area network (“LPWAN”) network. The method includes, when it is implemented by the connected object: detecting a first signal transmitted by an external device; when the first signal has predefined characteristics, making the connected object pass from a standby mode to an active mode, only a module of the connected object intended to detect the first signal being activated in standby mode; receiving a second signal comprising a signature from the external device; checking that the signature is in accordance with a predefined signature and, when the signature is in accordance with a predefined signature, obtaining configuration parameters, configuring the connected object in accordance with the configuration parameters obtained and transmitting a connection request message to said network.
US10716064B2
A network of nodes includes data nodes and at least one sink node to exchange packets between the sink node and the data nodes in a multi-hop manner. The data nodes include a battery powered node (BPN) having a transceiver, a memory, and a battery to provide energy to components of the BPN. The BPN includes a processor to determine a sleep schedule of the BPN independently from the sleep schedules of other data nodes and independently from commands transmitted by the sink node. The processor of the BPN switches the transceiver ON and OFF according to the sleep schedule to form an active period and a sleep period of the BPN. Also, the processor partitions at least part of the active period into a receiving (RX) period and a transmission (TX) period and causes the transceiver to transmit the data packets only during the TX period.
US10716062B1
A wireless system includes a plurality of base stations including a first base station connected to a backbone network and a plurality of second base stations connected to the first base station by wireless multi-hop, and a server disposed in the backbone network and communicating with the first base station. The server collects traffic conditions of one or more terminals accommodated in communication areas of the plurality of base stations for a predetermined period, determines a combination of the first base station and at least a part of the plurality of second base stations that satisfy the traffic conditions and a predetermined power consumption amount criterion as an active base station, and determines path information for connecting the active base station by the wireless multi-hop to notify the active base station of the path information and transmits a sleep instruction for setting a sleep state in which a power consumption amount is capable of being reduced to base stations other than the active base station.
US10716056B2
Battery life of a user equipment (UE) can be extended when the UE is roaming internationally in a country that has multiple carrier networks each utilizing multiple public land mobile network (PLMN) identifiers. Scan control tables, stored in a universal integrated circuit card (UICC) of the UE, are populated with the identifiers of a PLMN having the highest priority in a defined area (e.g., Circle). A roaming control applet of the UICC can compare serving cell data with the scan control tables to determine if the UE is to perform a higher priority (HP) PLMN search. Utilization of the scan control table avoids unnecessary searches for HPPLMNs that are unavailable in the UE's current location and accordingly extends battery life of the UE.
US10716047B2
A method for wireless communication at a user equipment (UE) includes determining that both a cellular radio access technology (RAT) and a wireless local area network (WLAN) RAT are available over an unlicensed radio frequency spectrum band; obtaining measurements for at least the cellular RAT or the WLAN RAT; selecting, by the UE, one of the cellular RAT or the WLAN RAT for a class of traffic, where the selected RAT is selected based at least in part on the measurements; and serving the class of traffic based at least in part on the selected RAT.
US10716043B2
The present disclosure provides an access point handover method and device. The method includes: determining a first access point (AP) set detected by a source AP where a station is located, where the first AP set includes at least one AP; selecting, from the first AP set and according to the first AP set and a pre-stored AP set, a target AP to which the station is to be handed over; and transmitting a handover message to the station. The handover message is used for instructing the station to be handed over from the source AP to the target AP.
US10716039B2
A first base station receives at least one RRC message from a wireless device. The RRC message(s) comprise TMGI(s) of (MBMS) service(s) that the wireless device is receiving or interested to receive. The first base station sends a handover request message for the wireless device to a second base station. The handover request message comprises the TMGI(s). The first base station receives a handover request acknowledge message from the second base station. The handover request acknowledge message comprises MBMS configuration parameter(s) of the MBMS service(s) for the wireless device. The MBMS configuration parameter(s) are based on the TMGI(s) and comprise at least one of: a G-RNTI parameter; or MBMS radio resource configuration parameters. The first base station transmits a handover command message to the wireless device. The handover command message comprises the MBMS configuration parameter(s).
US10716032B2
This application discloses a path processing method and apparatus, and a terminal. In the path processing method, user equipment may determine, based on connection parameter information corresponding to at least one existing packet data network (PDN) connection, whether a target PDN connection satisfying a target connection condition exists in the at least one existing PDN connection. When the target PDN connection satisfying the target connection condition exists, the user equipment may transmit a service packet by using the target PDN connection. When the target PDN connection satisfying the target connection condition does not exist, the user equipment may initiate establishment of the target PDN connection, to transmit a service packet by using the established target PDN connection. As can be learned, when transmitting the service packet, the user equipment may transmit the service packet by using the target PDN connection satisfying the target connection condition.
US10716031B2
When a network node providing wireless access and serving plurality of user devices receives information on channel conditions from one or more user devices, the network node determines available resources for traffic to and from the one or more user devices; and, when there is higher priority traffic, the network node uses reliability increasing resource allocation for the higher priority traffic at least as long as there are enough resources available.
US10716026B2
The present disclosure provides a method in a network entity for Quality of Service (QoS) control of a service to be provided by a Service Provider (SP) to a user. The method comprises: receiving from another network entity a QoS capability request including a QoS requested by the SP for the service; retrieving a QoS profile of the user from a user database, the QoS profile including a maximum allowable QoS for the user dependent on the user's subscription with a network operator; and controlling a QoS to be authorized to the service based on the requested QoS and the maximum allowable QoS.
US10716023B2
Methods, systems, and devices for wireless communications are described. A base station may transmit, and a user equipment (UE) may receive a first slot format indicator (SFI) during a first monitoring period for a set of slots associated with the first monitoring period. The base station may transmit, and the UE may receive a second SFI during a second monitoring period that is shorter in duration than the first monitoring period and occurs within the first monitoring period, the second SFI comprising an indication of slot formats for a subset of the slots associated with the second monitoring period. The base station and the UE may perform wireless communications over the subset of slots based at least in part on the first SFI and the second SFI.
US10716022B2
Systems and methods for calculating uplink pathloss in a wireless local area network are provided. Uplink pathloss between an access point and client device operating in the wireless local area network can be calculated based on determining an effective maximum transmit power. Based on the effective maximum transmit power, and known uplink power headroom, a current transmit power of the client device can be determined. Based on the current transmit power of the client device, uplink pathloss can be determined. If the operating conditions and/or characteristics of the client device and/or wireless local area network change, the uplink pathloss may be re-evaluated.
US10716019B1
The network communication activity of a dual-subscriber identification module (SIM) user device is monitored as the dual-SIM user device communicates with a default wireless carrier network using a default SIM and a first baseband processor of the user device. A first set of key performance indicators (KPIs) for the network communication activity on the default wireless carrier network is determined. A simulation of the network communication activity on an alternative wireless carrier network is then initiated using an alternative SIM and a second baseband processor of the dual-SIM user device. A second set of KPIs for the simulation of the network communication activity on the alternative wireless carrier network is determined. The first and second set of KPIs are then compared to determine one or more network performance features of the alternative wireless carrier network that are superior to the corresponding network performance features of the default wireless carrier network.
US10716011B2
There is provided a distributed antenna system includes a plurality of head-end units configured to receive mobile communication signals from at least one base station, a hub unit connected to each of the plurality of head-end units through a first transport medium, the hub unit distributing the mobile communication signals respectively received from the plurality of head-end units to a plurality of remote units connected thereto through a second transport medium, and the plurality of remote units remotely disposed to transmit the mobile communication signals to a terminal in a service coverage, wherein the hub unit includes a signal summer configured to digitally sum sub-band signals in a same mobile communication service band based on the mobile communication signals.
US10716007B2
A telecommunication device protects data stored in a security module. The device has a near field communication (NFC) router with a plurality of individually assignable gates and a routing table. In response to a request to assign a communication pipe to one of the gates, the device creates and stores a reference signature for the pipe based on at least one of a personal code of an authorized user of the device or an identifier of a radio frequency gate of the router. In response to a request to provide data from the security module to the NFC router, the device creates a current signature corresponding to the request to provide data. The device verifies whether the current signature corresponds to the stored reference signature and prevents a provision of the requested data based on a failure to verify the current signature corresponds to the stored reference signature.
US10716005B2
Techniques to manage applications, such as mobile apps, across multiple management domains are disclosed. In various embodiments, a set of one or more application management policies to be enforced with respect to a mobile device is received from a management entity to which a scope of authority to manage applications with respect to the mobile device has been delegated. A management agent on the mobile device is used to enforce the one or more application management policies with respect to applications and application data that are within the scope of authority delegated to the management entity.
US10716000B2
A method of protecting WLAN Control Protocol (WLCP) message exchange between a Trusted WLAN Access Gateway (TWAG) (112) of a Trusted WLAN Access Network (TWAN) (110) and a User Equipment (UE) (101) are provided. The method comprises deriving, by an Authentication, Authorization, and Accounting, (AAA) Server (103) of an Evolved Packet Core (EPC) network which is interfaced with the TWAN, and by the UE, a Master Session Key (MSK) and an Extended MSK (EMSK), sending, from the AAA Server to a Trusted WLAN AAA Proxy (TWAP) (113) of the TWAN and an Access Point (AP) (111) of the TWAN, the MSK or a key derived from at least the MSK, and deriving, by the TWAN or by the AAA Server, and by the UE, from the MSK, the EMSK, or the key derived from at least the MSK or the EMSK, a key for protecting the WLCP message exchange. —Corresponding devices, computer programs, and computer program products are further provided.
US10715994B2
A communication technology for converging a 5th-generation (5G) communication system for supporting a higher data rate after a 4th-generation (4G) system to an Internet of things (IoT) technology and a system thereof are provided. A method for connecting to a network by a terminal in a mobile communication system wherein a first communication network and a second communication network are operable, and an apparatus thereof are provided. The method includes transmitting, to a mobility management function, information on supportable communication network for the terminal and an attach request message including a packet data unit (PDU) session request, receiving an internet protocol (IP) address allocated based on the information on supportable communication network and an attach accept message including a PDU session response, and connecting to a network based on the IP address.
US10715983B2
A system, consisting of a vehicle having an infotainment system, a mobile data processing device and a motion sensing device, wherein a first communication interface is set up to transmit control commands IS from the motion sensing device to the mobile data processing device, the mobile data processing device is set up to translate the control commands IS into instructions IA to the infotainment system, and a second communication interface is set up to transmit the instructions IA from the mobile data processing device to the infotainment system.
US10715982B2
A method, apparatus, and system for data transmission, wherein the method comprises: the network-side network element determining the target data transmission mode; the network-side network element sending instruction information to the terminal through the base station transmission in order to instruct the terminal to switch to the target data transmission mode with which to implement data transmission; wherein, the target data transmission mode is NarrowBand IoT (NB-IoT) data transmission or Long-Term Evolution (LTE) data transmission.
US10715980B2
Embodiments of the present disclosure provide a method for sharing an application between terminals, and a terminal, so as to facilitate user operations at a receiving end. The method includes: generating, by a first terminal according to an application that has been installed, a shared application installation package of the application; sending, by the first terminal, the shared application installation package to a second terminal, so that the second terminal installs the shared application installation package; determining, by the first terminal, shared data of the application that has been installed, where the shared data is data that is from an application server and required for the application to run; and sending, by the first terminal, the shared data to the second terminal, so that the second terminal uses the shared data when running the shared application.
US10715977B2
Aspects of the present disclosure are directed to device-to-device (D2D) and, more particularly, vehicle-to-vehicle (V2V) communication in which an efficient ranging protocol allows efficient ranging-assisted vehicle positioning. A vehicle transmits a first slot ID in a first control period, to indicate a first time slot for transmitting a first ranging signal in a ranging cycle including a plurality of time slots. The vehicle transmits the first ranging signal in the first time slot in the ranging cycle. From a second vehicle, the first vehicle receives a second ranging signal in a second time slot that is different from the first time slot in the ranging cycle. The first vehicle determines a first time-of-arrival (ToA) of the second ranging signal when received by the first vehicle, and transmits the first ToA in a second control period.
US10715958B2
Embodiments of techniques, apparatuses, systems and computer-readable media for consuming services for a user equipment (UE) apparatus are disclosed. In some embodiments, a first signal at a second signal are received respectively from a first and a second beacon apparatus, the signals indicating a service associated with the respective beacon apparatuses, and a list of neighboring services proximately disposed to the respective beacon apparatuses, a list is generated and displayed at the UE apparatus in accordance with ranking criterion of the lists and the first and second signal strengths of the first and second signals received at the UE. Other embodiments may be disclosed and/or claimed.
US10715951B1
A UE in a wireless network receives measurement configuration for group(s) of cells wherein the measurement configuration is for positioning measurements of the UE using signals from base station(s). The UE receives criteria based on the measurement configuration for the UE to trigger report(s) for the group(s) of cells. The UE performs, using at least the measurement configuration, positioning measurements of the group(s) of cells and sends a report that is triggered based at least on the criteria. A network element sends the measurement configuration for the group(s) of cells to the UE. The network element sends the criteria based on the measurement configuration for the UE to trigger the report(s) for the one or more groups of cells. The network element receives a report from the UE that was triggered based at least on the criteria. Methods, software, computer program products, and apparatus are disclosed.
US10715947B2
Systems and methods described herein may be used to provide users personalized point-of-interest (PoI) information. A context server may cause information, describing PoIs in a particular geographic area, to be sent to a device (e.g., a component of a vehicle, a user device, etc.) communicating with a wireless telecommunication network. The device may individually determine which PoIs to display to the user based on factors such as a current location of the device, an operating status or condition of a vehicle associated with the device, and historical behavior information. The PoIs sent to the vehicles may include a personalized PoI that may be displayed to drivers in a highlighted manner. Additionally, the device may collect driving behavior information relative to the PoIs and/or the personalized PoI and provide the driving behavior information to the context server as feedback.
US10715945B2
Disclosed is a method for determining an audio filter. The method includes obtaining head-tracking data representing a head pose, also referred to as a head position, relative to a torso pose of an intended subject, and selecting a representation of a Head Related Transfer Function, HRTF, from a HRTF database, based on the head-tracking data and information representative of the position and/or direction of a sound source. The method also includes determining the audio filter based on the selected HRTF representation.
US10715943B2
An apparatus for generating one or more audio channels is provided. The apparatus includes a metadata decoder for receiving one or more compressed metadata signals. Each of the one or more compressed metadata signals includes a plurality of first metadata samples. The metadata decoder is configured to generate one or more reconstructed metadata signals and to generate each of the second metadata samples of each reconstructed metadata signal of the one or more reconstructed metadata signals depending on at least two of the first metadata samples of the reconstructed metadata signal. The apparatus includes an audio channel generator for generating the one or more audio channels depending on the one or more audio object signals and depending on the one or more reconstructed metadata signals. An apparatus for generating encoded audio information including one or more encoded audio signals and one or more compressed metadata signals is provided.
US10715936B2
There is provided a hearing device (10) comprising a BTLE 4.1 or higher wireless interface (20) and a control unit (38) for handling connectivity via the wireless interface to a plurality of client devices (40, 42, 44, 46, 48, 50, 54, 56) wherein the control unit is configured to direct the hearing device to transmit connectable advertising packets at least as long as less than N client devices are connected to the hearing device via a protected connection (30) and less than N+1 client devices are connected to the hearing device in total; wherein the control unit is further configured to prevent that the hearing device maintains sustained connections to more than N client devices at a time by disconnecting, if the hearing device is connected to N client devices via sustained connections and at least one of these connections is not a protected connection, one of the client devices connected via a not protected connection once a new sustained connection to a client device has been established in addition to the N connections, with N≥2.
US10715933B1
A binaural hearing aid system includes first and second hearing aids. A first signal processor of the first hearing aid is configured to generate a first monaural beamforming signal based on microphone signal(s) supplied by a first microphone arrangement of the first hearing aid, the first monaural beamforming signal exhibiting a first polar pattern with maximum sensitivity in a target direction. The first signal processor is also configured to: generate a bilateral beamforming signal based on the first monaural beamforming signal and a second monaural beamforming signal from the second hearing aid; generate a third monaural beamforming signal based on the microphone signal(s) and exhibiting a third polar pattern with maximum sensitivity at the ipsilateral side of the first hearing aid; delay the third monaural beamforming signal; and combine the first bilateral beamforming signal and the time-delayed third monaural beamforming signal to form a first hybrid beamforming signal.
US10715928B2
The present invention provides a capacitive microphone having a capability of acceleration noise cancelation. The microphone includes (1) a moveable functional membrane comprising a basic functional membrane with an area Ao; and (2) a moveable reference membrane comprising a basic reference membrane. The basic reference membrane has one or more holes through the membrane's thickness, and the moveable reference membrane would be identical to the moveable functional membrane if the basic reference membrane does not have said one or more holes. The total area of said one or more holes is Ah, and a hole density HD is defined as Ah/Ao (%), and HD is in the range of e.g. from 0.012% to 2.647%.
US10715919B2
The present disclosure provides an acoustic device, including a frame and a vibration system and a magnetic circuit system respectively fixed to the frame. The vibration system includes an FPC configured to support and fix the voice coil, where the FPC includes a first fixing arm and a second fixing arm arranged at an interval and an elastic arm configured to connect the first fixing arm and the second fixing arm; and the magnetic circuit system includes a magnetic yoke fixed to the frame, a magnet fixed to the magnetic yoke, and a magnetic frame flange that is bent and extends from a periphery of the magnetic yoke, and the magnetic frame flange is inserted in a gap between the voice coil and the elastic arm. Compared with the related art, the acoustic performance of the acoustic device of the present disclosure is optimal.
US10715918B2
An audio amplified combustion system is described that has a fuel injector a positioned proximate to a speaker so that a flame moves in concert with audio emitted from the speaker. A projection column and projection top can be positioned above the cone of the speaker to define a volume for the combustion. Various apparatuses, methods, and systems for keeping the speaker cool are also described. Coating on various parts of the system to increase or decrease emissivity or absorptivity of various parts can keep the speaker cool. In addition, a control unit can cause the speaker to “pant” or vibrate at a low or high frequency to induce convective and keep the speaker cool. These and other features of the audio amplified combustion system are described herein.
US10715912B2
A wireless communication device includes an equalizer configured to adjust a frequency characteristic of a user audio signal on the basis of a predetermined gain setting and to generate an adjusted signal, or an adjusted audio signal; an encoder configured to encode the adjusted signal with a preset scheme to generate an encoded signal; a decoder configured to decode the encoded signal to generate a decoded signal; a sound quality evaluator configured to carry out a PESQ evaluation of the decoded signal and to generate an evaluation result with the user audio signal serving as a reference signal for evaluation; and a selector configured to change the gain setting and to select a gain setting yielding a high evaluation result.
US10715909B1
One embodiment of the present application sets forth a computer-implemented method that includes receiving, from a first microphone, a first input acoustic signal, generating a first audio spectrum from at least the first input acoustic signal, where the first audio spectrum includes a set of time-frequency bins, for each time-frequency bin included in the set of time-frequency bins, computing a weighted local space-domain distance (LSDD) spectrum value based on a portion of the first audio spectrum that is included in the time-frequency bin, generating a combined spectrum value based on a set of the weighted LSDD spectrum values computed for the set of time-frequency bins, and determining a first estimated direction of the first input acoustic signal based on the combined spectrum value.
US10715904B2
Headphone ear tips are made with an outer surface that changes its coefficient of friction. The outer surface is coated with photochromic compound, hierarchical microstructures, fibers formed through electrostatic flocking, or a combination thereof.
US10715894B1
A portable audio input/output device may include an assembly enclosure that contains electrical and mechanical components of the device. A substantially cylindrical frame may encircle the assembly enclosure and may be surrounded by a tube of seamless material. A top end of the tube of seamless material may fold over a top end of the substantially cylindrical frame, and a bottom end of the tube of seamless material may fold over a bottom end of the substantially cylindrical frame. A cover assembly may couple to a top end of the assembly enclosure and secure the top end of the seamless fabric. A charging foot may be coupled to a bottom end of the assembly enclosure and secure the bottom end of the seamless fabric.
US10715893B2
A protective speaker cover having an exterior top portion; at least one exterior side wall extending from the exterior top portion; at least one pull tab extending from a portion of the protective speaker cover; an interior top wall formed substantially opposite at least a portion of the exterior top portion; an interior side wall formed substantially opposite at least a portion of the exterior side wall, wherein an at least partial interior cavity is defined by the interior top wall and the interior side wall; one or more side wall projections extending from at least a portion of the interior side wall; and optionally one or more top wall projections extend from at least a portion of the interior top wall.
US10715892B2
An electronic device is provided, including: a vibration plate; a frame structure supporting the vibration plate, the frame structure including an installation portion parallel to and opposite to the vibration plate and a border bent at an edge of the installation portion and extending along both sides of the installation portion. The vibration plate is supported on a side of the installation portion, and a preset gap is provided between the vibration plate and the border. The electronic device further includes a middle frame fixed between the installation portion and the vibration plate. The middle frame is fixedly connected to the vibration plate, an actuator is fixed to the middle frame and drives the middle frame so that the middle frame drives the vibration plate to vibrate and sound. The electronic device further includes a damper sandwiched between the middle frame and the installation portion.
US10715885B2
An adaptive algorithm based battery-powered long distance wireless temperature and humidity sensor module. The sensor module uses an adaptive algorithm to transmit data on an event basis and/or a reduced basis to extend battery life to more than 10 years. It also uses a low power wireless transmitter which has frequency of sub-1 GHz and an effective transfer distance of up to 250 meters, a low power temperature and humidity sensor, and a long lasting lithium battery which has shelf life of 20 years.
US10715884B2
A local network call handling device is configured to establish multiple concurrent call sessions between local network end devices and an external network. When a prioritized end device attempts to establish a call session, the call handling device may initially determine if a first call session identifier is available. If so, the call session can be established using that first identifier. If the first identifier is in use for a call session of another end device, the call handling device may either use a different call session identifier for the prioritized end device session or may drop a pre-existing call session to free an identifier for use in connection with the prioritized end device.
US10715880B2
A video distribution system minimizes bandwidth use between a headend and a remote video distribution center through an origin segmentation server and an edge segmentation server. The origin segmentation server is located at the headend and creates segments and playlists for every video stream originating at the headend. An edge segmentation server is located at the remote video distribution center and receives a request for a playlist of a content stream from CPE. The edge segmentation server joins a multicast group with the content stream and requests the playlist from the origin segmentation server. The edge segmentation server constructs a second playlist with a predetermined final number of segments from the playlist to return to the CPE, generates segments from the content stream received from the headend, identifies and obtains missing segments from the origin segmentation server, and updates the second playlist with the missing segments and segments generated by the edge segmentation server.
US10715879B2
Synchronizing ancillary data to content including audio includes obtaining a representation of the content's audio and ancillary data pegged to instants in the representation of the content's audio, and aligning the representation of the content's audio to the content's audio to synchronize the ancillary data pegged to the instants in the representation of the content's audio to the content.
US10715876B2
A transmission method includes: generating one or more transfer frames that each store one or more streams used for content transfer; and transmitting the one or more generated frames through broadcast, each of the one or more streams storing one or more second transfer units, each of the one or more second transfer units storing one or more first transfer units, and each of the one or more first transfer units storing one or more Internet Protocol (IP) packets. In at least one stream among the one or more streams, each of the first transfer units positioned at a head contains reference clock information indicating time used for reproduction of the content.
US10715875B2
A set-top box can provide a program for display to a video device that can be provided to the set-top box using a first signal in a first format, which can be a satellite or cable feed. The set-top box can receive a highlight notification from a content server for a highlight available to be provided for viewing during the program and, in response, can provide an alert associated with the highlight to the video device for display. The set-top box can receive an indication that the alert has been selected and, in response, can access the highlight and provide the highlight to the video device for display. The highlight can be streamed to the set-top box using a second signal in a second format, which can be a video streamed as web content in an Internet video format, and can be removed from display upon completion of the highlight.
US10715871B1
A content platform can receive information identifying a plurality of exit times, in an on-demand content element, associated with respective user-initiated exit events. The plurality of exit times can be based on a time duration of the on-demand content element. The content platform can generate an exit time distribution based on the plurality of exit times, and can identify a maximum exit time density in the exit time distribution and a maximum exit time density gradient in the exit time distribution. The content platform can determine, using a machine-learning regression model, an end screen time in the on-demand content element based on the maximum exit time density and the maximum exit time density gradient. The content platform can generate an instruction to display an end screen user interface at the end screen time during playback of the on-demand content element.
US10715864B2
A system that is an independent measurement system to gauge video consumption or viewing is disclosed. Methods for formulating a universal set of measurements or metrics that is operable across all video players, video-content types, ad (advertisement) networks, display devices, and browsers is also disclosed. This set of measurement or metrics advantageously is configured to operate consistently and equally well regardless of the particular video player, video-content type, network, display devices, and browsers that are used.
US10715863B2
A method for a frame certainty metric for automatic content recognition. The method includes determining a frame match between media device frames of a media device stream relative to broadcast frames of a broadcast media stream and determining whether to shift the frame match by determining the following: a first frame certainty metric based on a first media device fingerprint and a target broadcast fingerprint; a second frame certainty metric based on a second media device fingerprint sequentially adjacent the first media device fingerprint and the target broadcast fingerprint; a third frame certainty metric based on a third media device fingerprint sequentially adjacent the first media device fingerprint and the target broadcast fingerprint; and a greatest frame certainty metric. The method further includes identifying the media device fingerprint corresponding to the greatest frame certainty metric as a target media device fingerprint matching the target broadcast fingerprint.
US10715861B2
A method and apparatus for improving signal quality in a relatively fixed ATSC 3.0 device are described including accepting a channel selection, establishing communication with all ATSC 3.0 devices in a premises, polling each portable ATSC 3.0 device to obtain signal quality information, selecting one or more of the portable ATSC 3.0 devices to receive a signal, receiving IP packetized data related to a program on the selected channel from the one or more selected portable ATSC 3.0 devices to improve signal quality at the relatively fixed ATSC 3.0 device and combining the received IP packetized data received from the one or more selected portable ATSC 3.0 devices with a signal of the relatively fixed ATSC 3.0 device to form a combined signal for rendering a program on the selected channel.
US10715857B2
The present disclosure describes a reception apparatus that includes demodulation circuitry configured to obtain packets included in a plurality of PLPs (Physical Layer Pipes) of a broadcast stream, and processing circuitry configured to process the packets obtained by the demodulation circuitry. The demodulation circuitry and the processing circuitry are interconnected via a single interface. Each combination of an IP (Internet Protocol) address and a port number of an IP packet or a UDP (User Datagram Protocol) packet included in the plurality of PLPs is unique for each PLP in which the corresponding IP packet or the corresponding UDP packet is included. The processing circuitry is configured to identify a PLP in which one of the packets input via the single interface from the demodulation circuitry is included according to the combination of the IP address and the port number of the one of the packets.
US10715853B2
Techniques for projecting person-level viewership from household-level tuning events are described. Initially, panelist viewing data are accessed and a plurality of state values based on the panelist viewing data are determined. Then, tuning data representing tuning events associated with particular households are accessed. For at least one tuning event represented by the tuning data, household member data is accessed, a portion of the panelist viewing data whose panelist information matches at least a portion of the member data is determined, a total number of watched minutes of the program by an individual member and a number of continuous series of watched states of the program by the individual member is determined, and an output representative of a probability that the particular portion of the program was watched by one or more of the individual members is generated.
US10715852B2
To implement advertisement distribution suitable for a user by associating each device even when a user uses a plurality of devices, the information processing apparatus includes: an acquiring unit configured to acquire first identification information at least including an Internet Protocol (IP) address and information regarding a television viewing log, and second identification information at least including an IP address and an advertisement ID (Identifier); and a control unit configured to perform control to identify a combination of the viewing log and the advertisement ID corresponding to the same IP address on the basis of the first identification information and the second identification information.
US10715848B2
Systems and methods for identifying, assembling, and transmitting content are described in the illustrative context of electronic program guides and program channels. Data is received over a network from a first user terminal that enables identification of the first user. Program information for a digital program is accessed. A determination is made as to how many interstitials are to be presented during a playback of the digital program. A prediction model is selected and executed to generate predictions of user responses to one or more placements of program interstitials. The user response predictions are used to determine positioning of interstitials with respect to the program. The interstitials are enabled to be displayed on the first user terminal in accordance with the determined positioning.
US10715842B2
A method and a system for distributing Internet cartoon content, and a recording medium are disclosed. The content distribution method comprises the steps of: registering a high-definition original image for at least one unit scene of all the unit scenes of the cartoon content; and capturing the high-definition original image of the unit scene selected by a user from the cartoon content.
US10715841B2
A media system replaces content in a first sequence of media content. The media system presents the first sequence of media content to an end-user and generates a fingerprint of the sequence of media content. The fingerprint is for comparison with a plurality of reference fingerprints so as to identify the first sequence of media content and determine a reference position within the first sequence of media content. The media system sends a request for a replacement sequence of content to a content replacement system, and receives replacement media content selected based on the identified first sequence of media content. The media system presents the replacement media content to the end-user instead of the first sequence of media content. Presenting the replacement media content begins at a position in the first sequence of media content that is determined based on the reference position.
US10715840B2
A media client ascertains a plurality of matching points between (i) query fingerprints representing a media stream being received by the client and (ii) reference fingerprints, each identified matching point defining a respective match between a query fingerprint that is timestamped with client time defined according to a clock of the client and a reference fingerprint that is timestamped with true time defined according to a timeline within a known media stream. Further, the client performs linear regression based on the timestamps of the ascertained plurality of matching points, to establish a mapping between true time and client time. The client then uses the established mapping as a basis to determine a client-time point at which the client should perform an action with respect to media stream being received by the client. And the client performs the action at the determined client-time point.
US10715834B2
Film grain simulation within a receiver (11) occurs by first obtaining at least one block of pre-computed transformed coefficients. The block of pre-computed transformed coefficients undergoes filtering responsive to a frequency range that characterizes a desired pattern of the film grain. In practice, the frequency range lies within a set of cut frequencies fHL, fVL, fHH and fVH of a filter in two dimensions that characterizes a desired film grain pattern. Thereafter, the filtered set of coefficients undergoes an inverse transform to yield the film grain pattern.
US10715830B2
A method for luma-based chroma intra-prediction in a video encoder or a video decoder is provided that includes filtering reconstructed neighboring samples of a reconstructed down sampled luma block, computing parameters α and β of a linear model using the filtered, reconstructed neighboring samples of the reconstructed down sampled luma block and reconstructed neighboring samples of a corresponding chroma block, wherein the linear model is PredC[x, y]=α·RecL′[x, y]+β, wherein x and y are sample coordinates, PredC is predicted chroma samples, and RecL′ is samples of the reconstructed down sampled luma block, and computing samples of a predicted chroma block from corresponding samples of the reconstructed down sampled luma block using the linear model and the parameters.
US10715827B2
A multi-hypotheses motion prediction mode for video coding conveys prediction for motion compensation based on a selection of multiple predictions for motion compensation (hypotheses), which are respectively obtained using motion predictors or MVP selected from a list of candidate motion predictors. When coding a block of pixels, a video coder implementing multi-hypotheses motion prediction selects a first motion predictor and a second motion predictor from a list of candidate motion predictors for the block of pixels. The video coder encodes or decodes a motion prediction code word that identifies the first and second motion predictors. The video coder computes a combined prediction for motion compensation based on first and second sets of pixels that are obtained using the selected first and second motion predictors, respectively. The video coder encodes or decodes the block of pixels by using the combined prediction for motion compensation.
US10715825B2
The present invention relates to the encoding and decoding of image information. According to the present invention, the decoding method comprises the steps of: entropy-decoding received information; performing inter prediction on a current block based on the entropy-decoded information; and restoring images by using the prediction results, wherein, in the inter prediction step, a skip mode or merge mode is applied to the current block and movement information of the current block may be determined based on the movement information of a neighboring block of the current block.
US10715819B2
There is provided an image encoding apparatus that divides an image in a video into blocks made up of a plurality of pixels, and encodes the blocks, the image encoding apparatus comprising: A first motion vector computation unit configured to compute a first motion vector of a block to be encoded in an image to be encoded; A motion vector modification unit configured to modify the first motion vector computed in the first motion vector computation unit to generate a second motion vector when a first condition is satisfied; Wherein the first condition is at least one of the following conditions: The absolute value of the first motion vector is greater than a first threshold The absolute value of the difference between the first motion vector and the candidate motion vector for modifying the first motion vector is greater than a second threshold.
US10715813B2
A block prediction search method includes at least following steps: utilizing a data buffer to store bit-depth reduced sample values of a plurality of samples in a first pixel line; detecting occurrence of an edge in the first pixel line according to restored sample values derived from stored sample values in the data buffer; and determining a block prediction vector for a pixel group in a second pixel line different from the first pixel line, wherein the block prediction vector is determined based at least partly on a last edge count value indicative of a number of samples in the first pixel line that have gone by since the edge occurs.
US10715808B2
Circuity for executing operations is provided. The operations divide a picture into tiles. The tiles are coded to generate pieces of coded data, each of which corresponds to a different one of the tiles. A bitstream is generated to include the pieces of coded data. In this regard, the coding of the tiles includes generating a first code string by: coding a first tile with reference to coding information of an already-coded tile neighboring the first tile when a boundary between the first and already-coded tiles is a first boundary; and coding the first tile without reference to the coding information of the already-coded tile when the boundary between the first and already-coded tiles is a second boundary. The bitstream is generated to include tile boundary independence information, which indicates whether each boundary between the tiles is one of the first and second boundaries.
US10715807B2
A method for pyramid vector quantization indexing of audio/video signals comprises obtaining of an integer input vector representing the audio/video signal samples. A leading sign is extracted from the integer input vector. The leading sign is a sign of a terminal non-zero coefficient in the integer input vector. The terminal non-zero coefficient is one of a first non-zero coefficient and a last non-zero coefficient in the integer input vector. The integer input vector is indexed with a pyramid vector quantization enumeration scheme into an output index representing the audio/video signal samples. The pyramid vector quantization enumeration scheme is designed for neglecting the sign of the terminal non-zero coefficient. The output index and the leading sign are outputted. A corresponding method for de-indexing, an encoder, a decoder, and computer programs therefore are also disclosed.
US10715800B2
The present disclosure relates to an image processing apparatus and an image processing method each of which causes an encoding efficiency of information indicating a prediction mode of a color component in the case where a prediction mode of a luminance component of an image is an intra BC prediction mode to be enhanced. In the case where a prediction mode of a luminance component of an image is an intra BC prediction mode, an encoding section encodes prediction mode information indicating a prediction mode of a color component of the image by using, as a context, that the prediction mode of the luminance component of the image is the intra BC prediction mode. The present disclosure, for example, can be applied to an image encoding apparatus or the like.
US10715797B2
The present invention relates to a device for testing an angle of view of a camera. The present invention may comprise: a first light source which is arranged to face an image sensor, and has a first width and a second width longer than the first width; and a second light source and a third light source which are disposed on both sides of the image sensor in the direction of the first width, respectively. The present invention can inhibit an interference of the light source or a bracket supporting the light source by reducing the number of light sources. In addition, since it is possible to measure the angle of view of a camera by reducing the light sources, the present invention can reduce the manufacturing costs of a device for testing an angle of view of a camera.
US10715783B1
Techniques are disclosed for conversion of panoramas between different panoramic projections, including stereoscopic panoramic projections. The pixels of one panoramic image are mapped to the pixels of another panoramic image using ray tracing so that the images can be combined without introducing visual distortions caused by mismatches in the optics of each image. The conversion is performed using a process for mapping one or more pixels of an output image to pixels of an input image by tracing a ray between the UV coordinates corresponding to each pixel in the images. The conversion process accounts for arbitrary projections and for arbitrary stereo camera rig configurations by using metadata that describe the projection and positioning of each image being combined. The origin of each ray is offset to account for the interpupillary distance between left and right images and to account for any rotation of the scene.
US10715779B2
Joint coding of depth map video and texture video is provided, where a motion vector for a texture video is predicted from a respective motion vector of a depth map video or vice versa. For scalable video coding, depth map video is coded as a base layer and texture video is coded as an enhancement layer(s). Inter-layer motion prediction predicts motion in texture video from motion in depth map video. With more than one view in a bitstream (for multiview coding), depth map videos are considered monochromatic camera views and are predicted from each other. If joint multiview video model coding tools are allowed, inter-view motion skip is used to predict motion vectors of texture images from depth map images. Furthermore, scalable multiview coding is utilized, where inter-view prediction is applied between views in the same dependency layer, and inter-layer (motion) prediction is applied between layers in the same view.
US10715776B2
Systems and methods for enabling playback control functions of a media player are disclosed. For example, a user of a client device receiving streaming playback of a video stream may perform rewind and fast forward control functions. The client device may implement these playback control functions by retrieving an enhanced playback segment. Using the enhanced playback segment, the media player may display selected frames at a predetermined interval while maintaining a visual cadence that is pleasing to a viewer. In the described embodiments, a client device may render a video stream, receive a command to control a fast forward or rewind playback mode for the video stream, and retrieve, from a distribution server or associated edge cache, one or more enhanced playback segments adapted to implement the user command.
US10715768B2
The present technique relates to a solid-state imaging device and an imaging apparatus that enable provision of a solid-state imaging device having superior color separation and high sensitivity.The solid-state imaging device includes a semiconductor layer in which a surface side becomes a circuit formation surface, photoelectric conversion units PD1 and PD2 of two layers or more that are stacked and formed in the semiconductor layer, and a longitudinal transistor Tr1 in which a gate electrode is formed to be embedded in the semiconductor layer from a surface of the semiconductor layer. The photoelectric conversion unit PD1 of one layer in the photoelectric conversion units of the two layers or more is formed over a portion of the gate electrode of the longitudinal transistor Tr1 embedded in the semiconductor substrate and is connected to a channel formed by the longitudinal transistor Tr1.
US10715766B2
Communication is performed between a wearable camera and a vehicle-mounted recorder, the wearable camera captures an image of a capturing area, and the vehicle-mounted camera captures an image of the capturing area. The vehicle-mounted recorder records first image data of the capturing area captured by the vehicle-mounted camera according to a recording start request from the wearable camera, and transmits a recording start instruction to the wearable camera simultaneously with the recording. The wearable camera starts the recording of second image data of the capturing area captured by the wearable camera after the recording start instruction is received.
US10715765B2
Systems and methods are provided for dynamically selecting one or more networked cameras for providing real-time camera feeds to a video conference. The systems and methods may include identifying one or more networked cameras associated with an area of a conference participant. A server may analyze real-time camera feeds from the identified cameras, and select a video feed having a view of the participant. The server may provide the selected feed to the video conference via a conference bridge, and continue monitoring camera feeds of cameras associated with the participant's area for another camera feed having a better view of the participant. Networked cameras may include fixed and mobile cameras owned and operated by individuals that are not associated with the participant, but who have registered their cameras with the server for use in video conferences.
US10715764B2
A method including: establishing connections, at a server, to at least two client devices using a call control protocol, the call control protocol negotiating video formats and connection information for sending and receiving media streams; receiving information from a first client at the server, the information comprising meta-data describing different media streams the first client is configured to transmit; transmitting the information received from the first client to the at least one other client; receiving a subscribe message from the at least one other client at the server, subscribing to at least one available media stream from the first client; in response to receiving at least one subscribe message from the at least one other client, transmitting, by the server, a message instructing the first client to start transmitting media streams subscribed to by the at least one other client; receiving, by the server, the media streams subscribed to by the at least one other client from the first client; and transmitting, by the server, the media streams subscribed to by the at least one other client to the at least one other client.
US10715761B2
An electronic device is provided. The electronic device includes a memory configured to store a high-speed video captured with a first number of frames per second and a processor configured to be electrically connected with the memory. The processor is configured to detect an amount of image variation based on at least one of the first number of frames and generate a slow motion interval, a playback time of which is extended, by dividing or sampling the first number of frames into a second number of frames which are less than the first number of frames with respect to a video interval having an amount of image variation which meets a specified condition.
US10715757B2
An A/D converter 1 includes a front stage A/D conversion unit (3) including a first A/D conversion unit (6) that receives an analog signal from a CMOS image sensor (100) and generates a first digital value (D1) and a first residual analog signal (VOPF) through a folding integration A/D conversion operation, and a second A/D conversion unit (7) that receives a first residual analog signal (VOPF) from the first A/D conversion unit (6) and generates a second digital value (D2) and a second residual analog signal (VOPC) through a cyclic A/D conversion operation, and a rear stage A/D conversion unit (4) that receives the second residual analog signal (VOPC) from the front stage A/D conversion unit (3) and generates a third digital value (D3) through an acyclic A/D conversion operation.
US10715753B2
The present disclosure relates to a solid-state image pickup element and an electronic apparatus each of which enables a phase difference in an arbitrary direction to be properly detected.A solid-state image pickup element as a first aspect of the present disclosure includes a pixel array, and a plurality of AD conversion portions. The pixel array is partitioned into a plurality of pixel blocks each including a normal pixel and a pixel for phase difference detection. The plurality of AD conversion portions correspond to the respective plurality of pixel blocks, and AD-convert pixel signals based on a plurality of pixels included in the corresponding pixel block. In this case, the pixel for phase difference detection included in one pixel block of the plurality of pixel blocks, and the pixel for phase difference detection included in the other pixel block of the plurality of pixel blocks are arranged in positions corresponding to each other. The present disclosure, for example, can be applied to a CMOS image sensor.
US10715749B2
A glass substrate having an average thickness of the glass substrate from 0.01 to 1.2 mm and having a temperature dependence of refractive index at a wave-length of 850 nm in a temperature range from −40° C. to 60° C. of not more than 10×10−6/K.
US10715747B2
A sensor support system includes a sensor and a terminal device configured to display form information of the sensor. The sensor includes a two-dimensional code (storage tag) which can be read from the terminal device and which is configured to store the form information of the sensor. The terminal device is configured to calculate position information of the sensor from an image of the sensor, configured to generate a virtual image of the form information of the sensor, and configured to display on a display an image in which the virtual image is superimposed on an image of the sensor taken by a camera.
US10715743B2
Disclosed embodiments provide techniques for implementation of a photographic effect. An image is acquired while in a zoom configuration. The image is divided into pixel groups. A distance is determined for each group of pixels. The groups of pixels are based on the detected distance of the group of pixels from the camera. The detected distance can be based on the autofocus module within the camera. The detected distance can be a relative distance or an absolute distance. An expansion factor is determined for each group of pixels based on the corresponding determined distance. Expanded pixel groups are created for each pixel group based on the expansion factor. The expanded pixel groups are composited together to create the processed image.
US10715742B1
A base in a tubular configuration has an upper end and a lower end. The base is positioned on a recipient surface to allow monitoring of a site. Each of a plurality of modules is in a tubular configuration to facilitate removable coupling together the plurality of modules. A plurality of digital components are located within the modules. A digital device adapted to control the system is located remote from the tower. A processor is operatively coupled between the digital device and the digital components for communicating there between.
US10715737B2
An imaging device includes a MOS type imaging element comprising a plurality of pixels; a mechanical shutter disposed in front of the imaging element; a driving unit that drives the imaging element; an imaging control unit that performs still image exposure control, first readout control and second readout control as defined herein; a display control unit that generates live view image data as defined herein; a first storage unit as defined herein; and an image processing unit as defined herein.
US10715734B2
A bird's-eye view video generation device includes a video data acquisition unit configured to acquire video data from multiple cameras configured to capture videos of surroundings of a vehicle, a bird's-eye view video generator configured to generate a bird's-eye view video from a virtual viewpoint above the vehicle by performing viewpoint conversion processing on the acquired video data to synthesize the viewpoint-converted videos, an obstacle information acquisition unit configured to acquire information from at least one detector configured to detect at least one obstacle around the vehicle and to specify a position thereof, and a display controller configured to display the bird's-eye view video in a display, wherein, when the position of the obstacle overlaps a synthesis boundary between the videos, the bird's-eye view video generator is further configured to generate a bird's-eye view video obtained by changing the position of the virtual viewpoint of the bird's-eye view video.
US10715733B2
An imaging apparatus includes an imaging unit, a storage unit, an image processing unit, an image signal output unit, and a timing control unit. The timing control unit generates a first vertical synchronizing signal for driving the imaging unit and supplies the first vertical synchronizing signal to the imaging unit, and generates a second vertical synchronizing signal which is obtained by delaying the first vertical synchronizing signal at least by a predetermined time which is variable according to contents of the image processing performed and supplies the second vertical synchronizing signal to the display unit. The timing control unit controls the image signal output unit so that the image signal is read from the storage unit by being delayed by a phase difference between the first vertical synchronizing signal and the second vertical synchronizing signal, after outputting of the imaging signal from the imaging unit.
US10715720B2
An imaging system comprises an image capturing device, a viewer, a control element, and a processor. The control element controls or adjusts an image characteristic of one of the image capturing device and the viewer. The processor is programmed to determine a depth value relative to the image capturing device, determine a desirable adjustment to the control element by using the determined depth value, and control adjustment of the control element to assist manual adjustment of the control element to the desirable adjustment. The processor may also be programmed to determine whether the adjustment of the control element is to be automatically or manually adjusted and control adjustment of the control element automatically to the desirable adjustment if the control element is to be automatically adjusted.
US10715716B2
An electronic device is provided. The electronic device includes at least one processor configured to obtain a plurality of first images for one or more objects as per a first frame rate using the camera based on a signal related to image recording and control the camera to perform focusing of a lens included in the camera on at least one of the one or more objects while obtaining the plurality of first images, provide a first portion of the plurality of first images as a preview through the display, control the camera to lock the focusing to prevent a change of the focusing on the at least one object, and identify a designated event related to obtaining the plurality of first images.
US10715705B2
Systems, methods, and non-transitory computer readable media may be configured to characterize optical characteristics of optical elements. An optical element mount may be configured to carry an optical element. A calibration display may be configured to display a calibration object. The calibration object may include a known visual pattern. Multiple images of the calibration object may be obtained. The multiple images may be acquired using the optical element carried by the optical element mount. The multiple images may include different perspectives of the calibration object. Optical characteristics of the optical element may be characterized based on the known visual pattern and the different perspectives of the calibration object.
US10715701B2
In a data generating apparatus, a processor acquires offset information indicating a deviation in a colorant usage used by a specific print execution unit from a standard amount of usage. The standard amount of usage is a standard quantity concerning colorant used by print execution units. The processor controls the specific print execution unit to print a first patch image and generates first control data using first read data based on the first patch image. The processor generates corrected first control data using the offset information. The processor controls the specific print execution unit to print a second patch image using the corrected first control data and generates second control data using second read data based on the second patch image. The first and second control data is for common use in the printing processes performed on the print execution units.
US10715699B2
Provided is an information processing apparatus including: a marking extraction circuit that extracts, from a script image including a plurality of markings respectively superimposed on a plurality of character strings, the plurality of markings; a same-character-string identification circuit that identifies the same character string out of the plurality of character strings on which the markings are respectively superimposed; and a symbol determination circuit that allocates the same symbol to the same character string and allocates different symbols to different character strings.
US10715692B2
The present disclosure discloses methods and systems for localizing a user interface of a device such as a multi-function device, the multi-function device presents a user interface in a pre-defined language. The method includes receiving a document, the document includes text information in a local language of a user. Then, the document is analyzed to identify the local language of the user. Upon identification, the pre-defined language of the user interface is changed to the identified local language of the user. The local language enables the user to operate the multi-function and/or perform one or more functions using the local language.
US10715687B2
An information processing system includes one or more information processing apparatuses each of which performs a plurality of programs to implement functions. The system includes a memory to store application information associating flow information and application configuration information for each of one or more applications that performs, when executed, a series of processes using electronic data, and circuitry to receive a request including the application configuration information, generate one or more test cases for testing the series of processes based on parameter information defined in the application configuration information in the request, acquires flow information identified with flow identification defined in the application configuration information in the request and executes, according to an order of executing one or more programs defined in the flow information, the one or more programs each of which is identified with program identification defined in the flow information acquired, to test the series of processes.
US10715677B2
Methods, systems, and devices for security and/or automation systems are described. In some embodiments, the methods may include detecting an input at a doorbell, and communicating the detected input to a doorbell signal generating component associated with the doorbell based at least in part on the detecting. The methods may further include generating a first alert at the doorbell signal generating component associated with the doorbell. In some embodiments, the methods may further include communicating the detected input to one or more alert components associated with the security and/or automation system based at least in part on the detecting, and generating a second alert at the one or more alert components associated with the security and/or automation system.
US10715654B1
An apparatus includes a memory of a mobile compute device, and a hardware processor of the mobile compute device. The hardware processor is configured to implement an operating system and an authentication module. The operating system is configured to receive a first authentication identifier, and is also configured to authorize use of the mobile compute device based on the first authentication identifier meeting a first criterion. The authentication module is configured to, in response to the operating system authorizing use of the mobile compute device, disable at least one function of the mobile compute device and request a second authentication identifier. The authentication module is also configured to receive the second authentication identifier. The authentication module is also configured to enable the at least one function in response to the second authentication identifier meeting a second criterion.
US10715653B2
The present invention provides a system for providing geolocation services in a mobile-based crowdsourcing platform. The system includes a plurality of remote mobile devices configured to communicate and exchange data with a geolocation service based on the crowdsourcing, or polling, of users of such mobile devices to determine location and movement of the users within a specific environment. For example, in an outdoor environment such as a parking lot, the system can track the location of a user's vehicle within the lot and provide the user with an exact position of their vehicle upon the user returning to the parking lot. In the instance of an indoor environment, such as an airport, the system provides a messaging/location alert service for persons within the airport, where any given person's location within the airport can be determined and correlated with an impending departure of a flight for which they are associated.
US10715650B2
Various implementations include dual-transceiver wireless audio systems configured to forward call audio from a first wireless transceiver to a second wireless transceiver over a simple voice forward profile (SVFP) connection. In other implementations, a computer-implemented method is disclosed for controlling a dual-transceiver wireless calling system. In still other implementations, a wireless headphone system is configured to forward call audio from a first headphone to a second headphone over the SVFP connection.
US10715642B2
An interface device disclosed herein transmits a data signal in sync with a clock signal, and includes: a reception unit performing demodulation processing and error correction processing on an input carrier wave and outputting signals resulting from these types of processing; a transport stream (TS) packet acquisition unit acquiring a TS packet included in the outputs of the reception unit; a variable-length packet acquisition unit acquiring a variable-length packet included in the outputs of the reception unit; and a first selector selecting either the TS packet or the variable-length packet and outputting the selected packet as the data signal.
US10715634B2
A network-configuring system creates stable virtual interfaces for groups of neighboring network nodes. During operation, the system can obtain network-neighborhood information from one or more network neighbors. This network-neighborhood information includes duplex-neighborhood information that indicates at least a set of neighboring devices to the network neighbor, and a set of remote network nodes which are accessible via a respective neighbor. The system can use the network-neighborhood information to determine one or more groups of network neighbors with common network characteristics, such that a respective group includes one or more mutually-connected network peers. The system can then define a virtual interface for a respective group of stable network neighbors, such that the virtual interface's member nodes include the local network node and the respective group's mutually-connected network peers.
US10715631B2
A system comprises a processor configured to subscribe to a broadcast of vehicle-related state changes. The processor is also configured to detect at least one vehicle-related state change in the broadcast that triggers an application launch and launch an application corresponding to the detected vehicle related state change.
US10715620B2
Systems and methods of network telemetry caching and distribution are provided. The system can receive network telemetry data and store it as a plurality of data nodes. The system can maintain a node pointer map and a node pointer queue. If the system receives an update to a data node having a corresponding node pointer not already present in the node pointer map, the system can add the node pointer to the node pointer queue and to the node pointer map with a count of zero. If the node pointer is already present in the node pointer map, the system can increment the node count for the node pointer in the node pointer map and not add the node pointer to the node pointer queue. The system can transmit data values and node counts to the client device for each node pointer in the node pointer queue.
US10715617B2
There is provided a network device for processing data packets transmitted between nodes of a network, the network device to intercept data packets of a first traffic class transmitted by a first network node and addressed to a second network node, convert the intercepted data packets into data packets of a second traffic class, and transmit the converted data packets to the second network node.
US10715616B2
An example peripheral device implementation system and associated methods are described. The example peripheral device implementation system includes a central database, a peripheral service including a peripheral service interface, a communication platform, non-transitory computer-readable medium, and a processing device. The processing device can be configured to establish communication between a cloud environment and the central database, the peripheral service, and a client device. The processing device can be configured to establish communication between a peripheral device and the cloud environment, and automatically perform a self-registration of the peripheral device to the cloud environment. Using the processing device, the client device can be notified of communication with the peripheral device, and a first request can be electronically transmitted from the client device to the cloud environment, from the cloud environment to the peripheral service, and from the peripheral service to the peripheral device to perform a function with the peripheral device.
US10715602B2
Provided is an adaptive IoT service system employing a removable hardware module. The system includes a peripheral device control module, a management server, an application program configuration manager, and a user terminal. The peripheral device control module is configured such that a control board thereof for controlling a corresponding one of IoT devices is mountable to and removable from a mainboard thereof. The management server relays real-time data transmitted from IoT devices, cumulative data, and type information to the user terminal, and relays and manages the data and information. The application configuration manager automatically constructs a user interface of the user terminal on the basis of the data managed by the management server. The system constructs a user interface in real time and automatically associates the IoT device with the application program in the user terminal.
US10715600B2
A hub is connected to first and second networks where first-type and second-type frames are transmitted following first and second communication protocols. The hub sequentially receives each of the first-type and second-type frames, and stores data in first and second reception buffers. If the destination of data stored in the first and second reception buffers is the first network, the hub stores the data in a first transmission buffer. If the destination is the second network, the hub stores the data in a second transmission buffer. If the first transmission buffer is a priority transmission buffer, the hub transmits first yet-to-be-transmitted data in the first transmission buffer with priority. If the second transmission buffer is the priority transmission buffer, the hub transmits second yet-to-be-transmitted data in the second transmission buffer with priority.
US10715598B1
Methods and systems for processing machine accelerated and augmented customer data using a Web-Scale Data Fabric (WSDF). According to embodiments, the data may be received as data transfer objects from a set of business operations client applications. The data transfer objects may be analyzed using complex event processing (CEP) and, based on the analyzing, rules specific to the business operations client application may be applied. The methods and systems may semantically classify text specific to the business operations client application. A federated database (FD) may archive the receive data transfer objects as well as analysis data specific to the business operations client application.
US10715597B2
Network-agnostic SDN-based cloud gateways are adapted for connecting a customer's SD cloud gateway to multiple cloud service providers (CSPs). A dynamic, on-demand, software defined, policy based cloud connectivity gateway is created for all kinds of networks and end points that can be used to connect to multiple CSPs at the same time from a single user interface. Network capacity on both the customer gateway and CSP connection points are adjusted through a user interface based on predefined policies such as automatic increasing of network connections based on actual cloud usage, limiting network capacity on a certain link based on time, application, and other conditions, and distributing traffic and changing the routing based on predetermined policies such as time of day, utilization, and performance.
US10715590B2
A non-transitory computer-readable storage medium storing a program that causes a computer to execute a process including acquiring, for each of a plurality of applications executed on a plurality of virtual machines, an amount of traffic of packets transmitted to any of a plurality of CPUs, identifying, for each of the plurality of applications, a CPU to which packets are transmitted, calculating, for each of the plurality of CPUs, a total amount of traffic of packets that are received by the CPU, identifying, among the plurality of CPUs, a specific CPU of which the calculated total amount exceeds a predetermined threshold, identifying, among applications those transmit packets to the specific CPU, a specific application, and identifying, among the plurality of virtual machines, a specific virtual machine, a CPU to which packets are transmitted from the specific application being changed by moving the specific application to the specific virtual machine.
US10715588B2
Multiple hit load balancing provides a quasi-persistent request distribution for encrypted requests passing over secure connections as well as for multiple requests passing over the same connection. The multiple hit load balancing involves tracking object demand at each server of a set of servers. The multiple hit load balancing further involves dynamically scaling the servers that cache and directly serve frequently requested objects based on the demand that is tracked by each of the servers. For infrequently requested objects, the servers perform a peer retrieval of the objects so to limit the number of the same object being redundantly cached by multiple servers of the set of servers.
US10715583B2
A VPN is established between a client and a remote server. Data is partitioned into a plurality of packets. The packets are encrypted and scheduled for transmission over a cellular and a Wi-Fi connection. Scheduling of the packets is dynamically adjusted. Addresses of the encrypted packets are translated to match network addresses of respective physical interfaces. Packets are transmitted from the client to the server based on the scheduling. A packet that is transmitted on one of the connections and is subsequently lost is subsequently transmitted on the other connection.
US10715579B2
Approaches to both pulling and pushing digital media content, such as movies, electronic books, music, games and the like, are addressed. Hybrid systems are also addressed. A mechanism for selecting particular digital media content by a user, such as a particular movie, for example, is utilized in pull approaches. A mechanism for identifying users who have opted in is employed in push approaches. Digital media content is provided by a media server to one or more high speed wireless radios which transmit that content to users' mobile devices.
US10715569B2
A delivery control device, which is installed in repeater equipment interposed between a content delivery server device and a client device so as to repeat delivered contents, controls delivery speed for contents by adopting pacing delivery depending on delayed conditions of networks and the operating condition of the client device according to the ABR (Adaptive Bit Rate) delivery method. The delivery control device includes a delivery speed calculation part configured to calculate real delivery speed for sequentially delivering the divided files, which are produced by dividing file data representing contents to be delivered to a client device, in an order of reproducing contents, and a delivery speed determination part configured to determine delivery speed for the divided files based on the real delivery speed calculated by the delivery speed calculation part, the presumed delivery speed determined in advance, and predetermined thresholds relating to intervals of receiving the divided files.
US10715567B2
Methods and apparatus are provided for providing state information of a digital apparatus. State information for a user of the digital apparatus is determined based on the user's intention to perform communication. The state information is transmitted to a server. A display request for a contact list is received. A screen having a plurality of user items is displayed. Each of the plurality of user items corresponds to a respective one of a plurality of users in the contact list. At least one of the plurality of user items includes identification information of a user corresponding to the at least one of the plurality of user items, state information of the corresponding user that is received from the server, and at least one category indicator representing at least one recommended communication service category determined based on the state information of the corresponding user.
US10715566B1
News feed stories are ranked so that new stories appear above previously viewed stories for users of a social networking system. Top news stories are selected by the social networking system based on a ranking algorithm that incorporates an analysis of affinities for interests, users, and entities in the social networking system based on user interactions. Other new stories are provided after the top new stories in a chronological order. For each user of the social networking system, a view state is recorded that includes the order of news feed stories provided to users. Based on the view state and received user input, the social networking system may determine whether to provide new news feed stories to a viewing user.
US10715565B2
A system is described herein that facilitates the monitoring of inmate communications. The system provides a remotely-accessible means for a reviewer to monitor a call between an inmate and another person. The system includes a monitoring server and a monitoring station. The monitoring server is configured to receive a call and call information from a communication center and process the call for monitoring, schedule a review of the call; and store the call, the call information, and scheduling data. The monitoring station is configured to receive the call and the call information from the monitoring server based on the scheduling data, and to display the identifying information and facilitate the review of the call.
US10715564B2
Dynamic client registration for an Identity Cloud Service (IDCS) is provided. A service instance client, associated with a service instance, is created in a first tenancy. A template client is created, based on a security blueprint, in a second tenancy. A registration client is created in the first tenancy. A request for a registration access token is received from an installed client application over a network; the request includes an ID of the template client. A user of the installed client application is authenticated using the template client. The registration access token is sent to the installed client application over the network. A request for a client assertion token is received from the installed client application over the network; the request includes the registration access token. The registration access token is authenticated using the template client. The client assertion token is sent to the installed client application over the network.
US10715563B1
Various methods, apparatuses, and media for implementing a session sharing shared worker module are provided. A processor executes a first web application and a second web application within a web browser. The first web application is associated with a first tab and the second web application is associated with a second tab having different web content than the first tab. The processor determines whether a shared worker is available within the web browser. A session sharing module is configured to: register each of the first tab and the second tab with the shared worker based on determining that the shared worker is available within the web browser; receive a first request from the first tab to connect to a server and a second request from the second tab to connect to the server; combine the first request and the second request into one packaged request; and send the one packaged request to the server via one connection point.
US10715559B2
A user equipment can have simultaneous peer to peer circuit switched and Internet protocol multimedia subsystem communications that allow content presentation to the user. The communicating user equipment can indicate their packet switched Internet protocol multimedia subsystem combinational service capabilities to each other, and further, monitor the capability of the associated radio access network. Thereafter, when a capability exchange is undertaken, session initiation protocol messages can be exchanged between the communicating user equipments to determine and initialize the appropriate conversational communications medium.
US10715554B2
Existing policies enforced at or above an operating system (OS) layer of a device are obtained. Translation rules are stored that include data structure descriptions of conditions, corresponding actions performed when the conditions are satisfied, and attributes specified in the existing policies, and attributes of one or more layers below the OS layer that are relevant to policy enforcement in the one or more layers below the OS layer. The existing policies are parsed using the data structure descriptions to identify the conditions, corresponding actions, and attributes specified in the existing policies. New policies are generated that are consistent with the existing policies. The new policies include the identified attributes specified in the existing policies and the attributes relevant to policy enforcement in the one or more layers below the OS layer. The new policies are enforced in the one or more layers below the OS layer.
US10715552B2
The disclosed embodiments include a method performed by a computer system. The method includes receiving first user input defining a filter of an anomaly action rule, the filter defining at least one of an attribute of an anomaly or an attribute of a computer network entity. The method also includes receiving second user input defining an action of the anomaly action rule. The method further includes generating the anomaly action rule based on the first user input and the second user input, wherein the anomaly action rule causes performance of the action upon detecting an anomaly on the computer network that satisfies the anomaly action rule.
US10715546B2
Embodiments of this application disclose a website attack detection and protection method and system performed by a computing device, applied to the field of information processing technologies. In the method in the embodiments, the computing device calculates a parameter value of an information aggregation degree parameter corresponding to each field included in a header of a request for accessing a website, and then determines, according to the parameter value or a variation degree of the parameter value of the information aggregation degree parameter of the field, whether the website suffers a Challenge Collapsar attack.
US10715545B2
Malicious activity data is obtained, that is indicative of attempted attacks on a computing system. Clusters of targets are identified and it is determined whether the malicious activity preferentially targets one cluster of targets over other. Also, low prevalence attacks are identified and it is determined whether a low prevalence attack has a high concentration in one or more of the target clusters. If the malicious activity either preferentially targets a cluster, or a low prevalence attack has a high concentration in a cluster, then the attack is identified as a targeted attack, so that remediation steps can be taken.
US10715544B2
A method comprising partitioning a space of user requests into subsets, and determining a risk score for a user request based on the evolution of the number of user requests in the subset of user requests to which this user request belongs.
US10715534B2
Examples relate to collaborative security lists. The examples disclosed herein enable obtaining a first candidate entry suggested by a first user of a community to be included in a collaborative security list. The collaborative security list may comprise a list of entries known to be secure or a list of entries known to be insecure. The examples disclosed herein further enable providing a candidate security list comprising at least the first candidate entry to the community and obtaining, from a second user of the community, a first score indicating how confident the second user is that the first candidate entry is secure. The examples disclosed herein further enable determining whether to include the first candidate entry in the collaborative security list based on the first score.
US10715522B2
An online system authenticates a user through a voiceprint biometric verification process. When a user needs to be authenticated, the online system generates and provides a random phrase to the user. The online system receives an audio recording of the randomly generated phrase and retrieves a previously trained voiceprint model for the user. The online system analyzes the audio recording by applying the voiceprint model to determine whether the audio recording satisfies a first criteria of whether the voice in the audio recording belongs the user and a second criteria of whether the audio recording includes a vocalization of the randomly generated phrase. If the audio recording satisfies both criteria, the online system authenticates the user. Therefore, the user can be provided access to a new communication session in response to being authenticated.
US10715519B1
A communication device and method for authentication of a message being transmitted from the communication device. The method includes receiving, by a messaging utility, content of a message provided for transmission from the communication device. Based on a determination that the message requires user authentication before the message is transmitted to a recipient, the method further includes selecting, based on contextual data, one or more biometric capturing components of the communication device; triggering at least one selected biometric capturing component to capture a corresponding biometric input from a user of the communication device; and transmitting the message when the biometric input as belonging to an authorized user of the communication device. In one embodiment, a clearinghouse service authenticates a biometric input from a user of the communication device in order to certify the user and/or the message.
US10715518B2
In one aspect, a first device includes a processor, a wireless transceiver accessible to the processor, at least one biometric sensor accessible to the processor, and storage accessible to the processor. The storage bears instructions executable by the processor to receive input from the at least one biometric sensor, identify a user based on input from the at least one biometric sensor, and determine a second device with which the first device is to communicate using the wireless transceiver based at least in part on identification of the user based on input from the at least one biometric sensor.
US10715514B1
One or more clients of a service may obtain access to resources of the service using one or more roles. A role may be used to delegate access to resources that a principal normally would not otherwise have access to. Assuming a role may allow a principal to receive a token that provides access to resources according to permission associated with the role. Upon detecting an event in connection with the invalidation of a token associated with a role, a service may perform a workflow in connection with the principal.
US10715506B2
A method at a computing device for enabling access to a credential vault if a master password for the credential vault is lost, the method including selecting at least one credential from within the credential vault; encrypting one of the master password or a vault key for the credential vault with the selected at least one credential, thereby creating a recovery file; and storing the recovery file, wherein the selected at least one credential can be used to decrypt the recovery file to enable access to the credential vault.
US10715500B2
A computer-implemented method for information protection comprises: committing a transaction amount of a transaction with a first commitment scheme to obtain a transaction commitment value, committing a change of the transaction with a second commitment scheme to obtain a change commitment value, the first commitment scheme comprising a transaction blinding factor, and the second commitment scheme comprising a change blinding factor; encrypting a first combination of the change blinding factor and the change with a first key; transmitting the transaction blinding factor, the transaction amount, and the transaction commitment value to a recipient node associated with a recipient for the recipient node to verify the transaction; in response to that the recipient successfully verifies the transaction, obtaining an encrypted second combination of the transaction blinding factor and the transaction amount encrypted with a second key.
US10715498B2
Methods, systems, and media for protecting and verifying video files are provided. In some embodiments, a method for verifying video streams is provided, the method comprising: receiving, at a user device, a request to present a video that is associated with a video archive, wherein the video archive includes a file list, a signature corresponding to the file list, video metadata, a signature corresponding to the video metadata, and at least one encrypted video stream corresponding to the video, and wherein the file list indicates a plurality of files that are to be included in the video archive; verifying the signature corresponding to the file list; in response to determining that the signature corresponding to the file list has been verified, determining whether the plurality of files indicated in the file list are included in the video archive; in response to determining that the plurality of files indicated in the file list are included in the video archive, verifying the signature corresponding to the video metadata; in response to determining that the signature corresponding to the video metadata has been verified, requesting a decryption key corresponding to the video stream; in response to receiving the decryption key, decrypting the encrypted video stream; and causing the decrypted video stream to be presented on the user device.
US10715483B2
A method that incorporates teachings of the subject disclosure may include, for example, determining at a first directory server of a first regional call processing system whether a new name authority pointer associated with a telephone number is within a first geographic region of the first regional call processing system, transmitting the new name authority pointer to a first name server of the first regional call processing system for provisioning the name authority pointer to the first name server responsive to determining that the telephone number is located within the first geographic region, and transmitting the new name authority pointer to a second directory server for provisioning the new name authority pointer to a second name server of a second regional call processing system responsive to determining that the telephone number is not located within the first geographic region. Other embodiments are disclosed.
US10715482B2
A cloud-based DNS-SD architecture may link together separate LANs to form a virtual discovery zone from a service discovery perspective that includes a cloud based DNS-SD server separate from regular Internet DNS, and asleep node handling, among other things. In an example, a cloud based DNS-SD server is separate from the regular Internet DNS servers. This cloud DNS-SD server may run as a private Infrastructure as a Service (IaaS) specifically for service discovery in the virtual discovery zone.
US10715477B2
In one embodiment, a method includes a device receiving a request to create a group messaging thread to include at least three users. The device may determine that at least the first user, who is a minor, and the second user are not directly connected within a social graph. The device may instruct the messaging applications of the users to place the group messaging thread in a pending state. One or more approval requests may be sent to one or more recipients, respectively, for connecting the first user and the second user. When the requests are approved, the device may establish a connection between the first and second users in the social graph. Then, the device may determine that the first user is directly connected to both the second and third users, and instruct the messaging applications of the users to place the group messaging thread in an enabled state.
US10715476B2
Protecting personal information by generating entity-specific aliases for use in communication with third parties is disclosed.
US10715463B1
A network resource manager is configured to read in from a deferrable instance a request to transfer program data and/or execution instructions to a computer-based resource of a cloud service provider for execution. If the load on the cloud service provider is high, the manager will transmit a query to the deferrable instance offering to assign an additional deferrable instance to the original deferrable instance if both the original deferrable instance and the additional deferrable instance accept a deferral period during which neither can make requests for resources.
US10715455B2
In one embodiment, for each distribution period of time, each packet flow is assigned to a path through a packet switching device (e.g., switch fabric) with all packets of the packet flow being sent in order over the assigned path. For a next distribution period, different paths are assigned for these packet flows, with all packets being sent in order over the new corresponding selected path. In one embodiment, these paths are switched often enough to prevent congestion, yet infrequent enough so as to minimize resources for reordering. In one embodiment, the reordering is done at the egress and only for predefined high bandwidth flows (e.g., elephant flows). A distribution period indication is typically associated with each packet to identify its corresponding distribution period. In one embodiment, each routing and egress switching stage in a switching fabric performs reordering.
US10715450B2
A method and apparatus for performing traffic engineering, e.g., allocating bandwidth, on a wireless access network are disclosed. For example, the method determines a number of subscriber stations (SSs) that a Base Station (BS) is capable of supporting in accordance with at least one performance objective for voice traffic, wherein the at least one performance objective for voice traffic comprises a type of codec. The method then allocates bandwidth by the base station in accordance with the number of subscriber stations that the base station is capable of supporting.
US10715429B2
An apparatus is provided for control of a plurality of forwarding switches using a network controller. The network controller executes a routing configuration application that analyzes interconnections between the forwarding switches to identify a topology of the network, determine label switched paths (LSPs) between the forwarding switches, and transmits the next hop routes to the forwarding switches. The forwarding switches use the next hop routes to route packets through the network according to a multiprotocol label switching (MPLS) protocol. Each LSP includes one or more next hop routes defining a forwarding address associated with one forwarding switch to an adjacent forwarding switch.
US10715420B2
The present disclosure provides system, method and apparatus for implementing fast reroute (FRR). The present disclosure provides a mechanism to associate working LSPs with a FRR LSP to protect against the node/link failures and can switch the traffic immediately upon LSP failure. Further, the present disclosure enables to communicate the status of FRR in use to the PCE so as to have centralized control over the FRR mechanism.
US10715419B1
Techniques are disclosed for providing an inter-autonomous system (inter-AS) service between virtualized entities of one autonomous system with external entities of a different autonomous system. For example, a controller (e.g., software defined networking (SDN) controller) may provide multi-hop exterior Border Gateway Protocol (eBGP) redistribution of virtual private networking (VPN) labels between endpoints of different autonomous systems, otherwise referred to as “inter-AS option C.” As described in this disclosure, the SDN controller may facilitate the exchange of appropriate routing labels between endpoints of different autonomous systems to enable forwarding of traffic between the different autonomous systems.
US10715414B2
The present invention includes various novel systems and methods for communication in a network. A System Environment Monitor is employed in some embodiments to extract from the network both real-time and historical Network Metrics at the Infrastructure Layer, as well as Application Metadata at the Application Layer. Network analytics facilitate decisions based upon the differing characteristics of Application Components and lower-level hardware components across multiple DTTs. In response, an SDN Controller generates modified sets of SDN Flows, and implements them in real time across a mixed technology (multi-DTT) network in a manner that avoids disrupting existing SDN Flows and other real-time network traffic.
US10715412B1
There is provided, a computer-implemented method of monitoring overall latency, comprising: monitoring a sequence of images of an actuator controlled by a user interface presented on a display of a client terminal, detecting, in a first image of the sequence of images, a first visual indication denoting termination of a user triggered activation of movement of the actuator via the user interface, detecting, in a second image of the sequence of images, a second visual indication denoting termination of the movement of the actuator in response to the termination of the user triggered activation, computing an overall latency from a timestamp associated with the second image and a timestamp associated with the first image, and when the overall latency is above a threshold, adjusting at least one system parameter of a system connecting the client terminal with the actuator and with a camera that captures the sequence of images.
US10715410B2
Systems and methods for performing connectivity verification testing and topology discovery in a reconfigurable optical add/drop multiplexer (ROADM) are provided. The ROADM can include a ROADM block having a plurality of internal ports connected to a fiber shuffle via respective optical fibers. The ROADM block includes a test signal transmitter configured to inject an outgoing test signal having a unique signature into each internal port. The outgoing test signals are out-of-band of optical data signals traversing the ROADM. The ROADM block includes a test signal monitor configured to monitor for incoming test signals at each of the internal ports. The test signal monitor is configured to validate, based on a signature of an incoming test signal received at an internal port of the ROADM block, whether a valid connection exists between the internal port and an internal port of a second ROADM block.
US10715405B2
A Tenant request to subscribe to an Application is received. A Service that the Application consumes is determined. The Tenant is determined to be new to the Service. In response to determining the Tenant is new, a subscription of the Tenant is provided in the Service, and the Application is added to the subscription.
US10715402B2
The present approach relates to querying a configuration item (CI). The CI may be associated with a monitoring agent. In accordance with this approach, a check request is sent to a management, instrumentation, and discovery (MID) server. The check request may be sent to the monitoring agent. Additionally, a check result may be received from the monitoring agent. The check result may have data associated with the CI and the check request.
US10715398B2
Provided is a control apparatus including a control unit configured to control, based on a content list as a list of content items to be provided by providing apparatuses that are connected to a network and capable of providing the content items and on connection relationship information indicating connection relationships between the providing apparatuses and input terminals of output apparatuses that are connected to the network and capable of outputting the content items, a providing apparatus to provide a selected content item that is selected from among the content items in the content list and an output apparatus including an input terminal to which the providing apparatus is connected, as control targets via the network.
US10715391B2
A processing system including at least one processor may obtain first network analytics data from a plurality of zones of a telecommunication network, generate a set of policies from the first network analytics data via an apriori algorithm, where each policy in the set of policies comprises a pattern matching rule, and deploy policies of the set of policies to a plurality of edge devices in respective zones of the plurality of zones of the telecommunication network. The processing system may further receive, from at least one of the plurality of edge devices in one of the plurality of zones, a first alert of a first policy trigger of a first policy of the set of policies, and transmit a notification to a software defined network controller of the first policy trigger.
US10715389B2
An automatic controller configuration system includes a chassis having a port. A transceiver connected to the port utilizes a number of lanes. A controller in the chassis is coupled to the port. The number of lanes utilized by the transceiver are identified, and the controller is configured to operate at a first speed utilizing the number of lanes. In response to detecting a signal transmitted by the transceiver and determining that a link provided via the transceiver has not been established with the controller operating at the first speed, the controller is reconfigured to operate at a second speed. In response to detecting the signal transmitted by the transceiver and determining that the link provided via the transceiver has been established with the controller operating at the second speed, the controller provides for communications with at least one device via the transceiver and at the second speed.
US10715387B1
Techniques for dynamically provisioning host devices to process requests and other types of received data include receiving traffic data that indicates an amount of data received by the host devices over time and resource data that indicates an amount of computing resources used by the host devices to process the data. Host data is generated that indicates a relationship between received quantities of data and corresponding quantities of computing resources used to process the data. Based on the host data, a number of host devices used to process a predicted amount of data to be received at a future time, using a selected amount of computational resources, may be determined. Based on the determined number of devices, additional host devices are provisioned to process the received data, or diverted from processing the data.
US10715381B2
Embodiments described herein are directed to mechanisms that enable roles (e.g., host vs. function, power provider vs. power consumer, master vs. slave, server vs. client, source vs. sink, upstream vs. downstream) to be dynamically assigned between two interconnected dual-role devices in an intelligent and deterministic manner based on the available context on each device.
US10715380B2
Disclosed are systems, methods, and non-transitory computer-readable storage media for setting a reminder triggered by a target device. A requesting device sends a request to a server to set a reminder triggered by a target device. The request includes parameters, such as a location and a condition that define when the reminder is triggered. The server sends instruction to the target device to set the reminder based on the parameters. When the condition such as arrival is met by the target device in relation to the location the target device sends a message to the server that the reminder has been triggered. The target device can set a geo-fence to determine the position of the target device in relation to the location, and the requesting user can dictate the size of the geo-fence. The server sends a notification to the requesting device that the reminder has been triggered.
US10715377B2
A method and system for implementing domain name services (DNS) is described. In one aspect a query from a user device for access to a particular resource record may be received and forwarded to an authoritative DNS device. A reply to the query may be received from the authoritative DNS device. Information of the reply also may be distributed to other DNS devices.
US10715374B2
A Long Range (LoRa) communication system with an improved data rate and method thereof are provided. When a packet to be transmitted is received, a transmission device determines a transmission scheme. When the determined transmission scheme is an enhanced transmission scheme, the transmission device transmits a preamble signal indicating that a packet is to be transmitted using the enhanced transmission scheme, converts n-th data of the packet to an up-chirp signal, converts (n+1)-th data of the packet to a down-chirp signal, generates a transmission signal by adding the n-th data converted to the up-chirp signal and the (n+1)-th data converted to the down-chirp signal, and transmits the transmission signal to a reception device.
US10715373B2
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. The present invention is a method by which a base station transmits a signal in a wireless communication system for efficiently performing an initial access procedure of a terminal, the method comprising the steps of: generating the synchronization signal on a basis of subcarrier spacing used in the synchronization signal; and transmitting the synchronization signal to the terminal.
US10715370B2
A test device for testing a communication between an access point and at least one station is provided. The test device comprises a communication recorder configured to record the communication between the access point and the at least one station, and a communication analyzer configured to analyze the recorded communication by looking for a burst of a specific type of one specific station of the at least one station. In this context, the communication analyzer is further configured to measure a deviation of an actual communication frequency of the burst of the specific type from a predefined communication frequency.
US10715365B2
A communication device receives a physical layer (PHY) protocol data unit (PPDU). The PPDU includes i) a PHY preamble and ii) PHY data portion that includes one or more PHY midambles, and the PHY preamble includes i) an indication of a length of the PPDU, and ii) an indication of a periodicity of PHY midambles in the PHY data portion. The communication device calculates a number of PHY midambles in the PPDU using i) the indication of the length of the PPDU, and ii) the indication of the periodicity of PHY midambles. The communication device calculates a reception time for the PPDU using the calculated number of PHY midambles, and processes the PPDU using the calculated reception time.
US10715364B2
Methods, systems, and devices for improving uniformity between levels of a multi-level signal are described. Techniques are provided herein to unify peak-to-peak voltage differences between the amplitudes of data transmitted using multi-level signaling. Such multi-level signaling may be configured to increase a data transfer rate without increasing the frequency of data transfer and/or a transmit power of the communicated data. An example of multi-level signaling scheme may be pulse amplitude modulation (PAM). Each unique symbol of the multi-level signal may be configured to represent a plurality of bits of data.
US10715362B2
Data transmission method for a two-wire data bus from a transmitter having ports to a receiver having ports. The method comprises the steps of: detecting a first common-mode voltage swing on the ports and forming a first common-mode signal. Detecting a second common-mode voltage swing on the ports and forming a second common-mode signal. The transmitter sending data via the two-wire data bus. The receiver receiving the data. The voltage difference on the ports being compared with a lower and an upper reception threshold, wherein an output of an apparatus element assumes a first or second level on the basis of this comparison. Raising the differential send level if the absolute value of the first common-mode signal is greater than a first threshold value. Raising the upper reception threshold and/or lowering the lower reception threshold if the absolute value of the second common-mode signal is greater than a second threshold value. The method allows the transmission of a datum from the transmitter to the receiver. On the basis of the result of the comparison of the absolute value of the detected first common-mode signal with a first threshold value, the upper reception threshold is raised and/or the lower reception threshold is lowered whenever this absolute value of the first common-mode signal is greater than this first threshold value.
US10715361B1
An electronic circuit can include a gain adjustment circuit (e.g., a gain “equalizer” circuit), such as to compensate for a variation in insertion loss over a specified range of frequencies. For example, such a gain adjustment circuit can provide an insertion loss characteristic having a specified slope. Such a slope can include a positive slope where insertion loss increases with respect to frequency, or a negative slope where insertion loss decreases with respect to frequency, as illustrative examples. A gain equalization technique can be used to compensate for variation in insertion loss versus frequency between different circuit paths, such as in relation to a switchable delay line having two or more selectable paths, such as for phase shifting applications. A gain adjustment circuit can be configured to provide relatively flat or constant time-domain delay versus frequency, such as inhibiting or reducing dispersion.
US10715355B2
A processing module for a receiver device. The processor module comprises a channel estimate generation component arranged to output channel estimate information for a received signal, and a timestamping module arranged to determine a ToA measurement for a marker within a packet of the received signal based at least partly on the channel estimate information for the received signal generated by the channel estimate generation component. The channel estimate generation component comprises a validation component arranged to derive a validation pattern for the packet within the received signal for which a ToA measurement is to be determined, identify a section of the packet containing a validation sequence, and perform cross-correlation between at least a part of the validation sequence within the packet and at least a part of the generated validation pattern to generate channel estimate validation information.
US10715354B2
Systems and methods are disclosed for using one or more gateway systems for integrating multiple load control systems running multiple versions of software such that the load control systems may appear to a user and be controlled by the user as a unified load control system. Gateways that manage or have managed the same resource may be organized into a Gateway Group. Gateway Groups names may be used for prefix attachment to facilitate routing. For example, a Composite Gateway may receive a request associated with a resource from a user. The Composite Gateway may determine which Gateway actively manages that resource and/or is the Gateway is a member of a Gateway Group. The composite Gateway may then apply one or more policies to facilitate the request. For example, if the Composite Gateway receives an information request, it may apply an authorization policy, a routing policy, and/or an aggregation policy.
US10715352B2
A source node can append a unique identifier to an outbound client packet, transmit the outbound client packet to a recipient node via a port, and create a transmission record including: the unique identifier, a time stamp of the outbound client packet, and an identifier for the port. The source node can receive an inbound client packet that is appended with the unique identifier and a delta time indicating an amount of elapsed time between the recipient node receiving the outbound client packet and the recipient node transmitting the inbound client packet. The source node can determine a performance level of a VPN tunnel provided by the port based on the time stamp value of the outbound client packet, the delta time, and a time stamp value of the inbound client packet indicating a time at which the inbound client packet was received by the source node.
US10715351B2
The invention relates to network nodes comprising: a first computing unit (CPUa); at least one second computing unit (CPUb); an internal switch (Swi); and an external switch (Swe), wherein the internal switch (Swi) is connected to the first computing Nunit (CPUa), the at least second computing unit (CPUb) and to the external switch (Swe) and wherein the external switch (Swe) has at least one port for data originating from other network nodes. The invention also relates to a control module and an Ethernet ring.
US10715350B2
A network and method for addressing the network includes a host controller, a communication bus connected to the host controller, and a plurality of nodes connected to the communication bus. Each of the plurality of nodes includes a node controller, a communication input, and a communication output. The node controller is configured to receive an address from the host controller, provide an acknowledgement of receipt of the address to the host controller, and connect the communication input to the communication output upon receipt of the address.
US10715347B2
A method of building automation control from a computing device is provided and includes a computing device: accessing a building automation network through one or more network connections and identifying automated devices attached to that building automation network; determining a user interface structure for the automated devices and a device user interface for each automated device from device names of the automated devices on the building automation network; providing a user interface comprising the user interface structure and the device user interfaces on the computing device; and controlling one or more of the automated devices over one of the one or more network connections using instructions received over the user interface.
US10715346B1
Dynamically adjusting upstream and/or downstream spectrum usage by a Remote PHY node. Cable modem association information for a Remote PHY node is dynamically determined remotely from across a network. The association information identifies which cable modems serviced by the Remote PHY node are physically connected to each of the Remote PHY node ports. Remote PHY node ports are remotely and dynamically assigned to upstream device port and/or downstream device port of a Remote PHY device comprised within the Remote PHY node. Based on the association information, each of the node port of the Remote PHY node may be reassigned to a different upstream device ports and/or downstream device ports of the Remote PHY device. This reassignment may be performed to achieve load balancing of upstream and/or downstream traffic sent between a plurality of cable modems served by the Remote PHY node and a Cable Modem Termination System (CMTS).
US10715345B2
According to an embodiment, a communication control device is connected to communication devices and includes a storage, a generator, and an output unit. The storage is configured to store group information containing a group ID of a group and device IDs of the communication devices belonging to the group. The generator is configured to generate compressed information in which the device IDs are compressed. The output unit is configured to output, when the group information is updated, to all communication devices identified by the device IDs included in the group information after updating and to a plurality of communication devices including one or more of the communication devices identified by the device IDs not included in the group information after updating, output information containing identification information for identifying the group after updating and compressed information in which the device IDs included in the group information after updating are compressed.
US10715330B1
A system supports authorization and custody tracking for physical concessions. In some cases, a physical concession or other physical object may be tracked to ensure that custodians that gain possession of the physical concession have proper authorization. Further, custody tracking may ensure that a particular custodian is issued the authorized amount of physical concession(s). Authorization circuitry may, via a peer network, access proof of authorization and custody status stored on a blockchain. Based on the proof of authorization and custody status, the authorization circuitry may determine whether issuance of the physical concession to a receiving custodian is allowed. After allowing/disallowing issuance of the physical concession, tracking circuitry may send, via the peer network, a request to update the blockchain.
US10715322B2
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for updating data in blockchain are provided. One of the methods includes: obtaining one or more requests for updating a plurality of pieces of data in one or more blockchains and updating the plurality of pieces of data in the one or more blockchains.
US10715321B2
An improved PUF architecture for generating physical unclonable function (PUF) values. The PUF architecture generates an output by feeding inputs provided from one or more PUFs into a message authentication code (MAC) block. The output from the MAC block provides the improved PUF value (e.g., resistant to the preimage hacker attack). The PUFs can be selected by a selector module. An additional input to the MAC block that is used to output a PUF value may be obtained from a monotonic counter that is, for example, incremented prior to each PUF output calculation. In one embodiment, a capability is provided to generate a session key by using a monotonic counter or other freshness mechanism like timestamp, NONCE, etc.
US10715315B1
A method performed by a client application executing on a client computing device is disclosed. The method includes generating a private key and a public key corresponding to the client application. The method also includes transmitting the public key to a middleware application executing on a middleware computing device, a server application executing on a server computing device, or both. The client application and the server application are engaged in a trusted relationship. The method also includes receiving, at the client application, a request to perform an operation on an encrypted content that is stored at the middleware computing device and that is encrypted with the public key by the middleware application or the server application, decrypting the encrypted content using the private key to generate a decrypted content, and presenting the decrypted content on a display screen of the client computing device.
US10715311B2
An embodiment herein provides a processor implemented method for blockchain-based authentication of a user using a user device, that includes (i) obtaining an identify information associated with an identity document of the user; (ii) storing the identity information, and a set of credentials, with a blockchain to link the identity information with the set of credentials for the user; (iii) obtaining a cryptographic challenge from a relying party device when a record that includes a user identity information of the user and the set of credentials associated with the user identity information for the user device is found to be stored with the blockchain; and (iv) transmitting a response to the cryptographic challenge to the relying party device. The relying party device checks whether the response matches with a predetermined correct response or not. The relying party device authenticates the user only if the response matches with the predetermined correct response.
US10715310B2
A method in a pattern encryption protection scheme may efficiently decrypt data blocks in a timely manner. In the method, a processor may receive a frame of data blocks. The frame may include a plurality of pattern-encrypted subsamples, and each pattern-encrypted subsample may include one or more encrypted data blocks and one or more unencrypted data blocks in accordance with a predetermined pattern. The processor may determine a first buffer portion and a second buffer portion based on a number of the data blocks in the frame and the predetermined pattern. The processor may sort the data blocks by copying the encrypted data blocks into the first buffer portion and by copying the unencrypted data blocks into the second data buffer portion. The processor may perform a decryption call to a crypto engine to generate corresponding decrypted data blocks using the sorted encrypted data blocks in the first buffer portion.
US10715309B2
Fully homomorphic encryption integrated circuit (IC) chips, systems and associated methods are disclosed. In one embodiment, a method of operation for a number theoretic transform (NTT) butterfly circuit is disclosed. The (NTT) butterfly circuit includes a high input word path cross-coupled with a low word path. The high input word path includes a first adder/subtractor, and a first multiplier. The low input word path includes a second adder/subtractor, and a second multiplier. The method includes selectively bypassing the second adder/subtractor and the second multiplier, and reconfiguring the low and high input word paths into different logic processing units in response to different mode control signals.
US10715308B2
A transmitting circuit may include a clock generation circuit and a serializer. The clock generation circuit may generate a plurality of output clock signals by performing an emphasis operation for a plurality of clock signals based on a plurality of data. The serializer may output the plurality of data as output data in synchronization with the plurality of output clock signals.
US10715303B2
The invention relates to an apparatus (301) for managing full-duplex communication between a base station (BS0) and a set of user equipments (101a,b), the base station (BS0) comprising a plurality of transmitter antennas, the plurality of transmitter antennas being associated with a downlink communication channel H between the base station (BS0) and the set of user equipments (101a,b) and a plurality of interference channels Gi between the base station (BS0) and a plurality of neighboring base stations (BSi).
US10715302B2
Technology for a channelization device of a wideband repeater is disclosed. The channelization device can include a first diplexer and a second diplexer. The channelization device can include a plurality of switchable signal paths between the first diplexer and the second diplexer operable to perform channelized passive filtering of signals in defined bands. The channelization device can include a plurality of switchable pass through signal paths between the first diplexer and the second diplexer operable to pass through signals in the defined bands without filtering of the signals. The channelization device can be configured to perform channelized passive filtering of signals with no amplification of the signals.
US10715299B2
A method and a user equipment for transmitting control information in a communication system are discussed. The method according to an embodiment includes multiplying a transmission information symbol s for the control information by a frequency direction sequence c(k) to generate a first output sequence s(k), where s(k)=s*c(k), k=0, . . . , Nk−1, and Nk corresponds to a number of subcarriers included in a resource block allocated for an uplink control channel; multiplying the first output sequence s(k) by a time direction sequence x(n) to generate a second output sequence s(k, n), where s(k, n)=s(k)*x(n), n=0, . . . , Nn−1, and Nn corresponds to a number of symbols used for transmission of the control information in a transmission time interval; and transmitting the second output sequence s(k, n) through the uplink control channel in the transmission time interval.
US10715292B2
Techniques for wireless communication are described. A method for wireless communication at a user equipment (UE) includes identifying a physical uplink shared channel (PUSCH) to transmit in an uplink pilot time slot (UpPTS) of a subframe, determining whether to transmit uplink control information (UCI) on the PUSCH in the UpPTS, and transmitting the PUSCH in the UpPTS based at least in part on the determining. A method for wireless communication at a network access device includes determining whether to schedule a transmission of UCI on a PUSCH in a UpPTS of a subframe, scheduling the PUSCH in the UpPTS based at least in part on the determining, and transmitting, to a UE, scheduling information for the PUSCH in the UpPTS.
US10715290B2
Provided is an apparatus and method for beam management based on a channel state indicator (CSI)-reference signal (RS). A method for a user equipment (UE) to receive a CSI-RS from a base station (BS) includes receiving configuration information of a CSI-RS resource set including one or more CSI-RS resources, and receiving a CSI-RS from a BS through CSI-RS resources included in the CSI-RS resource set. The configuration information of the CSI-RS resource set includes indication information indicating beam configurations for the respective CSI-RS resources included in the CSI-RS resource set.
US10715287B2
In a base station, a control unit and a data size regulation unit control the data size of downstream assignment control data and upstream assignment control data in the PDCCH signal based on the communication format used between the base station and a terminal, the number of base station antennas (M) (nonnegative number), the number of terminal antennas (N) (nonnegative number), the bandwidth of the downstream band, and the bandwidth of the upstream band. Specifically, the control unit determines it is unnecessary to adjust the aforementioned data size when the selected communication format is first established between multiple antennas and when where there are multiple for one of M and N and only one for the other. The quality of downstream assignment control data is prevented from degrading, while preventing the number of blind determinations from increasing on the receiving side of the downstream control channel signal.
US10715285B2
Methods, devices and systems for encoding and transmitting data in a wireless communications system and, in particular, for unscheduled data transmissions including low data rate transmissions. The method for transmitting data in a wireless network includes mapping data according to a predefined sequence pattern from a group of sequence patterns to provide a spreading sequence that includes multiple non-zero elements and that is enabled to partially collide in the wireless network with other spreading sequences that have been mapped according to other sequence patterns from the group; and transmitting the spreading sequence. Multiple sequences may be received by a network node and decoded using successive interference cancellation (SIC) techniques.
US10715284B2
The invention relates to a method of requesting retransmission of a lost data packet initially transmitted by a multicast transmitter in a network, the multicast transmitted multicasting data packets in the network, said method being carried out by a first multicast receiver and comprising the following steps: upon detection (201) of a loss of at least one data packet on a data link between the multicast transmitter and the first multicast receiver, setting (206) a timer value and arming (207) a timer; upon detection (208) that the timer reaches the set timer value, sending (209) a non-acknowledgment message to the multicast transmitter via an uplink control link, said non-acknowledgment message comprising an identifier of at least one lost data packet, if it has not been previously retransmitted by the multicast transmitter.
US10715275B2
The described technology is generally directed towards reporting channel quality information from a wireless user equipment to the network, in a channel state information report that includes channel quality information based on a block error rate threshold value that corresponds to an ultra-reliable low latency communication when the user equipment is in the ultra-reliable low latency communication mode. The channel quality information corresponding to the ultra-reliable low latency communication mode block error rate threshold and the channel quality information corresponding to the enhanced mobile broadband mode block error rate threshold can be included in the same report. Alternatively, the user equipment is instructed to report either the channel quality information for-reliable low latency communication or for enhanced mobile broadband in the channel state information report.
US10715270B2
An optical branching/coupling device includes: a first optical branching unit that splits first light with a first and a second wavelength, and outputs second light and third light; a wavelength selector that receives the second light, receives fourth light with a third wavelength, output fifth and sixth light, one of the fifth light and the sixth light including an optical signal of the first wavelength of the second light and including the fourth light, and the other including an optical signal of the second wavelength; a first light switch that receives the fifth light and the sixth light, output one of the fifth light and the sixth light as seventh light, and output the other as eighth light; and a second light switch that receives the third light, receives the eighth light, and outputs the third or the eighth light that have been input as ninth light.
US10715261B2
A method and apparatus for providing feedback for cancellation of signal impairment in a plurality of separate transmit paths of a transmitter are disclosed. According to one aspect, a method includes receiving a plurality of outbound signals transmitted to the antenna array, the received outbound signals having traversed separate transmit paths of the transmitter. The method also includes converting the plurality of received outbound signals to a corresponding plurality of parallel baseband signals. The corresponding plurality of parallel baseband signals are serialized into a serial feedback signal.
US10715259B1
A method and structure for compensation techniques in coherent optical receivers. The present invention provides a coherent optical receiver with an improved 8×8 adaptive MIMO (Multiple Input, Multiple Output) equalizer configured within a digital signal processor (DSP) to compensate the effects of transmitter I/Q skew in subcarrier multiplexing (SCM) schemes. The 8×8 MIMO equalizer can be configured such that each of the 8 outputs is electrically coupled to 3 of 8 inputs, wherein each of the input-output couplings is configured as a filter. The method includes compensating for impairments to the digital conversion of an optical input signal via the 8×8 MIMO equalizer following other signal processing steps, such as chromatic dispersion (CD)/polarization-mode dispersion (PMD) compensation, carrier recovery, timing synchronization, and cycle slip correction.
US10715256B1
An apparatus includes an optical data receiver to receive a phase-modulated optical signal and to demodulate data therefrom. The optical data receiver includes an optical power splitter, first and second optical intensity detectors, and a digital signal processor. The digital signal processor is connected to receive digital values of intensity measurements of each of the optical intensity detectors. The first optical intensity detector is connected to receive light from the optical power splitter via a first optical path, and the second optical intensity detector is connected to receive light from the optical power splitter via a second optical path. The first and second optical paths have channel functions with different frequency dependencies.
US10715251B2
A free-space optical (FSO) communication system includes a transmitter including a modulated light source and transmit optics for emitting a modulated optical signal into a FS channel toward a receiver. A receiver is coupled to receive the modulated optical signal including receive optics coupled to a few-mode (FM) pre-amplifier that is coupled to a demodulator.
US10715248B2
A method of reducing data transfer while increasing image information over an 802.15.4 network includes obtaining an image with a sensor, modulating a representation of the image using a first 802.15.4 modem, sending the representation of the image to a coordinator, demodulating the representation of the image using a second 802.15.4 modem, and digitally enhancing at least one of the representation of the image and the image. A system for communication over an 802.15.4 network includes a sensor for obtaining data, the size of the data being at least an order of magnitude greater than the size of an 802.15.4 packet, a first 802.15.4 modem coupled to the sensor, a buffer for temporarily storing the data to allow transmission of portions of the data; the buffer being coupled to the sensor, a coordinator coupled to the sensor, the coordinator being capable of communicating with a computer, and a second 802.15.4 modem coupled to the coordinator.
US10715236B2
A wireless communication method includes: a terminal device uses a plurality of uplink transmitting beams to send an uplink signal to a network device; receives M1 measurement information sets corresponding to M1 uplink transmitting beams and sent by the network device, a first measurement information set including at least one of: measurement value information corresponding to a first uplink transmitting beam, and measurement value information of each uplink beam pair amongst M2 uplink beam pairs constituting the first uplink transmitting beam, M1 and M2 not being simultaneously equal to 1; uses each downlink receiving beam amongst a plurality of downlink receiving beams to measure a downlink signal sent by the network device using the plurality of downlink transmission beams to obtain down measurement results; and determines, on the basis of the M1 measurement information sets and the downlink measurement results, correspondence results of the correspondence of the transmitting/receiving beams.
US10715234B2
Some demonstrative embodiments include devices, systems and/or methods of wireless communication via multiple antenna assemblies. For example, a device may include a wireless communication unit to transmit and receive signals via one or more quasi-omnidirectional antenna assemblies, wherein the wireless communication unit is to transmit, via each quasi-omnidirectional antenna assembly, a plurality of first transmissions, to receive, in response to the first transmissions, a plurality of second transmissions from another device via one or more of the quasi-omnidirectional antenna assemblies, and, based on the second transmissions, to select at least one selected transmit antenna assembly for transmitting to the other device and a selected receive antenna assembly for receiving transmissions from the other device. Other embodiments are described and claimed.
US10715233B2
Methods and apparatuses relate to sounding reference signal (SRS) transmit antenna selection in wireless communication systems. For example, a user equipment (UE) may select, from a set of antennas, a subset of antennas for SRS transmission based on at least one antenna selection parameter. The UE may further transmit, on an uplink communication channel, the SRS using the subset of antennas to a network entity. In some aspects, the at least one antenna selection parameter may include a reference signal receive power (RSRP) value, a signal-to-noise ratio (SNR) value, a spectrum efficiency value, and/or an SNR value and a channel correlation value.
US10715232B2
Example methods and apparatus for configuring an antenna are disclosed. One method includes determining a communication status of each of a plurality of communications modules in a terminal device. An antenna use priority of each communications module is determined based on the communication status of the communications module. An antenna for each communications module is configured based on the antenna use priority of the communications module.
US10715229B2
Facilitating semi-open loop based transmission diversity for uplink transmissions in a communications network is provided herein. A system can comprise a processor and a memory that stores executable instructions that, when executed by the processor, facilitate performance of operations. The operations can comprise receiving, from a network device, information related to a sounding reference resource. The information related to the sounding reference resource can be based on a sounding reference signal resource transmission detected during a defined time interval. The operations can also comprise, based on a selected weight vector cycling, selecting a weight vector from defined weight vectors stored in the memory, resulting in a selected weight vector. Further, the operations can comprise transmitting, to the network device, a signal that comprises the selected weight vector multiplied with the sounding reference signal, during the selected weight vector cycling.
US10715222B2
A device controls each antenna to transmit at least one first UL pilot signal and to receive, for each first UL pilot signals DL data encoded according to the respective first UL pilot signal. The receive properties of the DL data are combined and a second UL pilot signal is determined based on the combined receive properties. The second UL pilot signal is repeatedly transmitted. The techniques may be applied in a massive multi-input multi-output scenario.
US10715217B2
A method and a device for pre-correction of a downlink signal are provided. The method comprises: on the basis of an obtained uplink frequency offset value of a first RRU and a second RRU corresponding to each client, determining a set of uplink frequency offset values corresponding to each RRU; when a downlink pre-correction period is reached, calculating an average uplink frequency offset value of the RRU; and on the basis of the average uplink frequency offset value of the RRU and a downlink pre-correction value in a previous pre-correction period, determining a downlink pre-correction value of the RRU in the current downlink pre-correction period.
US10715216B2
A smart button for use in a network formed on a garment includes a housing and an antenna carried within the housing to communicate with elements of the network. A functional element is carried within the housing. An electronic circuit is carried within the housing and coupled to the antenna and the at least one functional element. The housing is formed by a stem carrying a head, and the antenna is housed within the head.
US10715206B2
A communications protocol in accordance with one exemplary embodiment uses information from GPS satellites to synchronize the phases of transmitters, and aligns the phase with a spreading code used to de-spread the received signals at, for example, a ground station.
US10715205B1
A method and a testing device for determining signal-to-noise headroom of a pair of conductors are provided. In the method and testing device, a gain of electric signal transmissions over a pair of conductors is varied to reach a first gain. Prior to reaching the first gain a transition between reception failure and successful reception of the electric signal transmissions does not occur. A first electric signal having the first gain is transmitted over a first end of the pair of conductors and it is determined that the transition between reception failure and successful reception of the first electric signal occurred. A signal-to-noise ratio (SNR) headroom for the pair of conductors is determined based on the first gain at which the transition between reception failure and successful reception occurred.
US10715203B2
The present invention discloses a wireless transceiver capable of offsetting internal signal leakage. The wireless transceiver includes a transmission circuit, a reception circuit and a calibration circuit. The calibration circuit generates a first estimation signal according to the difference between a test signal and a reception digital signal passing through a standard path, generates a second estimation signal according to the difference between the test signal and a reception digital signal passing through a leakage path, and then determines N coefficient(s) of a calibration filter according to the difference between the first estimation signal and the second estimation signal. Therefore, the calibration circuit including the calibration filter can output a calibration signal to the reception circuit to offset at least a part of the signal leakage from the transmission circuit to the reception circuit.
US10715201B2
A receiving module and related products are provided. The receiving module is disposed adjacent to an antenna group corresponding to the receiving module and includes one or more signal receiving channels, a first transfer switch, and a second transfer switch. Each of the one or more signal receiving channels includes a filter and a low noise amplifier coupled with the filter. The first transfer switch is coupled with the one or more signal receiving channels and is configured to be coupled with an antenna in the antenna group. The second transfer switch is coupled with the one or more signal receiving channels and is configured to be coupled with a transmitting module and/or a radio frequency transceiver. The first transfer switch or the second transfer switch includes an n1Pn2T switch, and n1 is a positive integer and n2 is an integer greater than or equal to 2.
US10715193B2
Disclosed is a user equipment (UE) apparatus, and method to facilitate beamforming between at least one eNB and at least one UE, comprising the at least one UE including an indication in a message from the UE to the at least one eNB of a type of receiver available for use by the UE to receive a return message from the eNB. There is also disclosed a method in an eNB to facilitate beamforming, and a UE and eNB arranged to carry out the described methods.
US10715187B2
Techniques are disclosed for configuring a broadband antenna system. An example electronic device includes a first antenna operating at a first frequency range and coupled to a first transceiver via a first signal path comprising a first indirect feed. The electronic device also includes a second antenna operating at a second frequency range and coupled to a second transceiver via a second signal path comprising a second indirect feed, wherein the first frequency range is lower than the first frequency range. The electronic device also includes a third antenna operating at the second frequency range and coupled to a third transceiver via a second signal path comprising a third indirect feed. Additionally, the first antenna is coupled to the first antenna and the second antenna by a capacitive coupling element.
US10715186B2
In a high frequency module, a first band processing circuit, a second band processing circuit, and a third band processing circuit. The first band processing circuit is used at the same time as the third band processing circuit (D3) when wireless communication is performed. A frequency of a harmonic of a first transmission signal of the first band processing circuit is included in a frequency band of a third reception signal of the third band processing circuit. The second band processing circuit is not used at the same time as the first band processing circuit and the third band processing circuit (D3) when wireless communication is performed and is disposed between the first band processing circuit and the third band processing circuit in a plan view of the substrate.
US10715183B1
Techniques to improve storage, transmission and security of data are included. One or more methods, apparatuses, and articles of manufacture employ one or more color-channels, ultraviolet layers, infrared layers, and/or luminance layers to encode data on or along a physical medium, where the encoding includes utilizing one or more of those layers to encode an error-correcting code (ECC), such as a Hamming code with the data.
US10715179B2
Provided is an LDPC (Low Density Parity Check) code for terrestrial cloud broadcast. A method of encoding input information based on an LDPC (Low Density Parity Check) includes receiving information and encoding the input information with an LDPC codeword using a parity check matrix, wherein the parity check matrix may have a structure obtained by combining a first parity check matrix for an LDPC code having a higher code rate than a reference value with a second parity check matrix for an LDPC code having a lower code rate than the reference value.
US10715169B1
A receiver gain tracking loop utilizing two Digital-to-Analog Converters (DACs) and methods for operating the gain tracking loop are provided. The gain tracking circuit includes a signal detector for detecting at least one signal and outputting a detected signal; a digital integrator connected in series to the signal detector for integrating the detected signal in the digital domain; two DACs connected in parallel to the digital integrator; and an analog summing element for summing the first digital output and the second digital output of the DACs producing a combined output.
US10715168B2
A display device may include rows of pixels that displays image data on a display, data lines coupled to the rows of pixels, and a digital-to-analog converter (DAC) that outputs a ramp voltage signal including a data voltage to be depicted on a first pixel of the rows of pixels. The display device may also include a capacitor that receives the ramp voltage signal via the DAC and a circuit that sends a control signal to a circuit component that causes the DAC to couple to the capacitor via one of the data lines for a duration of time that comprises a first time when the ramp voltage signal is below the data voltage and a second time when the ramp voltage signal is approximately equal to the data voltage. The capacitor is coupled to the DAC when the ramp voltage signal is greater than zero.
US10715166B2
Diverse applications in particle physics experiments and emerging technologies such as Lidar are driving performance increase and cost reduction in giga-hertz sampling-rate high-resolution data conversion. In applications such as these, critical aspects of the data may occur only during relatively short nanosecond portions of observation periods lasting microseconds. Data acquisition architectures that key in on regions of the data containing activity, digitize the data, and provide info to accurately measure the position of the data in time relative to a time reference are described. These architectures may facilitate system implementation and reduce overall system cost.
US10715163B2
Systems and methods are disclosed for Successive Approximation Register Analog-to-Digital Converter (SAR ADC) by coupling an ADC capacitive network coupled to a comparator; and performing binary search using a comparator output using a capacitive DAC calibration process to enhance SAR ADC linearity and performance. In one implementation, the calibration process starts with the least significant bit (LSB) capacitor calibration then proceed to higher bit capacitors until all the capacitors are calibrated. Each capacitor consists of fixed-value base capacitor and value-adjustable capacitor. The capacitor calibration logic is implemented based on the process then incorporated into SAR ADC. ADC performs capacitor calibration first before normal conversion operation. The non-ideal aspect of normal conversion operation is preserved and accounted during capacitor calibration. By employing capacitor calibration, the DAC capacitor value can be minimal to enhance settling and conversion rate, SAR ADC performance is improved.
US10715160B1
Noise sources in an ADC circuit can include kT/C noise of a sampling capacitor, noise coupling on to sampling capacitors from digital circuits, and amplifier noise. Also, charge injection from mismatch in sample switches can cause offsets. These various noise sources can be largely canceled or reduced using described techniques. As a result, the size of the sampling capacitors can be greatly reduced, while still achieving significantly improved noise performance and power efficiency for the overall converter.
US10715151B2
A coarse tuning synthesizer for wireless communication includes a digital control unit, a digital-to-analog converter, and a comparator. The digital control unit includes an output node coupled to a first input node of a VCO (voltage controlled oscillator). The digital-to-analog converter includes a first node coupled to the first input node of the VCO. The comparator includes an output node coupled to an input node of the digital control unit. The comparator also includes a first input node coupled to a second node of the digital-to-analog converter and a second input node coupled to an output node of the VCO.
US10715147B1
A line driver circuit is configured to provide a high spurious free dynamic range output and includes first and second output transistors and a control circuit. The first output transistor is controllable to pull an output node to a logic high state, and the second output transistor is controllable to pull the output node to a logic low state. The first control circuit is connected to a control input of the first output transistor and configured to establish a control signal at the control input of the first output transistor while the second output transistor is in a low impedance operating state to reduce an imbalance in turn-on delay between the first output transistor and the second output transistor.
US10715141B2
The present invention discloses a keyboard, which includes a base plate, a plurality of key structures, a circuit board, and a capacitance sensing module. The base plate includes a plurality of opening portions. The key structures are respectively disposed in the opening portions. The circuit board is disposed on a surface of the base plate. The capacitance sensing module includes a plurality of sensing units and a controlling unit. The sensing units are respectively disposed in a plurality of clear areas, and the clear areas are proximal to the key structures. The controlling unit is disposed on the circuit board. The controlling unit is electrically connected to the sensing units. When the key structure is pressed, the corresponding sensing unit generates a capacitance variation in accordance with a pressed degree of the key structure, and controlling unit generates a capacitance variation value.
US10715133B1
A radio frequency switch having an N number of switch cells coupled in series is disclosed. Each of the switch cells includes a field-effect transistor (FET), wherein a source of switch cell 1 is coupled to a first port, a drain of switch cell N is coupled to a second port, and a drain of switch cell X is coupled to a source of switch cell X+1 for switch cell 1 through switch cell N. A first diode stack has a first anode coupled to the body of switch cell X and a first cathode coupled to a drain of switch cell X+1 for switch cell 1 through switch cell N−1, and a second diode stack has a second anode coupled to the body of switch cell X and a second cathode coupled to the source of switch cell X−1 for switch cell 2 through switch cell N.
US10715118B2
Various example embodiments herein disclose a flip-flop including a master latch comprising one of: a plurality of P-type metal-oxide-semiconductor (PMOS) and a plurality of N-type metal-oxide-semiconductor (NMOS). A slave latch includes one of: a plurality of PMOS and a plurality of NMOS. An inverted clock signal input is communicatively connected with the master latch and the slave latch. The master latch includes a single pre-charge node. The single pre-charge node sets up a data capture path in the flip flop. Data is stored in the master latch and the slave latch via the pre-charge node.
US10715114B1
A filter and an operating method thereof are provided. The filter includes a logic circuit, a power circuit and a filter circuit. The logic circuit provides a switching control signal. The power circuit is coupled to the logic circuit. The filter circuit is coupled to the power circuit and the logic circuit. The filter circuit includes an amplifier, a first capacitor and a first transistor. An output end of the amplifier is coupled to the logic circuit, and provides an output signal. The first capacitor is coupled between an input end and output end of the amplifier. The first transistor is connected in parallel with the first capacitor. A control end of the first transistor is coupled to the power circuit. The logic circuit provides a switching control signal to the power circuit according to the output signal. The power circuit supplies a control voltage to the first transistor according to the switching control signal. Therefore, the filter of the present invention and its method of operation can provide an accurate filtered signal output function.
US10715107B2
A variable filter (10) includes a parallel arm resonance circuit and a serial arm resonance circuit, the parallel arm resonance circuit includes a parallel arm resonator (p1) having an IDT electrode (121) and a frequency variable circuit (11) connected to the parallel arm resonator (p1), the frequency variable circuit (11) includes a capacitance element (C1) and a switch (SW), the variable filter (10) further includes a capacitance element (C2) connected between a serial arm and ground, the IDT electrode (121), an IDT wiring connected to the IDT electrode (121), and a capacitance wiring connected to the capacitance element (C1) are formed on the same substrate, a wiring (141 or 144) of the capacitance wirings and a wiring (143) of the IDT wirings intersect with each other, and the capacitance element (C2) is configured of the capacitance wiring and the IDT wiring in the intersection region.
US10715103B2
A resonator including a base; two or more vibration arms connected at ends thereof to a front end of the base and spaced apart from each other across a predetermined space and extending away from the base. Moreover, a connection member connects the vibration arms that bend in the same direction when an electric field is applied. The resonator inhibit occurrence of a spurious mode that otherwise occurs in a resonator that performs out-of-plane bending.
US10715102B2
A filter device includes a first filter chip including a first signal terminal and a second filter chip including a second signal terminal that are mounted above a package substrate including a substrate main body. First and second signal electrode pads are provided on a first main surface of the package substrate and are respectively joined to the first and second signal terminals. First and second outer terminals are provided on a second main surface of the substrate main body. The first and second signal electrode pads and the first and second outer terminals are connected to each other with first and second wirings, respectively. The second outer terminal is located at the first signal electrode pad side and the first outer terminal is located at the second signal electrode pad side when seen from above.
US10715097B2
A multiplexer includes a first filter disposed on a first signal path, a second filter disposed on a second signal path different from the first signal path, the second filter having a passband different from that of the first filter, a common connection point at which the first signal path and the second signal path are connected to each other, and an inductor disposed in series on a path connecting the common connection point and the first filter, the path being a portion of the first signal path. On the first signal path, a distance connecting the common connection point and the inductor is shorter than a distance connecting the inductor and the first filter.
US10715092B2
Various embodiments are directed to apparatuses and methods to generate a first signal representing modulation data and a second signal representing an amplitude of the modulation data, the first signal and the second signal to depend on an output signal and vary a power supply voltage to a gain stage in proportion to the amplitude of the modulation data.
US10715090B2
A bias circuit includes a replica circuit for an amplifier circuit using a cascode type inverter, and a generation circuit that generates a bias voltage that causes a drain voltage of an input stage transistor of the amplifier circuit to be a saturation drain voltage, based on an output voltage of the replica circuit, and supplies the generated bias voltage to a cascode element of the amplifier circuit and a cascode element of the replica circuit.
US10715082B2
An integrated circuit device includes a first temperature sensor, a second temperature sensor, an A/D conversion circuit that performs A/D conversion on first and second temperature detection voltages from the first and second temperature sensors and outputs first and second temperature detection data, a digital signal processing circuit that generates frequency control data by performing a temperature compensation process by a neural network calculation process based on the first and second temperature detection data, and an oscillation signal generation circuit that generates an oscillation signal of a frequency set by the frequency control data using a resonator.
US10715062B2
A driving apparatus allowing two motors to drive a same driving shaft is provided. When a voltage command value is less than a predetermined threshold, a control unit outputs driving command values based on one control pattern such that a direction of a torque of one of the motors becomes different from a driving direction of the driving shaft. Also, when the voltage command value becomes greater than or equal to the predetermined threshold, the control unit outputs the driving command values based on another control pattern, such that the direction of the torque of the one of the motors becomes the same as the driving direction of the driving shaft when the voltage command value is greater than or equal to the predetermined threshold, and does not become different from the driving direction of the driving shaft when the voltage command value drops below the predetermined threshold.
US10715055B2
A power semiconductor circuit comprising a field effect transistor having a drain, a source and a gate as terminals, and further comprising a control device having a drive device and an undervoltage detection circuit. The drive device drives the field effect transistor and is electrically connected to the gate of the field effect transistor. The undervoltage detection circuit generates an undervoltage detection signal if a power semiconductor voltage present between the drain and the source of the field effect transistor falls below a specific voltage value. The drive device switches on the field effect transistor when a switch-on command for switching on the field effect transistor and the undervoltage detection signal are present. The invention provides a power semiconductor circuit with low energy loss.
US10715051B2
A resonant power conversion device includes: series-connected filter capacitors disposed at an input side and transformers, a power conversion circuit disposed between a primary side of the transformer and the filter capacitor, and a power conversion circuit disposed between a primary side of the transformer and the filter capacitor. The resonant power conversion device further includes: an adjustment amount calculator for calculating an adjustment amount indicating a delay time of a rise of a pulse of a control signal to a switching element or a switching element in accordance with a voltage difference between the filter capacitors; and a controller for, in accordance with the adjustment amount, causing a delay in the rise of the pulse of the control signal to the switching element or the switching element, and outputting the rise-delayed control signal to the switching elements.
US10715037B2
Switched capacitor (SC) converters with excellent voltage regulation, high conversion efficiency, and good suitability fora wide range of applications are provided. An SC converter can include at least two SC sub-circuits, and at least one of these SC sub-circuits can be of variable gain. One SC sub-circuit can convert the input voltage of the SC converter to an output voltage close to the desired output voltage value for the SC converter, and another SC sub-circuit having variable gain can convert the input voltage to an output voltage with a high resolution of small discrete voltage steps.
US10715034B2
Apparatus and system for powering an isolated gate driver. In one embodiment, the apparatus comprises a gate driver power supply unit (PSU), coupled to a transistor and to an isolated gate driver that couples control signals to the transistor, for (i) harnessing energy from commutation action across the transistor, and (ii) using the harnessed energy to power the isolated gate driver.
US10715028B2
A ZVS (zero voltage switching) control circuit for controlling a flyback power converter includes: a primary side controller circuit for generating a switching signal, to control a primary side switch; and a secondary side controller circuit for generating a synchronous rectifier (SR) control signal for controlling a synchronous rectifier switch. The SR control signal includes an SR-control pulse and a ZVS pulse. The SR-control pulse controls the synchronous rectifier switch to perform secondary side synchronous rectification. The secondary side controller circuit determines a trigger timing point of the ZVS pulse according to a waveform characteristic of a ringing signal, to control the synchronous rectifier switch to be ON for a predetermined period, thereby achieving zero voltage switching of the primary side switch. The primary side or the secondary side controller circuit includes a jitter controller for performing jitter control on the ZVS pulse.
US10715025B2
A magnetic cycloid gear assembly includes an outer magnet drum comprising a plurality of outer drum magnets having a first number of magnetic pole pairs. The assembly also includes a first inner magnet drum comprising a first plurality of inner drum magnets having a second number of magnetic pole pairs. The assembly also includes a second inner magnet drum comprising a second plurality of inner drum magnets having a third number of magnetic pole pairs. Each of the first and second inner drums has an inner magnet drum axis that is offset from an outer magnet drum axis. The assembly further includes a plurality of drive mechanisms, each mechanism being operatively coupled to each of the first and second inner drums. The plurality of drive mechanisms is configured to drive each of the first and second inner magnet drums to revolve in an eccentric manner about the outer drum axis.
US10715019B2
A dual axis motor a first epicyclic gear, a second epicyclic gear, a rim gear, an inner rotor, an outer rotor, a brake and a stator assembly. The second epicyclic gear is operative to mesh with the first epicyclic gear and move in around the first epicyclic. The inner rotor is fixedly connected to the first epicyclic gear. The outer rotor fixedly is connected to the second epicyclic gear. The stator assembly spaced from the inner rotor by a first gap and spaced from the outer rotor by a second gap. The motor provides a resultant torque to driven device. The resultant torque is provided by the inner rotor, outer rotor, the brake, or by sudden deceleration of one or more elements within the dual axis motor. The gear ratio provided by the first and second epicyclic gear allow for an enhanced speed range while providing high starting torque.
US10715017B2
A rotor has a ferromagnetic body with a surface and magnetic poles arranged about a rotation axis. One or more of the magnetic poles has a first magnetic flux barrier and a second magnetic flux barrier. The first magnetic flux barrier is arranged radially between the rotation axis and the surface of the ferromagnetic body. The second magnetic flux barrier is arranged radially between the first magnetic flux barrier and the surface of the ferromagnetic body.
US10715010B2
An electric motor including a rotor, a stator, a motor housing having a controller can, and a controller having an electronic component disposed within the controller can. The controller can includes an insert comprising thermally conductive metal for exchanging heat with an external heat sink space.
US10715008B2
A turbine and a turbine-generator device for use in electricity generation. The turbine has a universal design and so may be relatively easily modified for use in connection with generators having a rated power output in the range of 50 KW to 5 MW. Such modifications are achieved, in part, through use of a modular turbine cartridge built up of discrete rotor and stator plates sized for the desired application with turbine brush seals chosen to accommodate radial rotor movements from the supported generator. The cartridge may be installed and removed from the turbine relatively easily for maintenance or rebuilding. The rotor housing is designed to be relatively easily machined to dimensions that meet desired operating parameters.
US10715006B2
A flywheel energy storage system includes a rotating assembly having a plurality of magnets and a longitudinal axis about which the rotating assembly rotates and static assembly having a stator configured to magnetically interact with the plurality of magnets of the rotating assembly. The rotating assembly includes a rotor back iron supporting the plurality of magnets and disposed further from the longitudinal axis in a radial direction than the plurality of magnets. The back iron being formed of a material having a first stiffness, relative permeability of at least 10, and an electrical conductivity 10% or less than the electrical conductivity of magnetic steel. There is composite structure supporting the rotor back iron and disposed further from the longitudinal axis in a radial direction than the rotor back iron. The composite structure comprises a composite material having a second stiffness, which is greater than the first stiffness.
US10715001B2
To improve insulation reliability of a dynamo-electric machine. A stator or a dynamo-electric machine using the stator according to the present invention includes a stator iron core in which a plurality of slots aligned in the circumferential direction are formed, a plurality of segment coils inserted into the slots and formed nearly into a U-shape, and an insulator arranged between the segment coils, and the insulator has a part of the insulator formed thicker than the other part of the insulator.
US10715000B2
The invention relates mainly to a rotary electrical machine comprising: a rotor (12); a device (51) for measurement of the angular position of the rotor (12); a stator (11) comprising: a body comprising a plurality of notches; a winding (24) comprising a plurality of phase windings, each having a winding input and a winding output; each phase winding being formed by a plurality of pins (45) inserted in the notches and forming a chignon (40); at least one connector (48) which connects two pins of a single winding; the connector (48) extending opposite the measurement element (52); the connector (48) comprising a portion which is situated radially between an outer periphery of the body (23) and a base of a notch.
US10714993B2
A rotor includes a cylindrical a rotor core having a plurality of magnet insertion holes extending along a central axis of the cylindrical shape and permanent magnets inserted into the magnet insertion holes, respectively. A slit extending along the central axis is provided between an outer circumferential surface of the rotor core and at least one of the magnet insertion holes. The slit inner lines extend toward the outer circumferential surface of the rotor core from the apex of the slit, the apex being located on a side of the magnet insertion holes. The slit outer line connects side ends of the slit inner lines located on a side opposite to the apex.
US10714992B2
A motor includes a stator including windings and a rotor. The windings include a first winding and a second winding connected in series. The rotor includes a plurality of rotor parts arranged in an axial direction. Each of the rotor parts includes a first magnet pole unit including a permanent magnet and a second magnet pole unit opposing the second winding at a rotational position of the rotor where the first magnet unit opposes the first winding. The second magnet pole unit applies a weaker magnetic force to the stator than the first magnet pole unit. The rotor parts each include an equal number of magnet poles. The first magnet pole units of the rotor parts are located at positions deviated from one another in a circumferential direction. The second magnet pole units of the rotor parts are located at positions deviated from one another in the circumferential direction.
US10714982B2
A resonator and resonator method are provided. The resonator includes an inductor, a capacitor, and a switch configured to maintain energy in at least one of the inductor and the capacitor for a select period of time and to enable variability of energy in the at least one of the inductor and the capacitor for another period of time, to set a resonating frequency of the inductor and the capacitor.
US10714978B2
An electronic apparatus is disclosed. The electronic apparatus includes a wireless power transmission module that wirelessly transmits power to a wireless power reception apparatus that is configured to supply power to a drive apparatus for an operation of an electronic apparatus, a first signal reception module that receives a control signal from a remote control apparatus, a first power supply module that supplies power to the first signal reception module, and a first control module configured to control the first power supply module. When the first signal reception module receives an off signal, the first control module controls the first power supply module such that power that is supplied to the wireless power transmission module is blocked.
US10714972B2
A power supply control apparatus according to the embodiment includes a microcomputer. The microcomputer is configured to: acquire switching information for switching a power supply pathway supplying power to a load between (i) a first pathway supplying power from a first battery to the load and (ii) a second pathway supplying power from a second battery to the load. When the microcomputer switches the power supply pathway between the first pathway and the second pathway, the microcomputer activates or deactivates a voltage converter while turning off a semiconductor relay so that power is supplied to the load through the first pathway via a body diode during a time period in which the voltage converter completes an activation process or a deactivation process.
US10714971B2
A battery module is provided including a battery module connector configured to engage with a backplane connector on a backplane board associated with an uninterruptible power supply (UPS). When the battery module connector is engaged with the backplane connector a circuit is completed that instantaneously indicates to the UPS that the battery module is connected. When the battery module connector is disengaged from the backplane connector the circuit is opened and instantaneously indicates to the UPS that the battery module is disconnected.
US10714967B2
An automotive generator control method includes inputting a current vehicle speed, an actual battery level, an actual battery temperature and an engine operating efficiency (S11); calculating an optimal battery level by using a preset first mapping table, on a basis of the actual battery temperature and the current vehicle speed; taking a difference between the actual battery level and the optimal battery level as a target power-generation difference (S12); calculating a target power-generation voltage by using a preset second mapping table, on a basis of the target power-generation difference and the engine operating efficiency (S13); and outputting the target power-generation voltage (S14). The automotive generator control method and control device can precisely control a power-generation voltage of a generator according to a current engine/vehicle working condition and a battery working condition, so as to achieve primary energy recovery of the generator in a highly efficient manner.
US10714959B2
An EV-PCS, which is a charger/discharger, includes: a power converter, which is a charging/discharging unit that controls at least one of charging a storage battery mounted on an EV and discharging the storage battery; a charging/discharging cable extending from the power converter; and a charging/discharging connector for connecting the charging/discharging cable to the EV. The charging/discharging connector includes a temperature detection element having a surface covered with resin, the temperature detection element detecting the internal temperature of the charging/discharging connector. The power converter reduces a value of current flowing to the charging/discharging cable during the charge or discharge of the storage battery as the temperature detected by the temperature detection element rises.
US10714957B1
A charge state control system and device for controlling charge sent to a consumer device is disclosed. A software application is provided on a consumer device. A separate hardware device comprises a microprocessor; a transistor relay circuit which is controlled by the microprocessor to open or close a relay; and a connector for connection with the consumer device. The software application is configured to receive an input from a user, determine a battery level of the consumer device and communicate with the hardware device to instruct the microprocessor to open or close the relay depending upon the battery level and the input.
US10714928B2
A diagnostic system is provided. A first monitoring application sets a first voltage regulator status flag equal to a first fault value when a first voltage value is greater than a first maximum voltage value. A first diagnostic handler application transitions each of a high voltage switch and a low voltage switch to an open operational state when the first voltage regulator status flag is equal to the first fault value. A second monitoring application sets a second voltage regulator status flag equal to a second fault value when the second voltage value is less than a first minimum voltage value. A second diagnostic handler application transitions the high voltage switch and the low voltage switch to the open operational state when the second voltage regulator status flag is equal to the second fault value.
US10714925B2
A two-terminal electronic fuse device involves two switches, four diodes, switch control circuitry, and a storage capacitor, connected in a particular topology. When AC current flows through the fuse, a charging current charges the storage capacitor. Energy stored in the storage capacitor is then used to power the switch control circuitry. If the voltage on the storage capacitor drops, then the switches are opened briefly and at the correct time. Opening the switches allows the charging current to flow. By opening the switches and charging the storage capacitor only at times of low current flow through the fuse, the disturbance of load current flowing through the fuse is minimized. If an overload current condition is detected, then the fuse has tripped and first and second switches are opened. If the capacitor does not need charging and there is no overload condition, then the switches remain closed.
US10714917B2
A splice plate for adjustable angled connections between adjacent sections of cable bus enclosures having a first portion for adjustably connecting to a first siderail of a first cable bus enclosure, and a second portion for connecting to a second siderail of an adjacent second cable bus enclosure; at least one straight slot included in said first portion for receiving a connecting bolt to interconnect said first siderail and said plate, wherein a position of said connecting bolt within said straight slot is movable to allow changes of connection angle; at least one arc slot included in said first portion for receiving connecting bolts to interconnect said first siderail and said plate, wherein a position of said connecting bolts within said arc slot is movable to allow changes of connection angle in cooperation with said straight slot; whereby an angle of connection between said first and second cable bus enclosures is selectively adjustable by changing the position of said connecting bolts in said slots on said first portion of said plate.
US10714916B2
A protector includes a main body formed with an accommodation part by a bottom wall part and side wall parts, a lid body mounted on the main body to cover the accommodation part, and a flange part that extends along a longitudinal direction of the main body with a gap at an upper portion in parallel with an outer surface of at least one of the side wall parts of the main body. A plurality of engagement holes are provided at a lower portion of the flange part. A plurality of engagement claws that are provided on at least one edge part of the lid body are locked with engagement edge parts of the engagement holes when the plurality of engagement claws are inserted into the gap between the flange part and the side wall part which faces the flange part with the gap.
US10714915B2
A vertical cable manager includes a base frame and a door. The base frame has upper and lower support legs and upper and lower crossbars between the support legs. The door has retractable hinge pins at corners of the door. The crossbars have hinge rod receptacles to receive respective hinge pins and elastic latch members having a flexible arm and a catch portion. The catch portions secure the hinge pins in the hinge rod receptacles with the door closed and are deflectable through elastic deformation of the flexible arm to allow travel of the hinge pins through the hinge rod receptacles and past the catch portions when the door is moved from an open to a closed position.
US10714914B2
A stripping apparatus and a stripping station capable of reducing cycle time for steps of stripping an insulation coating from a conducting wire material are provided. A stripping apparatus configured to strip an insulation coating WL from a conducting wire material W, including the insulation coating WL and cross-section of which orthogonal to a longitudinal direction has a rectangular shape, the stripping apparatus includes: an upper mold 150 provided with a stripping blade configured to strip the insulation coating WL; a lower mold 110 configured to support the conducting wire material W from a lower side thereof; a pressing member 130 configured to prevent displacement of the conducting wire material W; and a rotation mechanism configured to rotate the conducting wire material W around a rotational axis C1 that is parallel to a axial center of the conducting wire material W.
US10714913B2
An aerial cable treatment system having a cable surface preparation assembly and a coating assembly. The cable treatment system is translatable along an in-situ aerial cable. The cable surface preparation assembly can remove dirt and debris, such as carbon deposit, grease, mud, fertilizers, bird droppings, fungal growth, mosses, soot, ice, and like from aerial cables with varying sizes as it translates along the cable. The coating assembly can apply a coating to the outer surface of the in-situ aerial cable it translates along the cable.
US10714908B1
A spark plug includes a center electrode; a metal shell that retains the center electrode at an outer periphery of the center electrode in an insulating manner; a ground electrode disposed such that a spark gap is formed between the center electrode and an end portion of the ground electrode; and a plug cap connected to the metal shell, the plug cap covering the center electrode and the end portion of the ground electrode from front and having a through hole in a region in front of the ground electrode. An inner surface of the plug cap has at least one ridge in a first region that is in front of an inner open end of the through hole.
US10714897B2
A distributed feedback semiconductor laser of includes a semiconductor stacked body and a first electrode. The semiconductor stacked body includes a first layer, an active layer that is provided on the first layer and is configured to emit laser light by an intersubband optical transition, and a second layer that is provided on the active layer. The semiconductor stacked body has a first surface including a flat portion and a trench portion; the flat portion includes a front surface of the second layer; the trench portion reaches the first layer from the front surface; the flat portion includes a first region and a second region; the first region extends along a first straight line; the second region extends to be orthogonal to the first straight line; and the trench portion and the second region outside the first region form a diffraction grating having a prescribed pitch along the first straight line. The first electrode is provided in the first region.
US10714894B1
In a first embodiment, an external cavity tunable laser, comprising a silicon photonics circuit comprising one or more resonators having one or more p-i-n junctions; wherein a voltage is applied to one or more of the p-i-n junctions. In a second embodiment, a method of operating an external cavity tunable laser, comprising sweeping out free-carriers from a resonator of the tunable laser by applying a voltage to a p-i-n junction of a waveguide of the resonator.
US10714893B2
Disclosed is an optically pumped vertical cavity laser structure operating in the mid-infrared region, which has demonstrated room-temperature continuous wave operation. This structure uses a periodic gain active region with type I quantum wells comprised of InGaAsSb, and barrier/cladding regions which provide strong hole confinement and substantial pump absorption. A preferred embodiment includes at least one wafer bonded GaAs-based mirror. Several preferred embodiments also include means for wavelength tuning of mid-IR VCLs as disclosed, including a MEMS-tuning element. This document also includes systems for optical spectroscopy using the VCL as disclosed, including systems for detection concentrations of industrial and environmentally important gases.
US10714892B2
An embodiment includes a light source. The light source may include a substrate and an integrated diffuser. The substrate may include a first surface and a second surface. The second surface may be opposite the first surface. The integrated diffuser may be integrated at the chip-level and positioned directly on the second surface of the substrate. The integrated diffuser may be configured to receive an optical signal directly from the substrate after the optical signal propagates through the substrate and to control a particular profile of a resultant beam of the optical signal over two axes after the optical signal propagates through the integrated diffuser.
US10714882B2
A connector mateable with a mating connector includes at least one contact and a contact-holding member. The contact has resiliently deformable first and second support, first and second contact, and a coupling portions. The first and second contact portions, movable in an up-down direction perpendicular to a front-rear direction, are supported by the first and second support portions, respectively. The first support portion has first and second edges in a width direction perpendicular to the front-rear and up-down directions, the edges facing first and second orientations, respectively, which are opposite to each other of the width direction. The coupling portion couples the first and second support portions, and has upper main and bent portions. The upper main portion has upper front wide, fixed to the holding member to be immovable in the width direction, front narrow and base portions.
US10714871B2
A medical device, for example, an anesthesia apparatus or ventilator, including a hot wire sensor (10); a hot wire sensor (10) and a hot wire module (14) for a hot wire sensor (10) are provided. A first hot wire and a second hot wire (26, 28), namely, a measuring wire (26) and a compensation wire (28), are connectable to the hot wire sensor (10), for example, in the form of a hot wire module (14), in an electrically conductive manner. A first contact pair (52, 54) is associated with the measuring wire (26) for contacting same and a second contact pair (56, 58) is associated with the compensation wire (28) for contacting same. The contacts of the second contact pair (56, 58) are configured as leading contacts in relation to at least one of the contacts of the first contact pair (52, 54).
US10714867B2
A waterproof connector capable of maintaining high waterproof properties even under high water pressure is provided. The waterproof connector includes: a connector main body having connection terminals held by a housing; a casing having a connector accommodating portion in which the connector main body is accommodated; and a sealing material fixed to an outer peripheral portion of the housing and preventing water from entering between the housing and the casing. The sealing material includes a peripheral abutting portion configured to abut against an inner peripheral surface of the connector accommodating portion, and a rear abutting portion configured to abut against a rear wall portion of the connector accommodating portion, and the housing includes a sealing material supporting surface configured to support a rear surface portion of the rear abutting portion.
US10714865B2
A connector housing comprises a plurality of walls enclosing a receiving space and defining an insertion port. Each of a pair of adjacent walls of the plurality of walls has one of a pair of connecting mechanisms at adjacent edges of the pair of adjacent walls near the insertion port. The pair of connecting mechanisms are complementary to each other and the adjacent edges of the pair of adjacent walls are connected to each other by the connecting mechanisms.
US10714860B2
A joint connector includes shorting members (30), a housing body (HB) having a shorting member accommodating portion (50) for holding the shorting members (30), and a shorting member retainer (70). The shorting member (30) includes a base (32) extending in a shorting direction and shorting-side terminals (34, 36) projecting from this base (32) in a fitting direction. The shorting member retainer (70) is mounted into the housing body (HB) in a mounting/detaching direction intersecting both the shorting direction and the fitting direction. The shorting member retainer (70) includes shorting member constraining portions (74) configured to cross the shorting members (30) in the mounting/detaching direction to restrict movements of the shorting members (30) in the fitting direction.
US10714857B2
A cable assembly and associated connector are provided. The cable assembly includes a connector and a length of cable for conducting an electrical current. The connector includes a connector body and a cap threadably engaging the connector body. The cap and connector body each include abutment surfaces arranged to interact with one another to provide a retention feature such that the cap is not inadvertently removed from the connector body.
US10714856B2
An electrical connector is used for a plug having multiple pins to downward insert therein. The electrical connector includes a body provided with multiple accommodating holes running through an upper surface and a lower surface of the body; and multiple terminals correspondingly accommodated in the accommodating holes. Upper ends of the terminals are located at a same height, and lower ends of the terminals are located at a same height. Each terminal has two contact arms opposite and close to each other. The terminals include a first terminal and a second terminal. The two contact arms of the first terminal and the two contact arms of the second terminal are located at different heights and correspondingly used for the pins to insert downward therein successively. Thus, signal interference between the terminals can be reduced, and a maximum insertion force of the plug inserted into the electrical connector is reduced.
US10714854B2
The electrical connector includes an insulative housing having a columnar section and an annular groove surrounding the columnar section. The column section includes a mating face and a plurality of power contact passageways and a plurality of signal contact passageways extending through the mating face wherein the signal contacts and the power contacts are commonly arranged with a cross configuration area to have the signal contacts located by opposite upper and lower sides of the power contacts. Both the power contacts and the signal contacts of the plug connector are of a blade type while both the power contacts and the signal contacts of the receptacle connector are of a clamp type wherein each signal contact has one clamping structure while each power contact has a pair of clamping structures side by side arranged with each other.
US10714843B2
A method for manufacturing an electric wire with a terminal includes forming a bonded part in which outer peripheral surfaces of strands are bonded to one another on an end portion of a core wire having the strands, in an electric wire in which the end portion is exposed from a covering; installing the bonded part onto a crimp terminal including a bottom part and a pair of caulking pieces extending from the bottom part and facing each other; crimping the caulking pieces to the bonded part, by sandwiching the crimp terminal and the electric wire between a first mold supporting the crimp terminal and a second mold moving relative to the first mold; and cutting a tip end portion projecting to outside from the caulking pieces in the bonded part by a cutting unit, while the caulking pieces are pressing the bonded part toward the bottom part.
US10714833B2
An antenna structure utilizing metal housing of a wireless communication device as antenna includes first, second, and third metallic members, and a feed portion. A first gap is between the first and second metallic members. A second gap is between the second and third metallic members. The current feed portion is connected to the second metallic member, and current entering the second metallic member flows towards the first gap and the second gap respectively to excite radiation signals in a first frequency band. The first and third metallic members obtain the current by coupling and excite radiation signals in a second and a third frequency bands respectively. Frequencies of the third frequency band are higher than frequencies of the second frequency band, which are higher than the frequencies of the first frequency band. A wireless communication device using the antenna structure is provided.
US10714825B2
An electronic device is provided that includes a circuit board received in the electronic device and in which at least one board is layered, a communication module disposed at one surface of the circuit board and electrically connected to the circuit board, an antenna electrically connected to the communication module, and a metal structure whose one surface is separated from the other surface of the circuit board to form a space within the electronic device by enclosing the circuit board and in which at least one aperture is formed at one side thereof.
US10714824B2
In accordance with one or more embodiments, a planar surface wave launcher includes a substrate having a planar substrate surface. A planar antenna having first and second antenna elements on the planar substrate surface, the first and second antenna elements having edges on an aperture side of the planar surface wave launcher and opposing edges, is configured to transmit and receive first guided electromagnetic waves on a surface of a transmission medium. A conductive ground plane is provided on the planar substrate surface and coplanar to the planar antenna, the conductive ground plane having a mating edge with a shape conforming to the opposing edges of the first and second antenna elements, the mating edge electrically isolated from the opposing edges of the first and second antenna elements, wherein the transmission medium is spaced a distance apart from, and parallel to, the conductive ground plane.
US10714813B2
An electronic device having a space formed between a front face and a rear face thereof is provided. The electronic device includes a first cover disposed on the front face, a second cover disposed on the rear face, a frame surrounding a periphery of the first cover and a periphery of the second cover, at least one antenna module coupled to a first face of the second cover, and a printed circuit board disposed in the space and having a front face electrically connected to the at least one antenna module.
US10714809B2
An antenna for vehicle for receiving electric waves from a vehicle front side is attached to an internal side of a window glass for vehicle. The antenna includes a first radiator having a shape of a plate, at least a part of the first radiator being arranged separated from the window glass for vehicle; and a second radiator arranged separated from the first radiator, and arranged so as to sandwich at least a part of the first radiator between the second radiator and the window glass for vehicle.
US10714806B2
A bi-directional coupler includes a first individual directional coupler and a second individual directional coupler, which are individual electronic components having mutually equivalent circuit configurations. Each of the first and second individual directional couplers includes: a first terminal; a second terminal; a third terminal; a fourth terminal; a main line connecting the first terminal and the second terminal; and a subline connecting the third terminal and the fourth terminal. The subline includes first and second coupling line sections configured to be electromagnetically coupled to the main line, and a matching section provided between the first and second coupling line sections. The second terminal of the second individual directional coupler is electrically connected to the second terminal of the first individual directional coupler.
US10714804B2
Conventional coaxial wiring devices present a problem in that the management of the manufacturing process therefor is difficult. A coaxial wiring device according to the present invention includes a first member, a second member, and a conductor plate. The first member (10) and the second member (30) include, when a line that connects a first port and a second port is denoted by a reference line, a first groove (11) that has a central point on the reference line and extends in a direction that intersects with the reference line; a second groove (12) that connects one end (FN1) of the first groove (11) and the first port; a third groove (13) that connects the other end (FN2) of the first groove (11) and the first port and has a shape that is line symmetrical to the second groove (12) with respect to the reference line; a fourth groove (14) that connects one end (FN1) of the first groove (11) and the second port; and a fifth groove (15) that connects the other end (FN2) of the first groove (11) and the second port and has a shape that is line symmetrical to the fourth groove (14) with respect to the reference line.
US10714803B2
Aspects of the subject disclosure may include, for example, a cable can include a core, a plurality of strips of cladding disposed on the core, and a coupler that facilitates inducing electromagnetic waves that propagate along the core, where a first dielectric constant of the core exceeds a second dielectric constant of each strip of cladding of the plurality of strips of cladding, and where the electromagnetic waves propagate along the core without requiring an electrical return path. Other embodiments are disclosed.
US10714797B2
A multilayer thermal laminate with aerogel is used for a battery cell enclosure to improve thermal properties and to reduce thermal inhomogeneity in the form of localized hotspots that exceed a desired rated temperature, thereby enabling a more compact design within rated thermal design limits for a given electrical performance.
US10714790B2
A battery, including: a positive electrode; a negative electrode; and an electrolyte layer containing a negative electrode active material.
US10714789B2
An all-solid state battery including at least one short-circuit current shunt part and a plurality of electric elements, the short-circuit current shunt part and the electric elements being stacked, wherein the shunt part includes a first and a second current collector layers, and an insulating layer between the first and second current collector layers, all being stacked, each of the electric elements includes a cathode current collector layer, a cathode material layer, a solid electrolyte layer, an anode material layer, and an anode current collector layer, all of these layers being stacked, the first current collector layer connected with the cathode current collector layer, the second current collector layer connected with the anode current collector layer, the electric elements are electrically connected with each other in parallel, and a plurality of sheets of metal foil, the one being arranged on a side wherein a nail penetrates in nail penetration testing.
US10714787B2
Provided is a lithium ion secondary battery including a power generating element that includes at least one positive electrode plate, at least one negative electrode plate, and at least one separator. A ratio B/A (mΩcm) of volume resistivity B (mΩcm3) of the power generating element to an area A (cm2) per one positive electrode plate is 0.4 or more and less than 0.9.
US10714780B2
The present invention relates to a separator and a fuel cell stack comprising the same, and according to one aspect of the present invention, there is provided a separator comprising: a plurality of riblet elements arranged to be spaced apart at a predetermined interval; and a plurality of connecting bars connecting two adjacent riblet elements, wherein each of the riblet elements comprises a contact portion having a predetermined area, and a first partition wall and a second partition wall each extended from both sides of the contact portion, the space formed by the first partition wall, the contact portion and the second partition wall is opened along the connection direction of the connecting bar, and at least two riblet elements are provided such that each of the contact portions has a different area.
US10714770B2
A fuel cell system comprises a fuel cell; a fuel cell controlling converter; an oxidizing gas supplier that is configured to supply an oxidizing gas to the fuel cell; and a controller that is configured to control a voltage and a current value of the fuel cell. In a first power generation state, the controller sets the voltage and the current value of the fuel cell according to a required output, based on a current-voltage characteristic of the fuel cell. In a second power generation state, the controller sets the voltage and the current value of the fuel cell according to the required output and a required amount of heat, to a voltage and a current value that provide a lower power generation efficiency than a power generation efficiency in the first power generation state. The controller reduces the required amount of heat in a process of changing over a power generation state from the second power generation state to the first power generation state. The controller reduces a decrement in the required amount of heat per unit time when the required output is equal to or higher than a reference value, compared with a decrement when the required output is lower than the reference value.
US10714768B2
The fuel cell system of a motor vehicle has a fuel cell, comprising an anode side and a cathode side, a compressor, which is rotationally connected to a motor and connected by a feed line to the cathode side of the fuel cell, and a turbine, which is connected by an exhaust air line to the cathode side and which furthermore is rotationally connected only to a generator, which is connected at the output side to a second inverter and a low-voltage battery.
US10714767B2
Methods, systems, and device for controlling air flow within a vehicle for electrical generation. The air control system includes at least one of an air compressor, a back pressure valve or a bypass valve that controls air flow. The air control system includes one or more components. The air control system includes an electronic control unit. The electronic control unit is configured to obtain an air flow target and an air pressure ratio target and determine that the one or more components will operate outside a safe operating region. The electronic control unit is configured to determine a mediated air flow target and a mediated air pressure ratio target that causes the one or more components to operate within the safe operating region. The electronic control unit is configured to adjust the at least one of the air compressor, the back pressure valve or the bypass valve.
US10714754B2
The purpose of the present invention is to provide a graphene which has high dispersibility, high electrical conductivity and oxidation resistance namely a graphene which has high electrochemical stability. In order to achieve the above-described purpose, a surface-treated graphene according to the present invention is obtained by having a compound represented by general formula (1) or a neutralized salt thereof adhere to a graphene. In general formula (1), A represents a benzene-based aromatic group with a condensation number of 1-4, which has no phenolic hydroxy group; R1 represents a direct bond, a divalent hydrocarbon group having 1-12 carbon atoms, or a divalent organic group having 1-12 carbon atoms, which has a structure selected from the group consisting of an ether bond, an ester bond, an alcohol structure and a carbonyl structure; each of R2 and R3 independently represents a hydrogen atom, a hydrocarbon group having 1-12 carbon atoms, or an organic group having 1-12 carbon atoms, which has a structure selected from the group consisting of an ether bond, an ester bond, an alcohol structure and a carbonyl structure; and n represents an integer of 1-6.
US10714748B2
A positive electrode active material for nonaqueous electrolyte secondary batteries, which has high energy density and excellent cycle characteristics. A positive electrode active material for nonaqueous electrolyte secondary batteries of the present invention is represented by general formula LiNixCoyM(1-x-y)O2 (wherein M represents at least one element selected from among metal elements, 0.3≤x<1.0 and 0
US10714743B2
The present disclosure relates to a method for manufacturing an electrode including a polymer electrolyte and an electrode obtained thereby. Particularly, the present disclosure relates to an electrode for a wide voltage battery which has improved reactivity on the surface of the electrode active material. The electrode provides an increased reactive site between an electrode active material and a polymer electrolyte and an improved ratio of the amount of active material in the electrode, and thus can provide a battery with improved energy density.
US10714736B2
A battery pack system is provided with an integrated battery disconnect mechanism. The battery pack system includes a circuit board and one or more battery packs connected to the circuit board. A battery pack of the one or more battery packs is connected to the circuit board via one or more connectors. The battery pack system also includes a disconnect mechanism configured to disconnect the battery pack from the circuit board with a failure event at the battery pack by disconnecting the one or more connectors connecting the battery pack to the circuit board. In an enhanced aspect, the battery pack is suspended from the circuit board by the one or more connectors, and the disconnecting of the one or more connectors by the disconnect mechanism with the failure event releases the battery pack to drop away from the circuit board.
US10714734B2
Disclosed is a non-lead conductive cap for a battery terminal and battery. The battery may comprise a battery housing and a positive and negative terminal, the positive and negative terminal being accessible through the battery housing; wherein the positive and negative terminal further comprise an electrically conductive cap mounted on both the positive and negative terminal, wherein the electrically conductive cap does not comprise lead.
US10714731B2
A connection module is a flat-shaped connection module that is to be attached to a power storage element group formed by aligning a plurality of power storage elements with positive and negative electrode terminals and includes a first bus bar module, a second bus bar module, and insulating fixing members. The first and second bus bar modules include sheet members that hold the plurality of bus bars arranged in an alignment direction of the power storage elements. The fixing members are coupled to the sheet members to integrate and fix the first bus bar module and the second bus bar module.
US10714730B2
A battery module is disclosed that includes a stack of battery cells, where each battery cell has a terminal, and the terminal has a first alloy of a metal. The battery module has a bus bar that includes a body having a second alloy of the metal, nickel plating on at least a portion of the body, and an indentation disposed on the body, where a thickness of the nickel plating is between 0.2% and 20% of an overall thickness of the body, and a weld physically and electrically coupling the respective terminal to the bus bar. The indentation has a depth between 10% and 90% of the overall thickness, an area of the indentation is between 5% and 20% of an overall area of the body, and the nickel plating enables the weld to be stronger than a weld between the first and second alloys.
US10714729B2
A core prevents or reduces misalignment of a battery separator wound around the core. The core has one or more grooves in the outer peripheral surface thereof. The grooves extend substantially in the width direction of the core. The grooves have a depth of 30 μm or greater, and the following condition (1) is satisfied: N/D>0.0025 (1) where D is the outer circumference in mm of the core and N is the number of the grooves in the outer peripheral surface.
US10714723B2
Provided is a separator for a non-aqueous secondary battery, including: a porous substrate having an average pore diameter of from 20 nm to 100 nm; and a porous layer provided on one or both sides of the porous substrate and including a polyvinylidene fluoride resin and a filler, the porous layer including a filler in an amount of from 45% by volume to 75% by volume with respect to a total solid content of the porous layer, a weight average molecular weight of the polyvinylidene fluoride resin being 1,000,000 or more, and a peel strength between the porous substrate and the porous layer being 0.20 N/12 mm or more.
US10714717B2
The present invention provides a battery module, including: a plurality of power batteries, module casing, separating plate, battery connecting strips, detecting terminals and cell module controller; the power batteries are disposed in module casing, separating plate is arranged above power batteries, through-holes are arranged on separating plate corresponding to electrode terminals of power batteries, battery connecting strips are arranged above separating plate, and are connected with electrode terminals of power batteries through through-holes, so that all power batteries are electrically connected, cell module controller is arranged above separating plate, press-fit holes are provided on cell module controller, terminal connecting portion is arranged on battery connecting strip, detecting terminal is located between separating plate and cell module controller, one end of detecting terminal is connected with terminal connecting portion, the other end of detecting terminal is provided with press-fit contact, press-fit contact is connected in press-fit with press-fit hole.
US10714716B2
The present invention relates to a sealing apparatus for a secondary battery, which seals a sealing part of a case in which an electrode assembly and an electrolyte are accommodated, and the sealing apparatus comprises a sealing member comprising a first sealing piece and a second sealing piece, which thermally fuse a surface of the sealing part to seal the sealing part, wherein the first sealing piece and the second sealing piece comprise a plurality of thermal fusion parts, which are disposed from an outer end of a surface of the sealing part toward an inner end that is opposite to the outer end to thermally fuse the surface of the sealing part, and non-thermal fusion parts, which are disposed between the plurality of thermal fusion parts and do not seal the surface of the sealing part.
US10714713B2
The present invention relates to a clamping device (300) for battery cells (100), characterized by: a container that comprises a space (310) with a variable volume for receiving a fluid, the container being designed such that a battery cell (100) or a plurality of battery cells (100) can be clamped. The invention also relates to a battery module, a battery, a battery system, a vehicle and a method for producing a battery module (20; 30; 40; 50; 60).
US10714712B2
A battery pack includes a can having a curvature and an opening at a side thereof; an electrode assembly accommodated in the can; a cap assembly including a cap plate sealing the opening of the can and an electrode pin in a center of the cap plate; and an insulating case between the electrode assembly and the cap assembly, the insulating case including a first insulating unit and a second insulating unit that are separated from each other.
US10714705B2
A display device may include a first substrate, a second substrate, a light emitting structure, a seal member, a seal structure, a pad electrode, and a connection wire. The second substrate may overlap the first substrate. The light emitting structure may be positioned between the first substrate and the second substrate. The seal member may be positioned between the first substrate and the second substrate. The seal structure may be spaced from the seal member. A section of the seal member may be positioned between the light emitting structure and the seal structure. The seal structure may be positioned between the seal member and the pad electrode. The connection wire may electrically connect the seal structure and the pad electrode.
US10714703B2
An organic light emitting diode (OLED) display includes: a substrate including a plurality of organic light emitting elements; an adhesive member on at least a portion of an upper surface of the substrate; a flexible circuit board adhered to the upper surface of the adhesive member and having a portion bent to be mounted to a lower surface of the substrate; and a light blocking member at the upper surface of the substrate, wherein the light blocking member is laterally offset from the adhesive member.
US10714702B2
The present disclosure provides an organic light emitting diode (OLED) and a manufacturing method of the same, and a display device. The OLED comprises a first portion and a second portion which are manufactured by different processes and sequentially stacked, wherein the first portion comprises a first carrier transport layer, a first light emitting layer, and a connecting layer between the first light emitting layer and the second portion, which are sequentially stacked, the second portion comprises a second carrier transport layer, the first light emitting layer comprises an N-type base material and a P-type base material, and the connecting layer comprises a material corresponding to carriers in the first carrier transport layer. The OLED provided by the present disclosure can not only make light emission stable, maintain a good efficiency of light emission, but obtain light with an ideal color and prevent a phenomenon of “unexpected emission of light”.
US10714698B2
The present disclosure relates to a free-form display that can freely alter its shape by connecting a plurality of micro display elements by a flexible medium. The free-form display comprises a flexible substrate, a plurality of unit pixel substrates, and a flexible medium. The unit pixel substrates are arranged in a matrix on the flexible substrate. The flexible medium fills gaps between the unit pixel substrates.
US10714693B2
A polycyclic compound and an organic electroluminescence device including the same. The polycyclic compound according to an example embodiment is represented by the following Formula 1. wherein in Formula 1, Cy1 is carbonyl-containing five- or six-membered and substituted or unsubstituted cyclic hydrocarbon or substituted or unsubstituted heterocycle, and R1 to R4 are each independently a hydrogen atom or a group represented by the following Formula 2 or 3.
US10714692B2
The present specification relates to an organic light emitting diode.
US10714674B2
A piezoelectric device includes a base, a piezoelectric vibrating piece, and a cover. The base has a depressed portion and a bank portion. The piezoelectric vibrating piece is housed within the depressed portion. The cover is bonded on a top surface of the bank portion of the base with a sealing metal. The top surface of the base has an inclined surface that inclines down toward an inside of the base in a direction along a width direction of the bank portion or an inclined surface that inclines down toward an outside of the base in the direction along the width direction of the bank portion.
US10714663B2
A method of manufacturing a light emitting device, includes providing a light emitting element having an element upper surface, an element lower surface opposite to the element upper surface in a thickness direction of the light emitting element, and an element side surface between the element upper surface and the element lower surface. A wavelength converter having a converter lower surface is provided. The wavelength converter is joined to the light emitting element using an adhesive so that the converter lower surface faces the element upper surface. The converter lower surface has an exposed region that does not face the element upper surface viewed along the thickness direction. The adhesive covers the element side surface and the exposed region.
US10714658B2
A micro LED display panel according to the present disclosure includes a substrate including a light emitting region and a driving region; a micro LED arranged in the light emitting region on the substrate, a transistor element arranged in the driving region on the substrate and driving the micro LED, a first connection wiring electrically connecting the micro LED and the transistor, and a color adjustment layer arranged in the light emitting region under the substrate. The micro LED display panel according to the present invention can form the micro LED and the transistor element for driving the micro LED on a growth substrate such as a sapphire substrate together on the same plane so that the micro LED does not require a transfer process, and it is possible to manufacture polysilicon when manufacturing the micro LED, and can simplify the process.
US10714654B2
A solar cell includes a semiconductor substrate containing impurities of a first conductive type; a tunnel layer positioned on the semiconductor substrate; an emitter region positioned on the tunnel layer and containing impurities of a second conductive type opposite the first conductive type; a dopant layer positioned on the emitter region and formed of a dielectric material containing impurities of the second conductive type; a first electrode connected to the semiconductor substrate; and a second electrode configured to pass through the dopant layer, and connected to the emitter region.
US10714649B2
A method of fabricating a visibly transparent, ultraviolet (UV) photodetector is provided. The method includes laying a first electrode onto a substrate surface, the first electrode being formed of a carbon-based, single-layer material. A block is patterned over an end of the first electrode and portions of the substrate surface. The block is formed of a visibly transparent material that is able to be deposited into the block at 75° C.-125° C. In addition, the method includes masking a section of the block and exposed sections of the first electrode. A second electrode is laid onto an unmasked section of the block with an end of the second electrode laid onto the substrate surface. The second electrode is formed of the carbon-based, single-layer material.
US10714646B2
A photoelectric conversion material includes a compound represented by Formula (1): where, X is selected from the group consisting of a hydrogen atom, a deuterium atom, a halogen atom, an alkyl group, and a cyano group; and Y represents a monovalent substituent represented by Formula (2): where, R1 to R10 each independently represent a hydrogen atom, a deuterium atom, a halogen atom, an alkyl group, or an aryl group; or two or more of R1 to R10 bond to each other to form one or more rings, and the remainders each independently represent a hydrogen atom, a deuterium atom, a halogen atom, an alkyl group, or an aryl group; * denotes the binding site of Y in Formula (1); and Ar1 is selected from the group consisting of structures represented by Formulae (3): where ** denotes a binding site of Ar1 with N in Formula (2).
US10714634B2
A memory device includes a memory cell, a logic device and a high voltage device formed on the same semiconductor substrate. Portions of the upper surface of the substrate under the memory cell and the high voltage device are recessed relative to the upper surface portion of the substrate under the logic device. The memory cell includes a polysilicon floating gate disposed over a first portion of a channel region of the substrate, a polysilicon word line gate disposed over a second portion of the channel region, a polysilicon erase gate disposed over a source region of the substrate, and a metal control gate disposed over the floating gate and insulated from the floating gate by a composite insulation layer that includes a high-K dielectric. The logic device includes a metal gate disposed over the substrate. The high voltage device includes a polysilicon gate disposed over the substrate.
US10714631B2
The present invention provides two methods for crystallizing a metal oxide semiconductor layer and a semiconductor structure. The first crystallization method is treating an amorphous metal oxide semiconductor layer including indium with oxygen at a pressure of about 550 mtorr to about 5000 mtorr and at a temperature of about 200° C. to about 750° C. The second crystallization method is, firstly, sequentially forming a first amorphous metal oxide semiconductor layer, an aluminum layer, and a second amorphous metal oxide semiconductor layer on a substrate, and, secondly, treating the first amorphous metal oxide semiconductor layer, the aluminum layer, and the second amorphous metal oxide semiconductor layer with an inert gas at a temperature of about 350° C. to about 650° C.
US10714621B2
A semiconductor device includes a plurality of gate spacers, a gate conductor, and first and semiconductor features. The gate conductor is between the gate spacers. The first semiconductor feature underlies the gate conductor and has impurities therein. The second semiconductor feature underlies at least one of the gate spacers and substantially free from the impurities of the first semiconductor feature.
US10714618B2
A semiconductor device includes a substrate having a fin active region pattern having a protruding shape, a device isolation layer pattern covering a side surface of a lower portion of the fin active region pattern, a spacer pattern covering a side surface of a portion of the fin active region pattern that protrudes from a top surface of the device isolation layer pattern, and a source/drain region in contact with a top surface of the fin active region pattern and a top surface of the spacer pattern.
US10714617B2
A semiconductor device includes a channel pattern including a first semiconductor pattern and a second semiconductor pattern, which are sequentially stacked on a substrate, and a gate electrode that extends in a first direction and crosses the channel pattern. The gate electrode includes a first portion interposed between the substrate and the first semiconductor pattern and a second portion interposed between the first and second semiconductor patterns. A maximum width in a second direction of the first portion is greater than a maximum width in the second direction of the second portion, and a maximum length in the second direction of the second semiconductor pattern is less than a maximum length in the second direction of the first semiconductor pattern.
US10714614B2
A semiconductor device includes a substrate including a first active region, a second active region and a field region between the first and second active regions, and a gate structure formed on the substrate to cross the first active region, the second active region and the field region. The gate structure includes a p type metal gate electrode and an n-type metal gate electrode directly contacting each other, the p-type metal gate electrode extends from the first active region less than half way toward the second active region.
US10714608B2
According to one embodiment, a semiconductor device includes first and second regions, a first insulating portion, and first, second, and third electrodes. The first region includes first and second partial regions, and a third partial region between the first and second partial regions. The second region includes fourth and fifth partial regions. The fourth partial region overlaps the first partial region. The fifth partial region overlaps the second partial region. The first insulating portion includes first, second, and third insulating regions. The first insulating region is provided between the second insulating region and the third partial region and between the third insulating region and the third partial region. The first electrode is electrically connected to the fourth partial region. The second electrode is away from the first electrode and is electrically connected to the fifth partial region. The third electrode is provided between the first and second electrodes.
US10714604B2
Disclosed herein are quantum dot devices, as well as related computing devices and methods. For example, in some embodiments, a quantum dot device may include: a base; a fin extending away from the base, wherein the fin includes a quantum well layer; a first dielectric material around a bottom portion of the fin; and a second dielectric material around a top portion of the fin, wherein the second dielectric material is different from the first dielectric material.
US10714593B2
A method of forming a strained vertical p-type field effect transistor, including forming a counter-doped layer at a surface of a substrate, forming a source/drain layer on the counter-doped layer, forming one or more vertical fins on the source/drain layer, removing a portion of the source/drain layer to form one or more bottom source/drains below each of the one or more vertical fins, reacting an exposed portion of each of the one or more bottom source/drains with a reactant to form a disposable layer on opposite sides of each bottom source/drain and a condensation layer between the two adjacent disposable layers, and removing the disposable layers.
US10714581B2
A Fin FET semiconductor device includes a fin structure extending in a first direction and extending from an isolation insulating layer. The Fin FET device also includes a gate stack including a gate electrode layer, a gate dielectric layer, side wall insulating layers disposed at both sides of the gate electrode layer, and interlayer dielectric layers disposed at both sides of the side wall insulating layers. The gate stack is disposed over the isolation insulating layer, covers a portion of the fin structure, and extends in a second direction perpendicular to the first direction. A recess is formed in an upper surface of the isolation insulating layer not covered by the side wall insulating layers and the interlayer dielectric layers. At least part of the gate electrode layer and the gate dielectric layer fill the recess.
US10714575B2
A transistor includes a channel region, a gate stack, and source and drain structures. The channel region comprises silicon germanium and has a first silicon-to-germanium ratio. The gate stack is over the channel region and comprises a silicon germanium oxide layer over the channel region, a high-κ dielectric layer over the silicon germanium oxide layer, and a gate electrode over the high-κ dielectric layer. The silicon germanium oxide layer has a second silicon-to-germanium ratio. The second silicon-to-germanium ratio is substantially the same as the first silicon-to-germanium ratio. The channel region is between the source and drain structures.
US10714571B2
A semiconductor layer having n-type is made of silicon carbide, and has an element region and a terminal region. A plurality of field limiting ring regions having p-type are provided in the terminal region of the semiconductor layer, and are arranged spaced apart from one another. A field insulating film is provided in the terminal region of the semiconductor layer, and is in contact with the field limiting ring regions and the semiconductor layer. Each of the field limiting regions includes a halogen-containing field limiting ring part in contact with the field insulating film and containing halogen family atoms.
US10714570B2
A semiconductor device including a plurality of suspended nanowires and a gate structure present on a channel region portion of the plurality of suspended nanowires. The gate structure has a uniform length extending from an upper surface of the gate structure to the base of the gate structure. The semiconductor device further includes a dielectric spacer having a uniform composition in direct contact with the gate structure. Source and drain regions are present on source and drain region portions of the plurality of suspended nanowires.
US10714561B2
A display device, includes a substrate; first to fourth subpixels sequentially arranged on the substrate; a first power line on a left side of the first subpixel and shared by the first and second subpixels; a sensing line between the second subpixel and the third subpixel and shared by the first to fourth subpixels; a second power line on a right side of the fourth subpixel and shared by the third and fourth subpixels; and a first data line on the left side of the first subpixel, a second data line on a right side of the second subpixel, a third data line on a left side of the third subpixel, and a fourth data line on the right side of the fourth subpixel. The first and second power lines and the sensing line are disposed on a layer different from the first to fourth data lines.
US10714557B2
A substrate for a display device and a display device including the same are disclosed. The substrate includes a first thin-film transistor including an oxide semiconductor layer, a second thin-film transistor spaced apart from the first thin-film transistor and including a polycrystalline semiconductor layer, and a storage capacitor including at least two storage electrodes. One of the at least two storage electrodes is located in the same plane and is formed of the same material as gate electrodes of the first thin-film transistor and the second thin-film transistor, and another one of the at least two storage electrodes is located in the same plane and is formed of the same material as source and drain electrodes of the first thin-film transistor and the second thin-film transistor. Accordingly, lower power consumption and a larger area of the substrate are realized.
US10714555B2
A light emitting device includes a transistor, a light reflection layer, a first insulation layer that includes a first layer thickness part, a second layer thickness part, and a third layer thickness part, a pixel electrode that is provided on the first insulation layer, a second insulation layer that covers a peripheral section of the pixel electrode, a light emission functional layer, a facing electrode, and a conductive layer that is provided on the first layer thickness part. The pixel electrode includes a first pixel electrode which is provided in the first layer thickness part, a second pixel electrode which is provided in the second layer thickness part, and a third pixel electrode which is provided in the third layer thickness part. The first pixel electrode, the second pixel electrode, and the third pixel electrode are connected to the transistor through the conductive layer.
US10714542B2
The present disclosure discloses is a display device including a flexible substrate having an active area, a bezel area enclosing the active area, and a bending area defined in at least a part of the active area and the bezel area; and a plurality of bending sensing patterns disposed in the bending area, in which the bending area includes a plurality of sub bending areas and the plurality of bending sensing patterns is disposed in different areas of the plurality of sub bending areas, so that the bending degree of each sub bending area included in the bending area can be independently sensed.
US10714541B2
An electro-optical device includes a first substrate including a plurality of light-emitting elements and a color filter provided corresponding to the plurality of light-emitting elements and a second substrate being a light-transmissive substrate and disposed facing the first substrate with an adhesive provided between the first substrate and the second substrate. An adhesive surface of the color filter of the first substrate is provided with protrusions and recesses in a stripe pattern.
US10714531B2
Focal plane arrays and infrared detector device having a transparent common ground structure and methods of their fabrication are disclosed. In one embodiment, a front-side illuminated infrared detector device includes a contact layer and a detector structure adjacent to the contact layer. The detector structure is capable of absorbing radiation. The front-side illuminated infrared detector device further includes a common ground structure adjacent the detector structure, wherein the common ground structure is transmissive to radiation having a wavelength in a predetermined spectral band, and the common ground structure has a bandgap that is wider than a bandgap of the detector structure. The front-side illuminated infrared detector device further includes an optical layer adjacent the common ground structure.
US10714528B2
A chip package includes a chip structure, a molding material, a conductive layer, a redistribution layer, and a passivation layer. The chip structure has a front surface, a rear surface, a sidewall, a sensing area, and a conductive pad. The molding material covers the rear surface and the sidewall. The conductive layer extends form the conductive pad to the molding material located on the sidewall. The redistribution layer extends form the molding material that is located on the rear surface to the molding material that is located on the sidewall. The redistribution layer is in electrical contact with an end of the conductive layer facing away from the conductive pad. The passivation layer is located on the molding material and the redistribution layer. The passivation layer has an opening, and a portion of the redistribution layer is located in the opening.
US10714521B2
To improve detection efficiency in a solid-state imaging element including a SPAD in which an electrode and wiring are placed in a central portion. A solid-state imaging element includes a photodiode and a light collecting section. The photodiode includes a light receiving surface and an electrode placed on the light receiving surface, and that outputs an electrical signal in accordance with light incident on the light receiving surface in a state where a voltage exceeding a breakdown voltage is applied to the electrode. The light collecting section causes light from a subject to be collected in the light receiving surface other than a region where the electrode is placed.
US10714511B2
A pull-down circuit of a gate driving unit includes: a first thin film transistor having a first gate to which a scan direction signal is inputted, a first source and a first drain to which a clock signal is inputted; a second thin film transistor having a second gate coupled to the first source, a second source coupled to a pull-down control node and a second drain to which a first direct-current voltage is inputted; a third thin film transistor having a third gate to which a first control signal is inputted, a third source coupled to the pull-down control node and a third drain coupled to a second direct-current voltage; and a fourth thin film transistor having a fourth gate coupled to the pull-down control node, a fourth source coupled to an output node and a fourth drain coupled to the second direct-current voltage.
US10714508B2
Disclosed is a display device including: a substrate including a display area for displaying an image and a peripheral area neighboring the display area; a plurality of signal lines formed in the display area; a pad formed in the peripheral area; and a plurality of connection wires for connecting the signal lines and the pad, wherein a first connection wire and a second connection wire neighboring the first connection wire from among the plurality of connection wires are disposed on different layers, and the first connection wire and the second connection wire, which are formed to extend from the pad and are bent at least twice to have at least one being bent toward backward direction, are disposed in the peripheral area.
US10714504B2
The present disclosure proposes a method of producing an LTPS TFT array substrate. The method is about stacking of a gate insulating layer and an interlayer insulating layer for providing conditions for formation of a gate trench. In addition, stacking of the gate insulating layer and the interlayer insulating layer is produced with some blocks of forming a hole on the gate insulating layer and the interlayer insulating layer to form a hole pattern, filling the gate trench, and producing gate lines. In this way, the formation of the gate lines and the formation of the hole pattern on the gate insulating layer and the interlayer insulating layer are done using the same mask. The method of the present disclosure reduces the number of masks required compared with the method of the related art, thereby reducing the production costs.
US10714502B2
A semiconductor device that is suitable for miniaturization and higher density is provided. A semiconductor device includes a first transistor over a semiconductor substrate, a second transistor including an oxide semiconductor over the first transistor, and a capacitor over the second transistor. The capacitor includes a first conductor, a second conductor, and an insulator. The second conductor covers a side surface of the first conductor with an insulator provided therebetween.
US10714500B2
Provided are an electronic device and a method of manufacturing the same. The electronic device may include a first device provided on a first region of a substrate; and a second device provided on a second region of the substrate, wherein the first device may include a first domain layer including a ferroelectric domain and a first gate electrode on the first domain layer, and the second device may include a second domain layer including a ferroelectric domain and a second gate electrode on the second domain layer. The first domain layer and the second domain layer may have different characteristics from each other at a polarization change according to an electric field. At the polarization change according to the electric field, the first domain layer may have substantially a non-hysteretic behavior characteristic and the second domain layer may have a hysteretic behavior characteristic.
US10714499B2
The method of manufacturing a semiconductor device include: forming conductive patterns in interlayer spaces between interlayer insulating layers, the conductive patterns being separated from each other by a slit passing through the interlayer insulating layers, wherein the conductive patterns include a first by-product; generating a second by-product of a gas phase by reacting the first by-product remaining in the conductive patterns with source gas; and performing an out-gassing process to remove the second by-product.
US10714497B1
A memory die including a three-dimensional array of memory elements and a logic die including a peripheral circuitry that support operation of the three-dimensional array of memory elements can be bonded by die-to-die bonding to provide a bonded assembly. External bonding pads for the bonded assembly can be provided by forming recess regions through the memory die or through the logic die to physically expose metal interconnect structures within interconnect-level dielectric layers. The external bonding pads can include, or can be formed upon, a physically exposed subset of the metal interconnect structures. Alternatively or additionally, laterally-insulated external connection via structures can be formed through the bonded assembly to multiple levels of the metal interconnect structures. Further, through-dielectric external connection via structures extending through a stepped dielectric material portion of the memory die can be physically exposed, and external bonding pads can be formed thereupon.
US10714492B2
Embodiments of methods for forming a staircase structure of a three-dimensional (3D) memory device are disclosed. In an example, a first plurality of stairs of the staircase structure are formed based on a first photoresist mask. Each of the first plurality of stairs includes a number of divisions at different depths. After forming the first plurality of stairs, a second plurality of stairs of the staircase structure are formed based on a second photoresist mask. Each of the second plurality of stairs includes the number of divisions. The staircase structure tilts downward and away from a memory array structure of the 3D memory device from the first plurality of stairs to the second plurality of stairs.
US10714485B2
A semiconductor device including multiple fins. At least a first set of fins among the multiple fins is substantially parallel. At least a second set of fins among the multiple fins is substantially collinear. For any given first and second fins of the multiple fins having corresponding first and second fin-thicknesses, the second fin-thickness is less than plus or minus about 50% of the first fin-thickness.
US10714482B1
A dynamic random access memory and a method of fabricating the same are provided. The dynamic random access memory includes forming a gate trench in a substrate. An isolation structure is formed in the substrate and defines a plurality of active regions arranged in a column in a first direction. A buried word line structure is formed to fill the gate trench and extend along the first direction and across the plurality of active regions and the isolation structure. A plurality of first fin structures is formed in an intersecting region of the plurality of active regions and the buried word line structure, arranged in a column along the first direction, and surrounded and covered by the buried word line structure. A dielectric layer is formed on the substrate to fill the gate trench and cover the buried word line structure.
US10714479B2
The present invention provides a polysilicon-based 1T DRAM cell device having a FinFET structure and its fabrication method. In the present invention, a semiconductor layer (for example, a polysilicon layer) having a relatively low crystallinity is intentionally formed on the upper layer of the active fin to physically trap the holes accumulated in the conventional cell body, thereby remarkably improving the retention time. A polysilicon-based 1T DRAM cell device having a FinFET structure can also increase the operating efficiency by raising the gate's channel control force and implement the batch process with the functional blocks in the CPU that already have the FinFET structure.
US10714475B2
A semiconductor device includes first and second epitaxial structures, first and second top metal alloy layers, and first and second bottom metal alloy layers. The first and second epitaxial structures have different cross sections. The first and second top metal alloy layers are respectively in contact with the first and second epitaxial structures. The first and second bottom metal alloy layers are respectively in contact with the first and second epitaxial structures and respectively under the first and second top metal alloy layers. The first top metal alloy layer and the first bottom metal alloy layer are made of different materials.
US10714467B2
Provided is an integrated circuit (IC) device including a logic cell having an area defined by a cell boundary. The logic cell includes a first device region, a device isolation region, and a second device region. The first device region and the second device region are arranged apart from each other in a first direction that is perpendicular to a second direction. The device isolation region is between the first device region and the second device region. A first maximum length of the first device region in the second direction is less than a width of the cell boundary in the second direction, and a second maximum length of the second device region is substantially equal to the width of the cell boundary in the second direction.
US10714465B2
An H bridge circuit that is connected to nodes N1 and N2 for a power source and nodes N3 and N4 for a motor includes: a PchMOS transistor that is disposed in an N-type first region and is connected between N1 and N3; an NchMOS transistor that is disposed in an N-type second region and is connected between N2 and N3; a PchMOS transistor that is disposed in an N-type third region and is connected between N1 and N4; and an NchMOS transistor that is disposed in an N-type fourth region and is connected between N2 and N4, in a P-type semiconductor substrate. The distance between the first region and third region is smaller than the distance between the first region and second region, smaller than the distance between the third region and fourth region, and smaller than the distance between the second region and fourth region.
US10714462B2
Various semiconductor chip devices and methods of manufacturing the same are disclosed. In one aspect, a semiconductor chip device is provided that has a reconstituted semiconductor chip package that includes an interposer that has a first side and a second and opposite side and a metallization stack on the first side, a first semiconductor chip on the metallization stack and at least partially encased by a dielectric layer on the metallization stack, and plural semiconductor chips positioned over and at least partially laterally overlapping the first semiconductor chip.
US10714458B2
A multi-LED system includes a carrier; and a plurality of light-emitting diodes arranged on the carrier, wherein the carrier has a main body, and a plurality of electrical components are embedded in the main body.
US10714453B2
A semiconductor package includes a first semiconductor chip disposed on a substrate. A first upward pad is disposed on an upper surface of the first semiconductor chip. A second semiconductor chip is arranged with an offset above the first semiconductor chip. A first downward pad is disposed on a lower surface of the second semiconductor chip. A first bonding wire connects the first upward pad and the substrate. A first inter-chip connector is interposed between the first upward pad and the first downward pad. A side surface of the second semiconductor chip is arranged above the first upward pad.
US10714452B2
The present invention provides a method of manufacturing a package structure. An array chip including a plurality of first dies is provided. A wafer including a plurality of second dies is provided. A package step is carried out to package the array chip onto the wafer so as to electrically connect the first die and the second die. The present invention further provides a semiconductor wafer and a package structure.
US10714441B2
An integrated circuit package includes a die. An electrically conductive layer comprises a redistribution layer (RDL) in the die, or a micro-bump layer above the die, or both. The micro bump layer comprises at least one micro-bump line. A filter comprises the electrically conductive layer. A capacitor comprises an electrode formed in the electrically conductive layer.
US10714439B2
A system and method for bonding an electrically conductive mechanical interconnector (e.g., a bonding wire, solder, etc.) to an electrical contact (e.g., contact pad, termination on a printed circuit board (PCB), etc.) made from an electrically conductive metal (e.g., aluminum) on an electronic device (e.g., integrated circuit (IC), die, wafer, PCB, etc.) is provided. The electrical contact is chemically coated with a metal (e.g., cobalt) that provides a protective barrier between the mechanical interconnector and the electrical contact. The protective barrier provides a diffusion barrier to inhibit galvanic corrosion (i.e. ion diffusion) between the mechanical interconnector and the electrical contact.
US10714438B2
Provided are a semiconductor device and a method of manufacturing the same. The semiconductor device includes a metal line layer on a semiconductor substrate, and a metal terminal on the metal line layer. The metal line layer includes metal lines, and a passivation layer having a non-planarized top surface including flat surfaces on the metal lines and a concave surface between the metal lines. The metal terminal is provided on the passivation layer. Opposite lateral surfaces of the metal terminal facing each other are provided on the flat surfaces of the passivation layer.
US10714437B2
A fan-out semiconductor package includes: a first interconnection member having a through-hole; a semiconductor chip disposed in the through-hole and having an active surface having connection pads disposed thereon and an inactive surface opposing the active surface; an encapsulant encapsulating at least portions of the first interconnection member and the inactive surface of the semiconductor chip; a second interconnection member disposed on the first interconnection member and the active surface of the semiconductor chip; and a passivation layer disposed on the second interconnection member. The first interconnection member and the second interconnection member include, respectively, redistribution layers electrically connected to the connection pads of the semiconductor chip, the second interconnection member includes an insulating layer on which the redistribution layer of the second interconnection member is disposed, and the passivation layer has a modulus of elasticity greater than that of the insulating layer of the second interconnection member.
US10714434B1
An embedded magnetic inductor coil is at least partially exposed in a recess that seats an embedded multi-chip interconnect bridge die on the coil. The embedded multi-chip interconnect bridge die provides a communications bridge between a dominant semiconductive device and a first semiconductive device.
US10714431B2
Semiconductor packages having an electromagnetic interference (EMI) shielding layer and methods for forming the same are disclosed. The method includes providing a base carrier defined with an active region and a non-active region. A fan-out redistribution structure is formed over the base carrier. A die having elongated die contacts are provided. The die contacts corresponding to conductive pillars. The die contacts are in electrical communication with the fan-out redistribution structure. An encapsulant having a first major surface and a second major surface opposite to the first major surface is formed. The encapsulant surrounds the die contacts and sidewalls of the die. An electromagnetic interference (EMI) shielding layer is formed to line the first major surface and sides of the encapsulant. An etch process is performed after forming the EMI shielding layer to completely remove the base carrier and singulate the semiconductor package.
US10714428B2
Some embodiments are directed to a semiconductor power device and a method of assembling such a device is provided. The semiconductor power device includes a first substrate, a second substrate and an interconnect structure. The first substrate includes a switching semiconductor element, a first electrically conductive layer(s) and a first receiving element. The second substrate includes a second receiving element and a second electrically conductive layer(s). The interconnect structure provides an electrical connection between the first electrically conductive layer and the second electrically conductive layer. The interconnect structure further includes a plurality of interconnect elements of an electrical conductive material. At least one of the plurality of interconnect elements is an alignment interconnect element. The alignment interconnect element is partially received by the first receiving element and is partially received by the second receiving element for aligning a relative position of the first substrate with respect to the second substrate.
US10714427B2
An electronic device comprising a semiconductor chip which comprises a plurality of structures formed in the semiconductor chip, wherein the semiconductor chip is a member of a set of semiconductor chips, the set of semiconductor chips comprises a plurality of subsets of semiconductor chips, and the semiconductor chip is a member of only one of the subsets. The plurality of structures of the semiconductor chip includes a set of common structures which is the same for all of the semiconductor chips of the set, and a set of non-common structures, wherein the non-common structures of the semiconductor chip of the subset is different from a non-common circuit of the semiconductor chips in every other subset. At least a first portion of the non-common structures and a first portion of the common structures form a first non-common circuit, wherein the first non-common circuit of the semiconductor chips of each subset is different from a non-common circuit of the semiconductor chips in every other subset. At least a second portion of the non-common structures is adapted to store or generate a first predetermined value which uniquely identifies the first non-common circuit, wherein the first predetermined value is readable from outside the semiconductor chip by automated reading means.
US10714424B2
A device includes a first conductive feature disposed over a substrate; a second conductive feature disposed directly on and in physical contact with the first conductive feature; a dielectric layer surrounding sidewalls of the second conductive feature; and a first barrier layer interposed between the second conductive feature and the dielectric layer and in physical contact with both the second conductive feature and the dielectric layer. The first barrier layer and the dielectric layer comprise at least two common elements.
US10714423B2
A method comprises forming a trench extending through an interlayer dielectric layer over a substrate and partially through the substrate, depositing a photoresist layer over the trench, wherein the photoresist layer partially fills the trench, patterning the photoresist layer to remove the photoresist layer in the trench and form a metal line trench over the interlayer dielectric layer, filling the trench and the metal line trench with a conductive material to form a via and a metal line, wherein an upper portion of the trench is free of the conductive material and depositing a dielectric material over the substrate, wherein the dielectric material is in the upper portion of the trench.
US10714417B2
A packaged semiconductor device includes a metal substrate having a center aperture with a plurality of raised traces around the center aperture including a metal layer on a dielectric base layer. A semiconductor die that has a back side metal (BSM) layer is mounted top side up in a top portion of the center aperture. A single metal layer directly between the BSM layer and walls of the metal substrate bounding the center aperture to provide a die attachment that fills a bottom portion of the center aperture. Leads having at least one bend that contact the metal layer are on the plurality of traces and include a distal portion that extends beyond the metal substrate. Bond wires are between the traces and bond pads on the semiconductor die. A mold compound provides encapsulation.
US10714407B2
An amplification apparatus includes: a signal splitter for splitting an input radio frequency signal and outputting the resulting split radio frequency signals; a plurality of amplifier units for amplifying the radio frequency signals outputted from the signal splitter, the amplifier units being disposed circularly to form a generally cylindrical shape; a plurality of water cooling heat sinks disposed circularly at positions corresponding to the positions of the plurality of amplifier units so as to cool the plurality of amplifier units by cooling water; and a signal combiner for combining the radio frequency signals outputted from the plurality of amplifier units, respectively, and outputting the resulting combined radio frequency signal.
US10714404B2
A technique disclosed in the Description relates to a technique for improving the heat dissipation capability of a semiconductor element and the heat dissipation capability of a lead electrode without increasing the size of a product. A semiconductor device of the technique includes the following: a semiconductor element; a lead electrode having a lower surface connected to an upper surface of the semiconductor element at one end of the lead electrode, the lead electrode being an external terminal; a cooling mechanism disposed on a lower surface side of the semiconductor element; and a heat dissipation mechanism provided to be thermally joined between the lower surface of the lead electrode and the cooling mechanism, the lower surface being more adjacent to an other-end side of the lead electrode than the one end, the heat dissipation mechanism including at least one insulating layer.
US10714403B2
At least some embodiments of the present disclosure relate to a semiconductor device package. The semiconductor device package comprises a carrier, a first patterned conductive layer, an interconnection structure, a first semiconductor device, an encapsulant, a second patterned conductive layer, and a passivation layer. The carrier has a first surface and a second surface opposite to the first surface. The first patterned conductive layer is adjacent to the first surface of the carrier. The interconnection structure is disposed on the first patterned conductive layer and electrically connected to the first patterned conductive layer. The first semiconductor device is disposed on the interconnection structure and electrically connected to the interconnection structure. The encapsulant is disposed on the first patterned conductive layer and encapsulates the semiconductor device and the interconnection structure. The second patterned conductive layer is disposed on a top surface and a side surface of the encapsulant and electrically connected to the first patterned conductive layer. The passivation layer is disposed on the second patterned conductive layer and covers the side surface of the encapsulant.
US10714398B2
There are provided a semiconductor device, a method of manufacturing the same, and an electronic device including the device. According to an embodiment, the semiconductor device may include a substrate; a first source/drain layer, a channel layer and a second source/drain layer stacked on the substrate in sequence, wherein the second source/drain layer comprises a first semiconductor material which is stressed; and a gate stack surrounding a periphery of the channel layer.
US10714396B2
The method includes prior to depositing a gate on a first vertical FET on a semiconductor substrate, depositing a first layer on the first vertical FET on the semiconductor substrate. The method further includes prior to depositing a gate on a second vertical FET on the semiconductor substrate, depositing a second layer on the second vertical FET on the semiconductor substrate. The method further includes etching the first layer on the first vertical FET to a lower height than the second layer on the second vertical FET. The method further includes depositing a gate material on both the first vertical FET and the second vertical FET. The method further includes etching the gate material on both the first vertical FET and the second vertical FET to a co-planar height.
US10714395B2
A semiconductor device structure is provided. The semiconductor device structure includes a substrate having adjacent first and second fins protruding from the substrate, an isolation feature between and adjacent to the first fin and the second fin, and a fin isolation structure between the first fin and the second fin. The fin isolation structure includes a first insulating layer partially embedded in the isolation feature, a second insulating layer having sidewall surfaces and a bottom surface that are covered by the first insulating layer, a first capping layer covering the second insulating layer and having sidewall surfaces that are covered by the first insulating layer, and a second capping layer having sidewall surfaces and a bottom surface that are covered by the first capping layer.
US10714390B2
Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. A method includes forming a mask above the semiconductor wafer, the mask including a layer covering and protecting the integrated circuits. The mask and a portion of the semiconductor wafer are patterned with a laser scribing process to provide a patterned mask and to form trenches partially into but not through the semiconductor wafer between the integrated circuits. Each of the trenches has a width. The semiconductor wafer is plasma etched through the trenches to form corresponding trench extensions and to singulate the integrated circuits. Each of the corresponding trench extensions has the width.
US10714385B2
A method for selectively depositing a metal film onto a substrate is disclosed. In particular, the method comprising flowing a metal precursor onto the substrate and flowing a non-metal precursor onto the substrate, while contacting the non-metal precursor with a hot wire. Specifically, a reaction between a tungsten precursor and a hydrogen precursor selectively forms a tungsten film, where the hydrogen precursor is excited by a tungsten hot wire.
US10714382B2
Methods for forming conductive regions of a metallization network with reduced leakage current and capacitance are described. Aspects of the invention include forming a trench in a dielectric material on the substrate, forming a first liner layer in a first portion of the trench, forming a second liner layer in a second portion of the trench, and forming a conductive material over the second liner layer in the trench.
US10714374B1
An example of a printed structure comprises a target substrate and a structure protruding from a surface of the target substrate. A component comprising a component substrate separate and independent from the target substrate is disposed in alignment with the structure on the surface of the target substrate within 1 micron of the structure. An example method of making a printed structure comprises providing the target substrate with the structure protruding from the target substrate, a transfer element, and a component adhered to the transfer element. The component comprises a component substrate separate and independent from the target substrate. The transfer element and adhered component move vertically toward the surface of the target substrate and horizontally towards the structure until the component physically contacts the structure or is adhered to the surface of the target substrate. The transfer element is separated from the component.
US10714373B2
According to one embodiment, an electrostatic chuck includes a ceramic dielectric substrate including a sealing ring provided at a peripheral edge portion of the ceramic dielectric substrate, and an electrode layer including a plurality of electrode components. An outer perimeter of the ceramic dielectric substrate is provided to cause a spacing between the outer perimeter of the ceramic dielectric substrate and an outer perimeter of the electrode layer to be uniform. The spacing between the outer perimeter of the electrode layer and the outer perimeter of the ceramic dielectric substrate is narrower than a spacing of the electrode components. A width of the sealing ring is not less than 0.3 millimeters and not more than 3 millimeters. A width where the electrode layer overlaps the sealing ring is not less than −0.7 millimeters and not more than 2 millimeters.
US10714372B2
The present disclosure generally relates to plasma assisted or plasma enhanced processing chambers. More specifically, embodiments herein relate to electrostatic chucking (ESC) substrate supports configured to provide independent pulses of DC voltage through a switching system to electrodes disposed through the ESC substrate support, or to electrodes disposed on a surface of the ESC, or to electrodes embedded in the ESC substrate support. The switching system can independently alter the frequency and duty cycle of the pulsed DC voltage that is coupled to each electrode. During processing of the substrate, the process rate, such as etch rate or deposition rate, can be controlled independently in regions of the substrate because the process rate is a function of the frequency and duty cycle of the pulsed DC voltage. The processing uniformity of the process performed on the substrate is improved.
US10714371B2
A reticle holding tool is provided. The reticle holding tool includes a housing including a top housing member and a lateral housing member. The lateral housing member extends from the top housing member and terminates at a lower edge. The reticle holding tool further includes a reticle chuck. The reticle chuck is positioned in the housing and configured to secure a reticle. The reticle holding tool also includes a gas delivery assembly. The gas delivery assembly is positioned within the housing and configured to supply gas into the housing.
US10714367B2
The present invention relates to an apparatus for removing fume which includes, a wafer cassette for stacking wafers; and an exhaust for exhausting the fume of the wafers stacked in the wafer cassette, wherein the wafer cassette includes stacking shelves provided at both sides for stacking wafers; and a front opening for incoming and outgoing of the wafers which are being stacked in the stacking shelf, wherein the stacking shelves include multiple inclined ramp portions which are slanted towards the wafers stacked in the stacking shelves as they travel towards the front opening, wherein a purge gas outlet is provided in the inclined ramp portion for supplying purge gas for the wafers stacked in the stacking shelves. According to the present invention, the residual process gases on wafers can be removed efficiently.
US10714366B2
Methods and systems for shape metric based scoring of wafer locations are provided. One method includes selecting shape based grouping (SBG) rules for at least two locations on a wafer. For one of the wafer locations, the selecting step includes modifying distances between geometric primitives in a design for the wafer with metrology data for the one location and determining metrical complexity (MC) scores for SBG rules associated with the geometric primitives in a field of view centered on the one location based on the distances. The selecting step also includes selecting one of the SBG rules for the one location based on the MC scores. The method also includes sorting the at least two locations on the wafer based on the SBG rule selected for the at least two locations.
US10714365B2
A liquid processing apparatus includes a processing unit, a first supply route, a first device, a second supply route, a second device, a housing, and an external housing. The processing unit processes a substrate by using processing liquid including first and second processing liquids. The first supply route is for supplying the first processing liquid to the processing unit. The first device is for supplying the first processing liquid to the first supply route. The second supply route is for supplying the second processing liquid to the processing unit. The second processing liquid has higher temperature than the first processing liquid. The second device is for supplying the second processing liquid to the second supply route. The housing accommodates the processing unit. The external housing accommodates the first and second devices, and is adjacent to the housing. The external housing includes a partition wall between the first and second devices.
US10714356B2
Provided is a plasma processing method which comprises steps of preparing a conveying carrier including a holding sheet and a frame provided on a peripheral region of the holding sheet, adhering the substrate on the holding sheet in an inner region inside the peripheral region to hold the substrate on the conveying carrier, sagging the holding sheet in the inner region, setting the conveying carrier on a stage provided within a plasma processing apparatus to contact the holding sheet on the stage so that the holding sheet in the inner region touches the stage before the holding sheet in the peripheral region does, and plasma processing the substrate.
US10714354B2
Methods of and apparatuses for laterally etching semiconductor substrates using an atomic layer etch process involving exposing an oxidized surface of a semiconductor substrate to a fluorine-containing etch gas and heating the substrate to remove non-volatile etch byproducts by a sublimation mechanism are provided herein. Methods also including additionally pulsing a hydrogen-containing gas when pulsing the fluorine-containing etch gas. Apparatuses also include an ammonia mixing manifold suitable for separately preparing and mixing ammonia for use in various tools.
US10714352B2
Disclosed are an apparatus and a method for treating a substrate. The method includes repeatedly rotating the substrate alternately at a first speed and at a second speed while the treatment liquid is supplied, and the second speed is higher than the first speed.
US10714348B2
Embodiment described herein provide a thermal treatment process following a high-pressure anneal process to keep hydrogen at an interface between a channel region and a gate dielectric layer in a field effect transistor while removing hydrogen from the bulk portion of the gate dielectric layer. The thermal treatment process can reduce the amount of threshold voltage shift caused by a high-pressure anneal. The high-pressure anneal and the thermal treatment process may be performed any time after formation of the gate dielectric layer, thus, causing no disruption to the existing process flow.
US10714346B2
A method of manufacturing a semiconductor device includes in a following order: a first forming step where a gate electrode is formed on a first main surface side of a semiconductor base substrate with a gate insulation film interposed therebetween and, thereafter, an interlayer insulation film is formed to cover the gate electrode; a second forming step where a metal layer in a state of being connected with the gate electrode is formed over the interlayer insulation film; an irradiating step where a lattice defect is formed inside the semiconductor base substrate by irradiating an electron beam to the semiconductor base substrate in a state where the metal layer is set to a ground potential; a dividing step where the metal layer is divided into a plurality of electrodes; and an annealing step where the lattice defect in the semiconductor base substrate is repaired by heating the semiconductor base substrate.
US10714342B2
Semiconductor devices and method of forming the same are disclosed. One of the semiconductor devices includes a substrate, a gate structure, a plug and a hard mask structure. The gate structure is disposed over the substrate. The plug is disposed over and electrically connected to the gate structure. The hard mask structure is disposed over the gate structure and includes a first hard mask layer and a second hard mask layer. The first hard mask layer surrounds and is in contact with the plug. The second hard mask layer surrounds the first hard mask layer and has a bottom surface at a height between a top surface and a bottom surface of the first hard mask layer. A material of the first hard mask layer is different from a material of the second hard mask layer.
US10714336B2
According to one of the embodiments of the present disclosure, there is provided a technique that includes: (a) forming a seed layer in an amorphous state on a substrate by supplying a source gas to the substrate; (b) polycrystallizing the seed layer by processing the seed layer by heat; and (c) performing a cycle a predetermined number of times to form an oxide film on a polycrystallized seed layer and to oxidize the polycrystallized seed layer, the cycle including: (c-1) supplying the source gas to the substrate; and (c-2) supplying an oxygen-containing gas and a hydrogen-containing gas to the substrate, wherein (c-1) and (c-2) are non-simultaneously performed.
US10714310B2
A system and method is provided for of characterizing nanostructured surfaces. A nanostructure sample is placed in an SEM chamber and imaged. The system and method locates one of the nanostructures using images from the SEM imaging, excises a top portion of the nanostructure, places said top portion on a substrate such that the nanostructures are perpendicular to the substrate and a base of the top portion contacts the substrate, performs high energy ion beam assisted deposition of metal at the base to attach the top portion to the substrate, SEM imaging the top portions in the SEM chamber, determining coordinates of the top portions relative to the substrate from the SEM imaging of the top portions, placing the substrate in an AFM chamber, and performing AFM imaging of the top portions using the coordinates previously determined.
US10714309B1
Methods and systems for generating labeled images from a microscope detector by leveraging detector data from a different microscope detector of a different modality include applying a focused charged beam to a sample, using a first microscope detector to detect emissions resultant from the focused charged beam being incident on the sample, and then using detector data from the first microscope detector to automatically generate a first labeled image. Automatically generating the first labeled image includes determining composition information about portions of the sample based on the detector data, and then automatically labeling regions of the first image associated with the portions of the sample with corresponding composition information. A second image of the sample is generated using detector data from a second microscope detector system of a different modality, and then the first labeled image is used to automatically label regions of the second image with corresponding composition information.
US10714308B2
Provided is a measurement method for measuring, in an electron microscope including a segmented detector having a detection plane segmented into a plurality of detection regions, a direction of each of the plurality of detection regions in a scanning transmission electron microscope (STEM) image, the measurement method including: shifting an electron beam EB incident on a sample S under a state where the detection plane is conjugate to a plane shifted from a diffraction plane to shift the electron beam EB on the detection plane, and measuring a shift direction of the electron beam EB on the detection plane with the segmented detector; and obtaining the direction of each of the plurality of detection regions in the STEM image from the shift direction.
US10714304B2
A charged particle beam device is provided that performs proper beam adjustment while suppressing a decrease in MAM time, with a simple configuration without adding a lens, a sensor, or the like. The charged particle beam device includes: an optical element which adjusts a charged particle beam emitted from a charged particle source; an adjustment element which adjusts an incidence condition of the charged particle beam with respect to the optical element; and a control device which controls the adjustment element, wherein the control device determines a difference between a first feature amount indicating a state of the optical element based on the condition setting of the optical element, and a second feature amount indicating a state where the optical element reaches based on the condition setting and executes adjustment by the adjustment element when the difference is greater than or equal to a predetermined value.
US10714302B2
An apparatus is provided. The apparatus includes a beam current measuring device and a first electrode. The beam current measuring device is retractably movable into an ion beam trajectory so as to measure an ion beam current. The first electrode is disposed immediately upstream of the beam current measuring device in an ion beam transport channel. The first electrode serves both as a suppressor electrode for repelling secondary electrons released from the beam current measuring device, back toward the beam current measuring device, and as a beam optical element other than the suppressor electrode.
US10714296B2
An ion implantation system including an ion source for use in creating an ion beam is disclosed. The ion source has an ion source arc chamber housing that confines a high density concentration of ions within the chamber housing. An extraction member defining an appropriately configured extraction aperture allows ions to exit the source arc chamber. In a preferred embodiment, the extraction member defines a tailored extraction aperture shape for modifying an ion beam profile and producing a substantially uniform beam current across a dimension of the ion beam. The extraction aperture member defines an aperture in the form of an elongated slit having a width that varies, with wide ends and a narrow middle. The midsection of the extraction aperture has a narrower width than the opposite end sections. The tailored shape of the extraction aperture includes a central portion having a first width dimension, and first and second distal portions extending from opposite sides of the central portion, the opposed distal portions having a second width dimension that is greater than the first width dimension of the central portion.
US10714279B1
A keyboard device includes a substrate and several keycaps disposed on the substrate. The substrate includes a long slit and an elastic bridge connecting member. The long slit divides the substrate into a first plate having a first side edge and a second plate having a second side edge opposite to the first side edge. A gap is between the first side edge and the second side edge. The elastic bridge connecting member is connected between the first side edge and the second side edge. The first plate is movable relative to the second plate. The first side edge includes a first stopping member, the second side edge includes a second stopping member, and a certain interval is between the first stopping member and the second stopping member.
US10714265B2
A laminated electronic component includes a first capacitor including a first ceramic body, first external electrodes disposed on upper and lower surfaces of the first ceramic body, and second external electrodes disposed apart from the first external electrodes on the upper and lower surfaces of the first ceramic body, and a second capacitor including a second ceramic body, a third external electrode disposed on a lower surface of the second ceramic body, and a fourth external electrode disposed apart from the third external electrode on the lower surface of the second ceramic body, and disposed on the first capacitor and electrically connected to the first capacitor. A current loop passing through the upper surface of the first ceramic body and the lower surface of the second ceramic body is formed.
US10714247B2
The present invention relates to a ferrite sintered plate having a composition comprising 47 to 50 mol % of Fe2O3, 7 to 26 mol % of NiO, 13 to 36 mol % of ZnO, 7 to 12 mol % of CuO and 0 to 1.5 mol % of CoO, as calculated in terms of the respective oxides, in which the ferrite sintered plate has a volume resistivity of 1×108 to 1×1012·cm and a thickness of 10 to 60 μm; and a ferrite sintered sheet comprising the ferrite sintered plate on a surface of which a groove or grooves are formed, and an adhesive layer and/or a protective layer formed on the ferrite sintered plate, in which the ferrite sintered sheet has a magnetic permeability at 500 kHz a real part of which is 120 to 800 and an imaginary part of which is 0 to 30, and a product (μm) of the real part of the magnetic permeability at 500 kHz of the ferrite sintered sheet and a thickness of the ferrite sintered plate is 5000 to 48000. The ferrite sintered plate and the ferrite sintered sheet according to the present invention have a high volume resistivity as well as a large μ′ value and a small μ″ value of a magnetic permeability thereof, and therefore can be suitably used as a shielding plate in a digitizer system.
US10714242B2
An electrical resistor element, system, and method related thereto, wherein the electrical resistor element includes a tunable resistance. The electrical resistor element comprises a first contact electrode, a second contact electrode and a ferroelectric layer arranged between the first contact electrode and the second contact electrode. The ferroelectric layer comprises a first area having a first polarization direction and a second area having a second polarization direction. The first polarization direction is different to the second polarization direction. The ferroelectric layer further comprises a domain wall between the first area and the second area. The electrical resistor element further comprises a first pinning element configured to stabilize the first polarization direction of the ferroelectric layer. The electrical resistor element further comprises a control circuit configured to tune the resistance of the electrical resistor element by applying electrical pulses to the ferroelectric layer such that the ferroelectric domain wall is moved.
US10714235B2
Disclosed are cable types, including a type THHN cable, the cable types having a reduced surface coefficient of friction, and the method of manufacture thereof, in which the central conductor core and insulating layer are surrounded by a material containing nylon or thermosetting resin. A silicone based pulling lubricant for said cable, or alternatively, erucamide or stearyl erucamide for small cable gauge wire, is incorporated, by alternate methods, with the resin material from which the outer sheath is extruded, and is effective to reduce the required pulling force between the formed cable and a conduit during installation.
US10714213B2
A method and system for automated medical records processing with cloud computing including patient tracking for actual and virtual encounters. The method and system includes plural electronic medical templates specifically designed such that they reduce the complexity and risk associated with collecting patient encounter information, creating a medical diagnosis, tracking the patient through the medical processes at the medical facility and generate the appropriate number and type medical codes for a specific type of medical practice when processed. The medical codes and other types of processed actual or virtual patient encounter information are displayed in real-time on electronic medical records and invoices immediately after an actual or virtual patient encounter via a cloud computing network.
US10714204B1
A shift register unit including a first node control circuit, a second node control circuit, an energy-storing circuit, a first voltage pull circuit, a second voltage pull circuit, and an output circuit. The first node control circuit is configured to transfer a reset signal at a reset signal terminal to a first node in response to the reset signal at the reset signal terminal being active. The second node control circuit is configured to transfer an inactive voltage at a first voltage terminal to the first node in response to a potential at a second node being active. The output circuit is configured to transfer a clock signal at a clock signal terminal to a signal output terminal in response to the potential at the second node being active.
US10714195B2
A system includes memory cells arranged in blocks and a memory controller. The memory controller receives a read command to read a first block. The first block can be associated with a first read count and a first read threshold. The first read count is incremented when the first block is read, and when the first read count reaches the read threshold, a read reclaim test is performed. The first read count is set to zero after a power off or a read reclaim operation. When the first read count is zero, an adaptive read threshold is selected based on the number of bit errors. Further, in a read reclaim test, the number of bit errors is tested against an adaptive error threshold to determine whether a garbage collection operation is performed.
US10714190B2
A page buffer circuit includes a latch circuit that temporarily stores data when data is written in or read out from a memory cell through a bit line, the page buffer circuit is configured using a switched capacitor circuit. The page buffer circuit includes a first capacitor connected to a sense terminal connected to one end of the latch circuit, a second capacitor connected to the bit line, a first switch interposed between the sense terminal and the second capacitor, a second switch interposed between the sense terminal and a supply voltage, a first transistor including a control terminal and a first element terminal connected to both terminals of the first switch in parallel, a second transistor including first and second element terminals connected between a second element terminal of the first transistor and a ground, and a control circuit controlling the first and second switches and the second transistor.
US10714187B2
A memory control device includes a memory and a controller. The memory includes a plurality of memory blocks. The controller is coupled to the memory and configured to select a first memory block from the memory blocks and program data into the first memory block. When the memory control device is deactivated and re-activated, the controller is further configured to read a voltage distribution of the first memory block to determine a deactivation interval, and determine a reference time according to the deactivation interval and an initial time, and the voltage distribution of the first memory block correspond to the data.
US10714166B2
Memories having block select circuitry having an output that is selectively connected to a plurality of driver circuitries, each driver circuitry connected to a respective block of memory cells, as well as methods of operating such memories.
US10714164B2
A dynamic random access memory including a memory cell array and a memory controller is provided. The memory cell array includes a plurality of bit lines, a plurality of word lines, and a plurality of memory cells. The memory controller is coupled to the memory cells via the bit lines and the word lines. The memory controller is configured to perform a self-refresh operation on the memory cell array during a self-refresh period. Each of the bit lines includes a switch element. The memory controller controls a part of the switch elements to be conducted and a part of the switch elements not to be conducted during the self-refresh period.
US10714162B2
A memory system includes: a memory device suitable for storing a data; a controller suitable for controlling an operation of the memory device based on a control signal; and an interface device includes a signal transfer device suitable for transferring the control signal from the controller to the memory device and transferring the data between the memory device and the controller; and a signal control device suitable for controlling an operation of the signal transfer device in response to an interface control signal included in the control signal, wherein the interface control signal includes a blocking command for stopping an operation of the signal transfer device, a correction command for correcting a duty cycle of the control signal, and an unblocking command for resuming the operation in response to the corrected control signal, of the signal transfer device.
US10714160B2
A wave pipeline includes a plurality of data paths, a clock signal path, and a return clock signal path. Each data path includes an input node, an output node, and a data stage between the input node and the output node. Each data path has a different delay between the input node and the output node. A first data path of the plurality of data paths has a first delay and each of the other data paths of the plurality of data paths have a delay less than the first delay. The clock signal path provides a clock signal to the data stage of each data path. The return clock signal path provides a return clock signal from the data stage of the first data path. The return clock signal triggers data out of the data stage of each data path of the plurality of data paths.
US10714152B1
Systems, apparatuses, and methods for dynamically generating a memory bitcell supply voltage rail from a logic supply voltage rail are disclosed. A circuit includes at least one or more comparators, control logic, and power stage circuitry. The circuit receives a logic supply voltage rail and compares the logic supply voltage rail to threshold voltage(s) using the comparator(s). Comparison signal(s) from the comparator(s) are coupled to the control logic. The control logic generates mode control signals based on the comparison signal(s) and based on a programmable dynamic range that is desired for a memory bitcell supply voltage rail. The mode control signals are provided to the power stage circuitry which generates the memory bitcell supply voltage rail from the logic supply voltage rail. A voltage level of the memory bitcell supply voltage rail can be above, below, or the same as the logic supply voltage rail.
US10714149B2
A semiconductor package with clock sharing, which is suitable for an electronic system having low power consumption characteristics, is provided. The semiconductor package includes a lower package including a lower package substrate and a memory controller mounted on the lower package substrate, an upper package stacked on the lower package and including an upper package substrate and a memory device mounted on the upper package substrate, and a plurality of vertical interconnections electrically connecting the lower package to the upper package. The semiconductor package is configured to cause the memory controller to output a first data clock signal used for a channel that is an independent data interface between the memory controller and the memory device, branch the first data clock signal, and provide the branched first data clock signal to the memory device.
US10714141B2
A method for accessing a shingled magnetic recording (SMR) disk is provided. The method includes: receiving, by the server, a data operation request, where the data operation request includes address information of target data; determining, according to the address information, a target storage zone in the SMR disk that corresponds to the target data; determining that there is write pointer information of the target storage zone in a cache, and obtaining the write pointer information from the cache, where the write pointer information is address information of latest stored data in the target storage zone; generating a data operation instruction according to the write pointer information and the address information of the target data, where the data operation instruction is used to perform an operation on the target data; and sending the data operation instruction to the SMR disk. Embodiments of the present disclosure are applied for a server to access an SMR disk.
US10714135B1
Disclosed herein are slider designs having improved trailing air flow dams, and data storage devices including such sliders. In some embodiments, a slider comprises a trailing edge and an air-bearing surface (ABS) comprising a trailing edge pad, and a trailing air flow dam coupled to the trailing edge pad, wherein, in an ABS view of the slider, the trailing air flow dam is recessed from and curves away from the trailing edge. In the ABS view, a shape of the trailing air flow dam may comprise two segments. The slider also has a leading edge and may at least one sub-ambient pressure cavity adjacent to the trailing air flow dam and disposed between the trailing air flow dam and the leading edge. A contact point of the trailing air flow dam may be at least 50 microns from a corner of the slider.
US10714134B2
An apparatus can include a circuit configured to process an input signal using a set of channel parameters. The circuit can produce, using a first adaptation algorithm, a first set of channel parameters for use by the circuit as the set of channel parameters in processing the input signal. The circuit can further approximate a second set of channel parameters of a second adaptation algorithm for use by the circuit as the set of channel parameters in processing the input signal based on the first set of channel parameters and a relationship between a third set of channel parameters generated using the first adaptation algorithm and a fourth set of channel parameters generated using the second adaptation algorithm. In addition, the circuit can perform the processing of the input signal using the second set of channel parameters as the set of channel parameters.
US10714131B1
Reader-to-reader separation (RRS) is substantially decreased, and cross-track alignment of top and bottom sensors is improved with a process where a sidewall on the two sensors is formed during a single photolithography and ion beam etch sequence. RRS is minimized since the two sensors share a common reference layer (RL), and shields between the readers are omitted. A RL front portion is formed on a first stack of layers with a first free layer and uppermost first tunnel barrier, and a RL back portion is on a second stack comprising a reference layer and antiferromagnetic coupling layer sequentially formed on an antiferromagnetic layer. The RL may be a single layer or a synthetic antiferromagnetic structure so that the sensors operate in a common mode or differential mode, respectively. A third stack with a bottom second tunnel barrier and overlying second free layer is formed on the RL front portion.
US10714127B1
A perpendicular magnetic recording writer has a main pole (MP) with a first flux guiding (FG) device in a write gap between the MP trailing side and a trailing shield, and a second FG device in the leading gap (LG) and each side gap (SG). The SG angle is reduced to 15° to 45° to enable conformal and more uniform FG device layers to be formed in the SG and LG. As a result, the MP shape and write field are more reproducible. To compensate for a thinner MP thickness at the air bearing surface that results from maintaining the track width at a shallower SG angle, an upper MP tip may be formed on the lower MP tip thereby generating a hexagonal shape for the combined MP tip. In this case, the second FG device conforms to the shape of the two upper MP tip sides and trailing side.
US10714124B2
According to one embodiment, in a storage device, a selection circuit selects one mapping rule from a plurality of mapping rules in which each of bit labels having a bit length of (n+1) or more is mapped to n M-ary symbols, when M is defined as an integer of 3 or more and n is defined as an integer of or more. A first conversion circuit converts a data block in data into an M-ary symbol sequence using the selected one mapping rule. A second conversion circuit converts the converted M-ary symbol sequence into an M-step pulse width signal. The recording medium records the converted M-step pulse width signal. A readback circuit equalizes the signal read from the recording medium to the M-ary symbol sequence and restores the data.
US10714120B2
A computer-implemented method of multisensory speech detection is disclosed. The method comprises determining an orientation of a mobile device and determining an operating mode of the mobile device based on the orientation of the mobile device. The method further includes identifying speech detection parameters that specify when speech detection begins or ends based on the determined operating mode and detecting speech from a user of the mobile device based on the speech detection parameters.
US10714113B2
An objective of the present invention is to correct a temporal envelope shape of a decoded signal with a small information volume and to reduce perceptible distortions. An audio decoding device which decodes a coded audio signal and outputs an audio signal comprises: a coded series analysis unit that analyzes a coded series which contains the coded audio signal; an audio decoding unit that receives from the coded series analysis unit the coded series which contains the coded audio signal and decodes same, obtaining an audio signal; a temporal envelope shape establishment unit that receives information from the coded series analysis unit and/or the audio decoding unit, and, on the basis of the information, establishes a temporal envelope shape of the decoded audio signal; and a temporal envelope correction unit that, on the basis of the temporal envelope shape which is established with the temporal envelope shape establishment unit, corrects the temporal envelope shape of the decoded audio signal and outputs same.
US10714104B2
The present disclosure provides methods, devices and computer program products for encoding and decoding of a vector of parameters in an audio coding system. The disclosure further relates to a method and apparatus for reconstructing an audio object in an audio decoding system. According to the disclosure, a modulo differential approach for coding and encoding a vector of a non-periodic quantity may improve the coding efficiency and provide encoders and decoders with less memory requirements. Moreover, an efficient method for encoding and decoding a sparse matrix is provided.
US10714094B2
Technologies related to voiceprint recognition model construction are disclosed. In an implementation, a first voice input from a user is received. One or more predetermined keywords from the first voice input are detected. One or more voice segments corresponding to the one or more predetermined keywords are recorded. The voiceprint recognition model is trained based on the one or more voice segments. A second voice input is received from a user, and the user's identity is verified based on the second voice input using the voiceprint recognition model.
US10714093B2
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for hotword detection on multiple devices are disclosed. In one aspect, a method includes the actions of receiving audio data that corresponds to an utterance. The actions further include determining that the utterance likely includes a particular, predefined hotword. The actions further include transmitting (i) data indicating that the computing device likely received the particular, predefined hotword, (ii) data identifying the computing device, and (iii) data identifying a group of nearby computing devices that includes the computing device. The actions further include receiving an instruction to commence speech recognition processing on the audio data. The actions further include in response to receiving the instruction to commence speech recognition processing on the audio data, processing at least a portion of the audio data using an automated speech recognizer on the computing device.
US10714077B2
An apparatus for calculating acoustic score, a method of calculating acoustic score, an apparatus for speech recognition, a method of speech recognition, and an electronic device including the same are provided. An apparatus for calculating acoustic score includes a preprocessor configured to sequentially extract audio frames into windows and a score calculator configured to calculate an acoustic score of a window by using a deep neural network (DNN)-based acoustic model.
US10714076B2
A method for improved initialization of speech recognition system comprises mapping a trained hidden markov model based recognition node network (HMM) to a Connectionist Temporal Classification (CTC) based node label scheme. The central state of each frame in the HMM are mapped to CTC-labeled output nodes and the non-central states of each frame are mapped to CTC-blank nodes to generate a CTC-labeled HMM and each central state represents a phoneme from human speech detected and extracted by a computing device. Next the CTC-labeled HMM is trained using a cost function, wherein the cost function is not part of a CTC cost function. Finally the CTC-labeled HMM is trained using a CTC cost function to produce a CTC node network. The CTC node network may be iteratively trained by repeating the initialization steps.
US10714074B2
The present disclosure provides a method, a browser client, and a server for reading web page information by speech. The browser client is installed with a text to speech (TTS) engine. The method includes: sending, by a browser client, a page access request to a server, where the page access request includes a page address and TTS identity information; receiving, by the browser client, response data returned by the server, where the response data includes a TTS standard version number determined by the server according to the TTS identity information, and TTS page data corresponding to the page address; and reading, by the browser client, the TTS page data by speech according to the TTS standard version number by using a TTS engine. In the present disclosure, page information is read by speech by using the TTS engine installed on the browser client. When it is inconvenient for a user to browse a page with eyes, and for users whose eyes have physical problems, the read page information can be listened by using a sense of hearing. Therefore, a convenient hearing-based manner is provided to users to browse a page.
US10714073B1
Active noise cancellation (ANC) systems and methods include a reference sensor to sense external noise and generate a reference signal, an error sensor to sense noise in a noise cancellation zone and generate an error signal, a feedforward ANC subsystem to receive the reference and error signals and generate a first anti-noise signal to cancel external noise in a noise cancellation zone, a feedback ANC subsystem to receive the error signal and generate a second anti-noise signal to cancel the external noise in the cancellation zone, a wind detector to detect whether wind noise is present in the reference signal and output a wind noise detection status, and wind handler to control adaptation processing of the feedforward ANC subsystem and the feedback ANC subsystem in accordance with the wind noise detection status and mixing of the first and second anti-noise signals to generate an output anti-noise signal.
US10714071B2
An active Noise Reduction (ANR) device includes a plurality of inputs, a plurality of signal processing resources, an output for driving an earphone driver, a programmable switch arrangement capable of assigning any of the plurality of inputs to any of the plurality of signal processing resources, and a controller for programming the programmable switch arrangement in order to assign each of at least a subset of the plurality of inputs to a different one of the signal processing resources. The ANR device is dynamically configurable to vary which of the signal processing resources are selected to contribute to the output.
US10714056B2
Briefly, methods and apparatus to provide image content to, and display image content on, variable refresh rate displays with reduced input lag. The methods and apparatus allow for image tearing, or the displaying of image content from more than one video frame, when the render rate of a provided video frame falls outside the display refresh rate range of a variable refresh rate display when the display is refreshing with a previous frame (e.g. the display is in active refresh), thus reducing the input lag of the content of the provided video frame. The methods and apparatus may also prevent image tearing when the render rate of provided video frames is within the display refresh rate range of a display.
US10714055B1
The disclosed computer-implemented method may include directing a head-mounted display system to render, within a frame generated by the head-mounted display system, at least one performance metric for the frame. The method may also include recording when the frame containing the performance metric is displayed by a display of the head-mounted display system, measuring, based at least in part on when the frame containing the performance metric was displayed, at least one aspect of the head-mounted display system's performance, and calibrating the head-mounted display system based on the measurement. Various other methods, calibration systems, and computer-readable media are also disclosed.
US10714050B2
Disclosed are systems, methods, and non-transitory computer-readable media for reducing latency in augmented reality displays. A display controller receives, from a GPU, a stream of image pixels of a frame of virtual content to be presented on a display of a display device. The stream of image pixels is received via a high-speed bulk interface that transfers data at least as fast as can be consumed by the display. As the stream of image pixel is received, the display controller converts each respective image pixel from a data format used to transmit the stream of image pixels via the high-speed bulk interface to a data format that is compatible for display by the display. Each converted image pixel is stored in a pixel cell of the display, after which the frame is presented on the display.
US10714044B1
A gate driver of array (GOA) circuit and a display device are disclosed. An n-th sub-circuit in the GOA circuit includes a control module, an output module, a pull-up supplement module, and a leakage switch. The pull-up supplement module includes a supplement switch and an auxiliary switch. The supplement switch is coupled to the auxiliary switch, the control module, and the output module. The auxiliary switch is coupled to the supplement switch, the control module, and the output module. The leakage switch is coupled to the control module, the output module, the supplement switch, and the auxiliary switch.
US10714042B2
The present disclosure provides a method of driving a display panel, a driving circuit, a display panel, and a display device. The method comprises: when a scene change is detected, determining whether a time when the scene change occurs is in a process of scanning a frame of display screen of a first scene; and if so, controlling a gate driving circuit to re-scan respective gate lines on the display panel sequentially, and controlling a source driving circuit to input display signals of a second scene to respective pixels connected to the respective gate lines, the second scene being different from the first scene.
US10714039B2
At a previous stage prior to displaying an input image in a display region, a display device outputs, to a transmitting section, a first instruction to transmit a first data signal having a specific pattern with a phase difference from a clock signal set to a first phase difference; reads, from a receiving section, a first received data signal corresponding to a data signal received by the receiving section from the transmitting section having received the first instruction; performs, as receipt result determination, first determination based on the first data signal and the first received data signal as receipt result determination; and determines, based on a result of the first determination, a set phase difference corresponding to the phase difference from the clock signal employed in transmitting the data signal based on the input data.
US10714032B2
A method to generate a quincunx video stream is disclosed. The method includes generating a first-type quincunx field from a first high resolution video frame. The first-type quincunx field has a plurality quincunx pixels, each of which has an associated pixel in the first high resolution video frame. The quincunx pixels are calculated using a smoothing filter and a pixel block containing the associated pixels and other high resolution pixels near the associated pixels. A second-type quincunx field is generated from a second high resolution video frame.
US10714029B2
A display device includes a display unit having a display surface on which pixels are arranged in row and column directions. Each pixel includes subpixels having different colors. Subpixels in the pixels include a first subpixel including an electrode having an opening with a longitudinal direction along a first direction and a second subpixel including an electrode having an opening with a longitudinal direction along a second direction. The first and second directions are different from the row and column directions. Subpixels arranged in a third direction are the first or second subpixels. The number of subpixels constituting one color pattern in a fourth direction is 2α. The number of subpixels in which the first and second subpixels arranged in the fourth direction constitute one cycle is 4α. The third direction is one of the row and column directions, and the fourth direction is the other direction.
US10714028B2
A display may have an array of pixels illuminated using a backlight unit. The backlight unit may include multiple strings of light-emitting diodes (LEDs) and a boost converter for providing an output voltage to the multiple LED strings. The boost converter may have a single-phase single-switch, single-phase multi-switch, and/or multi-phase multi-switch configuration, where the switches are turned off when the peak current is reached. When transitioning from a single phase to a dual phase operation, the second (slave) phase current may be slowly ramped up. When transition from the dual phase to the single phase operation, the output voltage may be elevated while slowing ramping down the slave phase current. The boost converter may include a current detection circuit for adjusting the peak current of each phase to balance the average current levels. The boost converter may also include an in-rush current controller configured to sense a short fault.
US10714016B2
The invention provides a GOA circuit and OLED display device. The GOA circuit comprises a plurality of cascaded GOA units, with each GOA unit comprising: a scan signal output module and an emitting signal output module electrically connected to the scan signal output module; during a frame period, the scan signal output module is capable of outputting a scanning signal including at least two low potential pulses within a frame time, and the light emitting signal output module can output a valid emitting signal according to the scan signal outputted by the scan signal output module. Thus, the GOA circuit for scan signal and the GOA circuit for emitting signal in the conventional design are integrated into a GOA circuit, which can reduce the number of TFTs and capacitors, simplify the circuit structure, and facilitate narrow-border display.
US10714014B2
An organic light emitting diode (OLED) pixel driving circuit and an OLED display are provided. The OLED pixel driving circuit includes a first thin-film transistor (TFT), a second TFT, a third TFT, a fourth TFT, a fifth TFT, a sixth TFT, a capacitor, a first OLED, and a second OLED. A drain of the third TFT is connected to an anode of the first OLED, a cathode of the second OLED, and a source of the sixth TFT. A drain of the fifth TFT is connected to a cathode of the first OLED, an anode of the second OLED, and a source of the fourth TFT. A drain of the sixth TFT and a drain of the fourth TFT both receiving a power supply negative voltage.
US10714002B2
A pixel circuit and a driving method thereof, a display panel and a display device are disclosed. The pixel circuit includes an input control sub-circuit, a switch control sub-circuit, a latch sub-circuit and a light-emitting sub-circuit. The input control sub-circuit writes a data signal into a first node under control of the gate signal terminal. The switch control sub-circuit conducts a first terminal or a second terminal of the latch sub-circuit with the first node under control of a switch signal control terminal. The latch sub-circuit outputs a high-level signal to the first node, when the first node is conductive with the first terminal and outputs a low-level signal to the first node, when the first node is conductive with the second terminal. The light-emitting sub-circuit emits light when the first node is supplied with the high-level signal.
US10713995B2
An output circuit includes a differential amplifier including an inverting input terminal, non-inverting input terminals and an output terminal, and outputs, from the output terminal, a voltage having a level corresponding to a weighted average of respective input voltage levels of the non-inverting input terminals, when the output voltage level is equal to a input voltage level of the inverting input terminal, and outputs a voltage having a level corresponding to a difference between a level corresponding to a weighted average of the respective input voltage levels of the non-inverting input terminals and the input voltage level, when which the output voltage level is different from the input voltage level; and a delay circuit that generates a delay voltage responding with a predetermined time constant with respect to a change in the output voltage level and supplies the delay voltage to the inverting input terminal.
US10713975B2
A foldable article having a sliceform removably secured to one or more panels of the foldable article. A tab having a retaining portion may extend from at least one of the one or more panels of the foldable article. The tab may pass through an opening in the sliceform and the retaining portion may be wider than the width of the opening. The retaining member may be manipulated to pass through the opening to removably secure the sliceform to, and/or detach the sliceform from, the foldable article.
US10713974B2
The invention relates to a displacement transducer arrangement for measuring intrusions in a crash test dummy, having a first mounting and a second mounting, wherein a distance between the first mounting and the second mounting is variable, wherein there is a displacement transducer for measuring the distance (D) between the first mounting and second mounting, wherein the first mounting and second mounting are connected to each other by a scissor lift mechanism. The invention further relates to a crash test dummy.
US10713972B2
An apparatus displaying a job screen indicating a job procedure, has a management unit that manages a job and a plurality of processes, a monitor unit that monitors an operation of an operator, a recorder unit that records an address of a job, an instructing unit that retrieves an address in response to a notification, determines whether to update the retrieved address in response to a type of a notified operation, and stores the updated address when the retrieved address has been updated, a storage unit that stores the job screen, and a control unit that reads the job screen and controls the read job screen, wherein the management unit retrieves the updated address, and instructs the display control unit to display the job screen, and wherein the display control unit reads out the instructed job screen.
US10713966B2
A computer implemented method for distributing, collecting and monitoring assignments by a content management system. The method includes receiving a request for a file request from a teacher to distribute an assignment to one or more students. In response to receiving the request, the teacher is prompted for information associated with the assignment. The information can include a name for the assignment, an assignment file and a collection identifier. In response to receiving the information, one or more metadata tags are generated based on the received information. The file request is distributed along with the one or more metadata tags to the one or more student.
US10713962B1
Systems and methods and disclosed for alerting improper inhibition of alerts of aircraft warning systems. In some examples, a method may include: determining whether an inhibition of a safety alert of a warning system of an aircraft is activated; upon determining that the inhibition is activated, determining whether the inhibition is improper under current or upcoming operating conditions of the aircraft, the current or upcoming operating conditions including a current or projected position of the aircraft and a weather condition at the current or projected position; and upon determining that the inhibition is improper under the current or upcoming operating conditions, alerting an operator of the aircraft to deactivate the inhibition.
US10713958B2
A UAV landing system can include a landing pad defining a landing area including a target point; a plurality of positioning radio transmitters positioned in a spaced apart relation and equidistant from the target point, each radio transmitter transmitting a ranging signal; and a position determination and aircraft navigation system at the incoming UAV to receive the ranging signals; determine a range to each positioning radio using the received ranging signals; compute a position of the UAV relative to the target point; determine a course for the UAV to a point above the target point of the landing pad; fly the UAV to the point above the target point of the landing pad, and cause the aircraft to descend vertically toward the target point when the UAV reaches the point above the target point.
US10713957B2
A transport network management system identifies a service objective for a plurality of VTOL aircraft and retrieves VTOL data including locations of the plurality of VTOL aircraft. An estimate of demand for transport services to be provided at least in part by one of the VTOL aircraft is generated and routing data for the plurality of VTOL aircraft is determined based on the estimated demand and the service objective. Routing instructions based on the routing data are sent to at least a subset of the VTOL aircraft.
US10713950B1
Autonomous vehicles may avoid collisions, or minimize the harm of an unavoidable collision, with the assistance of a land-based supercomputer. Upon detecting an imminent collision, the vehicle may transmit a wireless message to a land-based access point using high-speed low-latency communication technology. The message may include data about the imminent collision such as the positions and velocities of the vehicles and may demand an uncontested communication channel for fast data transfer. The land-based access point can then transfer the data to a supercomputer configured to analyze the data and calculate a sequence of actions to avoid, or at least minimize, the collision. The recommended sequence of actions can then be transmitted back to the initiating vehicle in a wireless response message. In this way, the full computational power of a supercomputer can be made available to save lives.
US10713944B2
A method of assisting a driver of a first vehicle to find an empty parking space, the method including: receiving at the first vehicle V2V communications from at least one other vehicle within a parking area of interest for the first vehicle; analyzing the received V2V communications from the at least one other vehicle to determine potential available parking spaces in the parking area of interest; displaying on a display in the first vehicle one or more available parking spaces in the parking area of interest. The V2V communications comprise dedicated short-range communications (DSRC) technology that includes broadcasting a basic safety message (BSM) up to ten times per second, each BSM indicating a vehicle location, a vehicle heading, and a vehicle speed of the vehicle transmitting the BSM.
US10713941B2
A self-learning cycle timer is disclosed. A wait time is measured between a first indication, associated with a stop, and a second indication, associated with movement following the stop, each indication received from a smart device. A geolocation is received from the smart device and a traffic signal identified at the geolocation. The traffic signal's area of influence is determined. The wait time is determined to have occurred inside the area of influence. An average cycle time and a reference time associated with the traffic signal are retrieved from a database. A cycle time associated with the traffic signal is calculated according to the wait time and the reference time. The average cycle time is updated according to the calculated cycle time.
US10713940B2
The technology relates to controlling a vehicle in an autonomous driving mode, the method. For instance, a vehicle may be maneuvered in the autonomous driving mode using pre-stored map information identifying traffic flow directions. Data may be received from a perception system of the vehicle identifying objects in an external environment of the vehicle related to a traffic redirection not identified the map information. The received data may be used to identify one or more corridors of a traffic redirection. One of the one or more corridors may be selected based on a direction of traffic flow through the selected corridor. The vehicle may then be controlled in the autonomous driving mode to enter and follow the selected one of the one or more corridors based on the determined direction of flow of traffic through each of the one or more corridors.
US10713935B2
Method, apparatus, and computer program product example embodiments provide control services for controlling devices with body-action input devices. An example method includes subscribing, by a control service, to one or more sensor signals from a selected body-action input device, the sensor signals including raw sensor data corresponding to one or more body-actions with the selected input device. The control service analyzes, using a selected component control service, the raw sensor data, to identify a body-action input corresponding to the body-actions with the selected input device. The control service converts, using the selected component control service, the identified body-action input, into one or more control signals, to control the selected controlled device corresponding to body-actions with the selected input device. The control service then provides the control signals to control the selected controlled device in response to the body-actions with the selected input device.
US10713934B2
A unified presence detection and prediction platform that is privacy aware is described. The platform is receives signals from plural sensor devices that are disposed within a premises. The platform produces profiles of entities based on detected characteristics developed from relatively inexpensive and privacy-aware sensors, i.e., non-video and non-audio sensor devices. The platform using these profiles and sensor signals from relatively inexpensive and privacy-aware sensors determines specific identification and produces historical patterns. Also described are techniques that allow users (persons), when authorized, to control remote devices/systems generally without direct interaction with such systems merely by the systems detecting and in instances predicting the specific presence of an identified individual in a location within the premises.
US10713926B2
Exemplary embodiments of methodologies of obtaining more accurate compliance metrics are disclosed herein. An exemplary method of determining a compliance metric includes determining a number of dispense events and determining a number of opportunities for obtaining dispense events. The number of opportunities for obtaining dispense events is a function of the time between an entry event and a exit event, in addition, the compliance metric is a function of the number of dispense events and the number of opportunities.
US10713912B2
An access-monitoring device of an elevator installation includes at least one video unit, wherein the video unit is connected to a control unit via a communications network. The video unit records at least one image of a defined monitoring space of the access-monitoring device. The video unit filters out a non-changing part of the at least one image and evaluates the remaining image part as to whether there is an object in the monitoring space. In the case of there being an object in the monitoring space, the video unit communicates data to the control unit. The control unit checks, in dependence on the data communicated, the authorization of the object in the monitoring space and determines either the direction of movement or the location of the object within the monitoring space.
US10713909B2
A method in a building access control system includes receiving a first access control event from a sensor indicating a door has been forced open or has been held open for at least a predetermined amount of time, identifying a second access control event associated with the door, determining whether to generate an alarm by evaluating the second access control event relative to the first access control event, and providing the alarm to a user of the access control system responsive to a determination that the alarm should be generated.
US10713907B2
A haptic system includes a haptic ring that is worn on the finger of a user. The haptic ring includes a flexible tube that is positioned against the finger pad of the user and configured to transport a fluid across the finger pad of the user. A first pump is configured to pump a warm fluid into the flexible tube and a second pump is configured to pump a cold fluid into the flexible tube, thereby providing a haptic sensation of temperature. A valve is positioned downstream of the haptic ring that is configured to open and close to modulate the pressure of the fluid, thereby providing a haptic sensation of pressure and/or vibration to the finger pad of the user. The haptic ring is unobtrusive and therefore does not significantly interfere with the ability of the user to perceive tactile sensations of the real world.
US10713905B2
A device for signalling acoustic signals associated to a sound source to people having hearing problems. The device includes receiving and transmitting elements, which can be associated to a specific acoustic alarm, by an appropriate phase for recording and recognizing the sound and associating to an identifying code, near the emitting sound source. The device also includes a portable terminal, apt to receive and recognize the signals emitted by the receiving and transmitting elements. The device further includes software, installed on a portable processing device capable of connecting to the wireless connection of the portable terminal of providing an interface for programming the terminal, where each receiving and transmitting element is shaped like a plate acting as transducer for the mechanical vibration and includes a fastener to a surface.
US10713903B2
A gaming system and method are disclosed as having different symbol sets associated with different win rates that are combined to create variable win frequency gaming. The gaming system may include a plurality of reel strip sets. Each reel strip set may include a plurality of reel strips. Each reel strip set may have a different probability of achieving a predetermined outcome. After a predetermined outcome on the gaming system is generated, the gaming system may select a different reel strip set having a different probability of achieving a predetermined outcome. In some embodiments, the selected new reel strip set may have a higher probability of achieving a predetermined outcome than the current reel strip set. The higher probability of achieving a predetermined outcome increases the chance that the subsequently played game(s) will also result in achieving a predetermined outcome for the player.
US10713902B2
Systems, apparatuses and methods for enhancing gaming payouts based on payout occurrence frequency. In one embodiment, symbols are associated with a counter value or other tracking measure. The counter value changes in connection with certain events, such as when the respective symbol is involved in a game result that wins and/or provides a payout. When the counter value for a particular symbol or group of symbols reaches a threshold, that particular payout is made subject to a payout modifier.
US10713898B2
A recreational gaming machine, is provided having an electro-mechanical apparatus that tosses a fair coin type object such that the outcome of the tossing process is unpredictable. A sensor determines the heads or tails outcome of each coin toss with a system that allows a player to place wagers.
US10713883B2
A system has a pre-recorded content database. Further, the system has a processor that establishes a virtual scratch card game, randomly determines a plurality of positions in a virtual scratch card grid that correspond to a winning outcome of the virtual scratch card game, searches for a plurality of pre-recorded video clips in the pre-recorded content database such that each of the plurality of pre-recorded video clips displays an event corresponding to the winning outcome, and provides the plurality of pre-recorded video clips to a display device that renders the virtual scratch card grid according to a plurality of scratch-off blocks that, when activated, reveal each of the plurality of pre-recorded video clips at each of the corresponding plurality of positions.
US10713875B2
An access control device including a credential reader circuit configured to enter a standby mode, awaken from a standby mode, and receive data from a nearby credential. The access control device further includes a credential detection circuit having a memory configured to store program instructions, an antenna, and a processor electrically coupled to the antenna and to the credential reader circuit, wherein the processor is configured to execute the stored program instructions to: transmit an interrogation signal, receive a reflected interrogation signal with the antenna, transmit an activation signal to the credential reader circuit in response to the received reflected interrogation signal wherein the reflected interrogation signal includes I and Q values, receive a false detection signal from the credential reader circuit, and adjust at least one of the I and Q threshold values of the reflected interrogation signal.
US10713874B2
A system and method are disclosed for identifying a user based on the classification of user movement data. An identity verification system receives a sequence of motion data from a mobile device operated by a target user. From the sequences of motion data, the identity verification system identifies a plurality of identity blocks representing different movements performed by the target user and encodes a set of signature sequences from each identity block into a feature vector. Each feature vector is input to a confidence model to output an identity confidence value for an identity block. An identity confidence value describes a confidence that the movement in the identity block was performed by the target user. The identity confidence value is compared to an operational security threshold and if identity confidence value is above the threshold, the target user is granted access to an operational context.
US10713869B2
A movable barrier operator comprising a motor, communication circuitry configured to receive a control signal and communicate with a door lock associated with a passageway door, and a controller. The controller is configured to authenticate the control signal, wherein authenticating the control signal includes associating the signal with a first level of access or a second level of access. The controller is further configured to communicate with the door lock via the communication circuitry to permit opening of the passageway door in response to associating the control signal with the first level of access and inhibit opening of the passageway door in response to associating the control signal with the second level of access. The controller is configured to cause the motor to open the movable barrier regardless of association of the control signal with the first level of access or the second level of access.
US10713866B2
A vehicle operation data collection apparatus includes a vehicle operation history DB which accumulates vehicle operation data acquired from a vehicle; and a processor programmed to evaluate excess or deficiency of vehicle operation data accumulated in the vehicle operation history DB for each of abnormality types, on the basis of accuracy information of classification obtained when classifying the abnormality types occurring in the vehicle by machine learning, using vehicle operation data accumulated in the vehicle operation history DB, extract a vehicle suitable for acquiring data of an abnormality type evaluated as data deficiency from a vehicle maintenance history DB as a collection target vehicle, and distribute a collection command instructing collection of operation data to the extracted collection target vehicle.
US10713845B2
A cloud network server system, a method, and a software program product for experiencing a three-dimensional (3D) model are provided. 3D model data associated with a 3D video game is uploaded to the cloud network server system. The system and method are used to design for example a computer game that renders non-spatial characteristics such as, smell, reflection and/or refraction of light, wind direction, sound reflection, etc., along with spatial and visibility information associated with 3D objects displayed in the 3D video game. Different versions of the 3D model are created based on memory, streaming bandwidth, and/or processing power requirements of different user terminal computers. Based on a virtual location of a user in the 3D model, parts of at least one version of the 3D model are rendered to the user.
US10713834B2
A method includes defining a virtual space comprising a first avatar and a second avatar, wherein the first avatar is associated with a first user, and the second avatar is associated with a second user. The method further includes receiving a first input from the first user. The method further includes performing charging-related processing based on the received first input. The method further includes requesting a performance by the second avatar in response to performance of the charging-related processing. The method further includes detecting a motion of the second user in response to the requesting of the performance. The method further includes moving the second avatar in accordance with detected motion of the second user.
US10713832B2
A method of identifying locations in a virtual environment where a motion sequence can be performed by an animated character may include accessing the motion sequence for the animated character, identifying a plurality of contact locations in the motion sequence where the animated character contacts surfaces in virtual environments, accessing the virtual environment comprising a plurality of surfaces, and identifying the locations in the virtual environment where the motion sequence can be performed by the animated character by identifying surfaces in the plurality of surfaces that match the plurality of contact locations.
US10713829B2
An accident report device for reporting accident information to a predetermined report destination in a case where a vehicle is involved in an accident, includes: an image acquiring unit configured to acquire an image acquired by at least one vehicle-mounted camera mounted on the vehicle; an information acquiring unit configured to acquire information related to the vehicle; and an image control unit configured to control a terminal of the report destination such that the terminal displays a synthetic image generated based on the image, the synthetic image showing an area surrounding the vehicle and an external appearance of the vehicle as seen from a virtual viewpoint.
US10713825B2
A medical image processing device is disclosed. The disclosed medical image processing device may include: an input interface through which a depth adjusting command is input from a user; an image processor and controller generating a two-dimensional reconstruction image by overlapping a part or all of CT image data in a view direction, and changing a contrast of at least a part of the two-dimensional reconstruction image according to the depth adjusting command; and a display part displaying the two-dimensional reconstruction image.