A parallel link robot includes: a base portion; a movable portion; link portions coupling the base and movable portions; and actuators attached to the base portion and driving the respective link portions. Each of the link portions includes drive links swung around axes by the respective actuators, and two each of the passive links parallel to each other and swingably arranged between the drive link and the each of the movable portions. The robot includes a drive unit disposed parallel to the two passive links of at least one of the link portions and between the passive links and drives a mechanical unit attached to the movable portion. The drive unit is attached to the drive link with a joint, swingably coupling the drive unit to the drive link around at least mutually intersecting axes, on a straight-line coupling swinging center points of the passive links and the drive link.
The present disclosure relates to a welding composition for joining high manganese steel base metals to low carbon steel base metals, as well as systems and methods for the same. The composition includes: carbon in a range of about 0.1 wt % to about 0.4 wt %; manganese in a range of about 15 wt % to about 25 wt %; chromium in a range of about 2.0 wt % to about 8.0 wt %; molybdenum in an amount of ≤ about 2.0 wt %; nickel in an amount of ≤ about 10 wt %; silicon in an amount of ≤ about 0.7 wt %; sulfur in an amount of ≤ about 100 ppm; phosphorus in an amount of ≤ about 200 ppm; and a balance comprising iron. In an embodiment, the composition has an austenitic microstructure.
In various examples, a component is for use in an implantable medical device. The component includes a pin including a first material attached to a lead including a second material different from the first material of the pin. At least a portion of the lead includes a channel in which at least a portion of the pin sits, the channel including a channel opening defined at least partially by opposing first and second channel sides extending a channel length. At least a first joint is formed along at least a portion of the first channel side. The first joint includes the second material of the lead deformed to at least partially close the channel opening to retain the pin within the channel to attach the lead to the pin. In some examples, the first material includes molybdenum and the second material includes aluminum.
The friction stir welding tool member according to the present invention is made of a ceramic member in which a shoulder portion and a probe portion are integrally formed, wherein a root portion of the probe portion and an end portion of the shoulder portion have a curved surface shape; and the friction stir welding tool member has a ratio (R1/D) of 0.02 or more and 0.20 or less when a curvature radius of the end portion of the shoulder portion is defined as R1 (mm) and an outer diameter of the shoulder portion is defined as D (mm). In addition, the ceramic member is preferably made of a silicon nitride sintered body having a Vickers hardness of 1400 HV1 or more. According to the above-described configuration, a friction stir welding tool member having excellent durability can be provided.
An applicator device (1) for applying a composition to an end of a pipe. The applicator device comprises an applicator head (3), the applicator head having a cavity (9) with an opening into which the end of the pipe can be inserted. The applicator head comprises at least one brush (10) and at least one aperture (12) for delivering the composition into the cavity, each brush having bristles which extend into the cavity (9) to wipe against the end of the pipe, each aperture being closer to the opening of the cavity than to a base of the cavity. There is further provided an applicator device (1) comprising a supplementary brush for wiping the composition over an internal surface of the pipe, a container (60) of flux composition for connecting to the applicator device, and a method of applying a composition to an end of a pipe.
A jet solder bath for performing soldering by jetting molten solder to bring the molten solder into contact with a substrate is provided with a primary jet nozzle that jets the molten solder by a first jet pump, as a first jet nozzle, and a secondary jet nozzle, as a second jet nozzle, which is arranged at a downstream side of the primary jet nozzle along a carrying direction of the substrate and jets the molten solder by a second jet pump. The primary jet nozzle includes a first nozzle body, and a first solder-flow-forming plate that is provided at an upper end of the first nozzle body and has a plurality of jet holes, and the secondary jet nozzle includes a second nozzle body and a second solder-flow-forming plate that is provided at an upper end of the second nozzle body and has a plurality of jet holes.
A replaceable tooth for a circular saw with a base and angled cutting surfaces defining nadirs of intersection between adjacent cutting surfaces. Inserts are provided to cover facets of the angled cutting surfaces of the replaceable tooth. Plugs of a hardened material are provided immediately below each nadir of intersection to prevent erosion of the tooth base below the intersections of the inserts.
A table saw, preferably a circular table saw, with a support structure which can be placed on a support and on the upper side of which a workpiece support plate is provided, and with a saw blade projecting upwards over the workpiece support plate. The workpiece support plate is mounted so that it can slide in the sawing direction relative to the support structure and to the saw blade and has a splinter protection element arranged on a side of the workpiece support plate facing the saw blade. This side is guided past the saw blade when the workpiece support plate is moved.
An orbital lathe for in situ resurfacing a fifth wheel kingpin, having a pin axis, where the orbital lathe includes a support column generally axially aligned with the pin axis of the kingpin, a cutting tool mounted to the support column for rotation about the pin axis and having a first positioning mechanism for moving the cutting tool at least radially relative to the pin axis, a second positioning mechanism for rotating the cutting tool about a centerline axis generally orthogonal to the pin axis, and a third positioning mechanism for moving the cutting tool parallel to the centerline axis, and a drive mechanism for rotating the cutting tool about the pin axis to cause the cutting tool to remove material from the kingpin. The position of the cutting tool in relation to the centerline axis determines a surface roughness of the kingpin. Another embodiment of the orbital lathe and a method are also disclosed.
An additive-manufacturing facility and a method for managing a powder transported to and from additive-manufacturing machines of the facility are provided. According to the method, a volume of feedstock powder is stored, and the machines are automatically fed with powder from the volume of feedstock powder. For each machine, the powder fed to the machine undergoes at least one layering operation during an additive-manufacturing cycle, and excess powder in the layering operation is moved away and conveyed from the machine to the volume of feedstock powder. For each machine, recovered powder, which is derived from cleaning rough components produced by the machine, is reintroduced into the volume of feedstock powder. A same collection circuit is used to convey the excess powder and the recovered powder to the volume of feedstock powder.
A method for manufacturing a spherical metallic powder blend using a metallic starting material, the method including steps of grinding the metallic starting material to yield an intermediate powder, spheroidizing the intermediate powder to yield a first spherical powder component, and mixing the first spherical powder component with a second spherical powder component, wherein the first spherical powder component and the second spherical powder component have substantially the same chemical composition.
Disclosed are a high-strength corrosion-resistant cladding chequered steel and a manufacturing method therefor. The high-strength corrosion-resistant cladding chequered steel includes a substrate and a chequered cladding layer cladded on the substrate by single-sided or double-sided rolling. The mass percentages of the chemical elements of the substrate are: C: 0.01% to 0.20%, Si: 0.10% to 0.5%, Mn: 0.5% to 2.0%, Al: 0.02% to 0.04%, Ti: 0.005% to 0.018%, Nb: 0.005% to 0.020%, 0
A thin-profile ultrasonic sensor includes a piezoelectric material layer having a first surface and a second surface, a plurality of thin film transistors (TFTs) on the first surface, and an electrode layer on the second surface. The first surface and the second surface are on opposite sides facing away from each other. The piezoelectric material layer is configured as a substrate to support the plurality of TFTs, no other substrate being required. The piezoelectric material layer is configured to transmit and receive ultrasonic signals.
A method for the formation of tantalum carbides on a graphite substrate includes the steps of: (a) adding an organic tantalum compound, a chelating agent, a pre-polymer to an organic solvent to form a tantalum polymeric solution; (b) subjecting a graphite substrate with the tantalum polymeric solution to a curing process to form a polymeric tantalum film on the graphite substrate; and (c) subjecting the polymeric tantalum film on the graphite substrate in an oven to a pyrolytic reaction in the presence of a protective gas to obtain a protective tantalum carbide on the graphite substrate.
At least a part of at least one body is coated. At least one processor determines a respective resulting coating layer based on simulating moving the respective body at least partially through a coating fluid of a dipping bath along different trajectories. The at least one processor determines a first trajectory out of the different simulated trajectories fulfilling one or more pre-defined conditions and causes at least one drive component for moving the respective body to move the respective body at least partially through the coating fluid of the dipping bath along the first trajectory.
A fast hot melt adhesive gun includes an adhesive gun housing, wherein an end part of one end of the adhesive gun housing is provided with an adhesive inlet, a heating cavity used for heating an adhesive rod is formed in the adhesive gun housing, an inner wall of the adhesive gun housing is fixedly connected with a chute for the adhesive rod to slide, the heating cavity comprises a funnel-shaped heating head, a rear end of the funnel-shaped heating head is in communication with a connecting pipe, an outside of the funnel-shaped heating head is wrapped with a PTC heating layer, an inner diameter of the funnel-shaped heating head is gradually reduced from a first end at the connecting pipe to a second end at the funnel-shaped heating head, a front end of the funnel-shaped heating head is in communication with a copper sleeve.
The present invention provides a system for manufacturing a therapeutic microneedle configured to regulate an air environment within a coating chamber for manufacturing a therapeutic microneedle by coating a microneedle with a coating liquid containing a drug, the system for manufacturing a therapeutic microneedle comprising an air compressor, a humidity regulator configured to regulate humidity of air supplied from the air compressor, and an air filter configured to eliminate microorganisms from air to be supplied to the inside of the coating chamber.
A waste destruction device for sharps, needles and solid waste preferably includes a material intake member, a destruction device and a storage member. The material intake member includes an intake housing and an intake cover. The intake cover pivots from an open to a closed orientation to receive objects to be shredded. At least one microprocessor board is used to control devices of the waste destruction device. The waste destruction device preferably includes a cutter housing, a first cutter member, a second cutter member, a cutter motor and a cutter intake housing. The waste destruction device preferably contains disinfection devices for disinfecting thereof. The storage member preferably includes a storage housing, a container drawer and a waste container. The container drawer is slidably received by the storage housing.
Method of performing a droplet-based assay. The method may include obtaining droplets encapsulated by an immiscible liquid and packed closely together in a monolayer, performing a reaction in the droplets while packed closely together in the monolayer; and collecting data related to an analyte from a plurality of the droplets while the droplets remain closely packed together in the monolayer.
The invention relates to a device (100) for injecting and mixing a reactive fluid in a flow of a process fluid for the preparation of polyolefins, comprising: •an annular part (101) having an outer wall and an inner wall (102), wherein the annular part (101) is arranged for having a flow of the process fluid in a transport direction (F); •a support structure (103) connected to the inner wall (102) of the annular part (101); •an injector part (104) mounted on the support structure (103), wherein the injector part (104) is cylindrically shaped and wherein the cylindrical axis A-A′ of the injector part is parallel with a central axis of the annular part and is in the central part of the annular part (101); wherein the injector part (104) comprises a nozzle (105) for injecting the reactive fluid, disposed at a downstream side of the injector part relative to the transport direction (F); •a supply channel (106) extending from the outer wall of the annular part (101) through the support structure (103) to the nozzle (105) of the injector part (104), and wherein the annular part (101), the support structure (103) and the injector part (104) are made from a single piece of metal.
A method includes mixing a first deionized water (DI) water from a first pipe and a second DI water from a second pipe in a merging pipe that is in fluid communication with the first pipe and the second pipe. An electrical resistivity of the first DI water is different from an electrical resistivity of the second DI water. A mixture of the first DI water and the second DI water is applied from the merging pipe onto a wafer.
An oxygen supplying apparatus includes: an oxygen enriching module including a plurality of oxygen enriching units; a pressure boosting module which receives the oxygen-enriched gas from the oxygen enriching module and boosts pressure of the oxygen-enriched gas; and a controller controlling operations of the oxygen enriching module and the pressure boosting module. The pressure boosting module includes: a low-pressure tank which receives and stores the oxygen-enriched gas from the oxygen enriching module; a pressure booster which boosts pressure of the oxygen-enriched gas discharged from the low-pressure tank; a high-pressure tank stores the oxygen-enriched gas pressure-boosted by the pressure booster; and at least one bypass valve which is provided to a bypass passage for bypassing a portion of the pressure-boosted oxygen-enriched gas stored in the high-pressure tank to the low-pressure tank to regulate bypassing of the oxygen-enriched gas from the high-pressure tank to the low-pressure tank.
Liquid separator provided with a housing which includes an at least partially cylindrical wall defining a separation chamber, closed at one end by a base and at the other end by a lid in which there is a gas outlet for the discharge of the treated gas. A shield is provided in the separation chamber surrounding the gas outlet in the separation chamber from the aforementioned lid. The liquid separator has an inlet for a liquid-gas mixture to be treated. The inlet is located in the lid so that the liquid-gas mixture tangentially enters the separation chamber in the space between the wall and the shield.
Oil-gas separators and methods of using the oil-gas separators are disclosed. An exemplary oil-gas separator comprises a first fluid channel for receiving a well fluid, the first fluid channel having an open proximal end, a sealed distal end, and a plurality of perforations in a distal portion of the first fluid channel's exterior wall for expelling well fluid comprising oil and entrained gas into an annular space between the oil-gas separator and a well casing to produce gas-reduced oil and a second fluid channel for receiving the gas-reduced oil, the second fluid channel having a sealed proximal end, an open distal end for expelling the gas-reduced oil to the Earth's surface, and a plurality of perforations in a proximal portion of the second fluid channel's exterior wall for receiving fluid from the annular space.
A frisbee balanced to spin about a central axis has a central portion with a top surface and an opposing bottom surface. The central portion terminates peripherally with a circular rim having a sinusoidal curvature. The central portion conforms to the sinusoidal curvature of the rim forming radial variations of peaks and valleys. Plural sinusoidal cycles of radially directed, convex peaks impart thrust enabling it to float in a chosen direction when thrown and to rotate about its central axis developing lift due to air passing over the generally domed top surface.
A snowman making apparatus having a hemispherical bowl element, wherein the bowl element has an open top, and an aperture at a base of the bowl element to facilitate collection of snow in the bowl element, via dragging the bowl element over a surface of snow. In a preferred embodiment, the snowman making apparatus comprises three bowl elements of differing sizes, for making a snowman comprising a base segment; a mid-section segment; and a head segment, of different sizes.
The invention relates to an attraction (1) for amusement rides, such as a fairground attraction or an amusement park attraction, comprising a mast (10), a base frame (13), which is rotatably attached to the mast and which extends radially from the mast, means for rotating the base frame, a plurality of subframes (20), each comprising a stiff connecting arm to which a gondola with one or more passenger seats is attached. The subframes (20) are circumferentially distributed, each pivotably suspended by means of the connecting arm on the base frame (13), such that the subframes with gondolas swing upon rotation of the base frame under the influence of the centrifugal force. The attraction is further provided with control means for controlling the swing of the subframes with gondolas relative to the base frame, which control means are arranged to move the center of gravity of the subframe (20) relative to the base frame (13).
Information indicating damage given to an enemy character by another player before a predetermined time from a start timing when a game is started by an operation of the player is acquired as additional damage information from a server. Game processing for battling against the enemy character is executed, and a first event of giving damage calculated on the basis of the game processing, to the enemy character, and a second event of giving additional damage based on the additional damage information to the enemy character are executed. Then, information indicating the damage given to the enemy character in the first event is transmitted to the server in order to store the information in a storage section.
User interactions with information handling systems can be improved by providing real-time feedback to the user during use of an application on the information handling system. Lighting effects may be defined for application events and those lighting effects executed to provide the user with visual feedback that notifies the user of the application events. In one example involving a computer game, a user playing a computer game on an information handling system may be playing a character with an associate health bar. The amount of health in the health bar may increase or decrease during gameplay, and a lighting effect may be used as feedback to indicate to the user the application events corresponding to the increase or decrease of the character's health.
Systems for granting remote access to, and methods of playing, a video game executing on a video game console coupled to a computer network or video games executing on hosting clients of a computer network. One embodiment of the system includes: (1) a stream distributor configured to receive a video stream conveying a view of a gamespace of the video game from the video game console via the computer network and transmit the video stream toward a remote client via the computer network and (2) a response receiver associated with the stream distributor and configured to receive a response stream from the remote client via the computer network and transmit the response stream toward the video game console.
A method includes: receiving, from a browser executed by a client device, a request to initiate gameplay of a cloud video game; responsive to receiving the request, transmitting to the client device a web application, and initiating execution of the cloud video game by a cloud game machine to generate a first video stream including video content encoded in a first video format; transmitting the first video stream from the cloud game machine to a streaming server; identifying, by the streaming server, a type of the browser; responsive to identifying the type of the browser, transcoding the first video stream to a second video format, to generate a second video stream; transmitting, by the streaming server, the second video stream to the web application, that is configured to receive and process the second video stream to provide the video content of the cloud video game for rendering to a display.
Provided is a server device that is capable of reflecting a game activity track record in evaluation results of a game video. A center server is connected via a network to a user terminal that displays videos and manages evaluation results of each user when the videos are evaluated by the users. In addition, if a game video related to a game provided by the user terminal is displayed on the user terminal, the center server stores play data described so as to associate a user ID with information on the presence or absence of each user's play track record of the game. The center server classifies the evaluation results, on the basis of the information on the presence or absence of a play track record, into mutually separate special evaluation results and general evaluation results, and provides the evaluation results so as to include the special evaluation results.
The present invention relates to a boxing fitness device and a detection method thereof, the boxing fitness device of the present invention includes a frame, punching zones, prompting devices, sensing devices, a first wearable device, a second wearable device and a computation unit. The punching zones are disposed in the frame and the prompting devices are disposed on the punching zones, respectively. When a left hand or a right hand of a user touches one of the punching zones, the sensing devices can sense a first to-be-sensed part of a first wearable device or a second to-be-sensed part of a second wearable device worn on the hands of the user. As a result, the boxing fitness device and the detection method thereof of the present invention can sense the first to-be-sensed part and the second to-be-sensed part to detect the user's correct punching action.
A roundnet game and components are provided. The roundnet includes a plurality of legs. Each of the plurality of legs contains a first leg socket and a second leg socket. The roundnet further includes a plurality of slotted tubing attached to the plurality of legs forming a perimeter of the roundnet. The roundnet further includes each of the slotted tubing with at least one slot. The roundnet further includes a plurality of track of clips. The roundnet further includes at least one track of clips attached to the at least one slot in each of the plurality of slotted tubing. The roundnet further includes a net forming a playing surface about the perimeter of the roundnet.
A trampoline as a controller or an input device for playing games, including a frame having a flexible mat divided into input zones and one or more neutral zones, a sensor arrangement to detect activity on the flexible mat, a controller configured to determine the bounce location and bounce zone of the activity and provide this information to a feedback generator for playing games on the trampoline, such that a user uses the trampoline to play games by jumping on the input and neutral zones.
An activity tracking device is defined to detect and record movement of a person to which the activity tracking device is affixed. A secondary electronic device is defined separate from the activity tracking device. The secondary electronic device is defined to receive data from the activity tracking device regarding the detected and recorded movement of the person. A website is defined to communicate with connected devices including the secondary electronic device. The website is defined to provide a user account for the person. The website is defined to convey information regarding the detected and recorded movement of the person through the user account.
Among other things, a rowing technology includes a first rowing machine having an electromagnetic brake providing a resistance to a rower of the machine in each rowing stroke of a series of rowing strokes of the rower An electronic controller causes the resistance of the electromagnetic brake to vary over each rowing stroke in a profile that emulates resistance to which another rower in a shell on water or on a second rowing machine is subjected in each rowing stroke of a corresponding series of rowing strokes.
An injection head is configured to discharge a liquefied fire-extinguishing agent. The injection head includes an injection head body configured to be connected to piping for supplying the liquefied fire-extinguishing agent; an orifice plate positioned in the injection head body, the orifice plate including orifices defined therein; a block-shaped porous member positioned at an outlet of the orifice plate; and a deflector positioned across from the block-shaped porous member such that a discharging clearance for the liquefied fire-extinguishing agent is defined.
The present invention relates to a composition containing extracellular vesicles derived from plant juice, wherein the extracellular vesicles have excellent skin condition-improving effects such as skin whitening, moisturizing and wrinkle reducing effects and exhibits an excellent effect of preventing hair loss by promotion of hair growth and regrowth, and the like.
Systems and methods for a laser-assisted topical treatment of nail fungal infections are provided. The laser-assisted topical treatment includes a laser that is configured to output a beam that penetrates the infected nail and creates a channel therethrough. The laser-assisted topical treatment further includes a treatment agent comprising a vehicle and a drug. The treatment agent is applied to an exterior surface of the infected nail so that the treatment agent may flow into the channel.
An enclosure apparatus has a first wall, second wall, third wall, and fourth wall. The enclosure apparatus has a bottom portion operably attached to the first wall, second wall, third wall, and fourth wall. In addition, a support mechanism is operably attached to an exterior surface of the bottom portion. The enclosure apparatus also has a top portion operably attached to the first wall, the second wall, the third wall, and the fourth wall. Additionally, the enclosure apparatus has a swivel mechanism operably connected to a corner of the top portion and at least one of the first wall, second wall, third wall, and fourth wall. The top portion swivels to open and close the enclosure apparatus via the swivel mechanism. Finally, the enclosure apparatus has a lip mechanism operably attached to an edge of the top portion. The lip mechanism is configured to receive a mobile computing device.
A display apparatus providing light therapy includes a display panel configured to display an image to a display region based on input image data, and a lens part disposed on the display panel, the lens part configured to focus the image displayed by the display panel toward a first region in a therapy mode, in which the first region is smaller than the display region, and the first region may correspond to a position of a user's face.
A wearable for providing light therapy to a wearer includes at least one fabric panel having an inner surface that when the wearable is worn is configured to face a wearer's skin and an outer surface opposite the inner surface and at least one side-emitting optical fiber affixed to at least one of the inner surface and the outer surface. The side-emitting optical fiber is optically connectable with an optical fiber light source and configured to project light having a therapeutic wavelength toward a wearer of the wearable.
A method of soft tissue treatment of a patient comprises placing an applicator onto a surface of a soft tissue, with the applicator including an RF electrode and a dielectric material having a vacuum cup and a dielectric material under the RF electrode, with the dielectric material under the electrode having an absolute value of difference between polarization factor below center of the RF electrode and below edges of the RF electrode in a range from to 0.10005 mm to 19 800 mm, and heating the soft tissue via the RF electrode, and applying vacuum into a cavity under the applicator with changing pressure value inside the cavity under the applicator compared to pressure in the room during the treatment in range from 0.01 kPa to 100 kPa.
Devices, systems, and techniques for controlling electrical stimulation therapy are described. In one example, a system may be configured to deliver electrical stimulation therapy to a patient, the electrical stimulation therapy comprising a plurality of therapy pulses at a predetermined pulse frequency over a period of time and deliver, over the period of time, a plurality of control pulses interleaved with at least some therapy pulses of the plurality of therapy pulses. The system may also be configured to sense, after one or more control pulses and prior to an immediately subsequent therapy pulse of the plurality of therapy pulses, a respective evoked compound action potential (ECAP), adjust, based on at least one respective ECAP, one or more parameter values that at least partially defines the plurality of therapy pulses, and deliver the electrical stimulation therapy to the patient according to the adjusted one or more parameter values.
An Implantable Pulse Generator (IPG) or External Trial Stimulator (ETS) system is disclosed that is capable of sensing an Evoked Compound Action Potential (ECAP), and (perhaps in conjunction with an external device) is capable of adjusting a stimulation program while keeping a location of a Central Point of Stimulation (CPS) constant. Specifically, one or more features of measured ECAP(s) indicative of its shape and size are determined, and compared to thresholds or ranges to modify the electrode configuration of the stimulation program.
Apparatus is provided that includes one or more intra-pulposus exposed electrode surfaces, and a support structure along which the one or more intra-pulposus exposed electrode surfaces are disposed. The support structure is configured to be implanted within a nucleus pulposus of an intervertebral disc of a subject, and to be shaped as a partial ring or a complete ring after implantation. The apparatus further includes one or more extra-pulposus exposed electrode surfaces, which are configured to be implanted outside the nucleus pulposus, in electrical communication with the disc. Control circuitry is provided, which is configured to: configure the intra-pulposus exposed electrode surfaces to be cathodes, and the one or more extra-pulposus exposed electrode surfaces to be one or more anodes, and drive the intra-pulposus exposed electrode surfaces and the one or more extra-pulposus exposed electrode surfaces to electroosmotically drive fluid into the nucleus pulposus. Other embodiments are also described.
A device and method for delivering a high viscosity composition is described. The composition includes a bioactive agent for delivery to a subject in need thereof. The method delivers the bioactive agent at a high bioavailability and with little loss of agent to the natural defense mechanisms of the body. The device includes one or more microneedles with structures fabricated on a surface of the microneedles to form a nanotopography. A random or non-random pattern of structures may be fabricated such as a complex pattern including structures of differing sizes and/or shapes.
A chest drainage system, including a circulation assembly having an intake for taking fluid into the system and an exhaust for exhausting fluid out of the system. An intake flow device is configured to selectively control fluid flow through the intake and an exhaust flow device is configured to selectively controlling fluid flow through the exhaust. The circulation assembly has a first configuration and a second configuration such that transitioning between the first and second configurations during operation of the circulation assembly displaces at least a portion of fluid within the system with fluid from outside the system via the intake and the exhaust. A sensor is arranged in fluid communication with the fluid within the system and configured to detect a concentration of a reference fluid in the fluid in the system.
Introducer sheaths and (e.g., guide) catheters with inflatable trapping elements for trapping and/or stabilizing devices (e.g., guidewires, catheters, and/or the like) in a primary lumen of the sheath or catheter. Such sheaths and catheters may be configured for endovascular, endoscopic, laparoscopic, and/or urological procedures.
A sleep-inducing device, including: 1) a probe including a heart rate sensor detecting a heart rate of an infant's mother; 2) a sampling module collecting data with regard to the heart rate detected by the probe; 3) a first microcontroller unit (MCU) calculating the data transmitted from the sampling module and outputting a heart rate signal; 4) a second microcontroller unit (MCU) receiving and processing the heart rate signal transmitted from the first MCU; 5) a keyboard inputting, controlling and adjusting parameters of the second MCU; 6) a display displaying an operation/control state of the device; 7) a loudspeaker playing audio data of the heart rate signal processed by and transmitted from the second MCU; 8) a first memory storing the audio data of the heart rate signal; 9) a low dropout regulator (LDO) providing a constant voltage to the second MCU; and 10) a power supply.
A device for performing a tracheotomy on a patient without the assistance of a medical professional. The device may include one or more mechanical arms that cause a blade to create an incision, cause a dilating tool to dilate the incision, and cause a tracheotomy tube to be inserted into the incision. The device may further include a scanner and/or a hollow needle connected to an air pressure sensor that may be used to detect whether the device is aligned with the patient's airway.
A flow generator is configured to pressurize a flow of breathable gas to within a range of about 2-30 cm H2O for delivery to a patient's airways. The flow generator includes a blower with at least one impeller and a motor configured to drive the at least one impeller. The flow generator also includes a substantially planar blower mount configured to support the blower. The blower mount includes a flexible blower receptacle portion configured to receive and support the blower. The blower receptacle portion includes an outlet opening that is axially aligned with an air outlet of the blower. The flow generator also includes housing that encloses the blower and the blower mount. The housing has an inner surface that engages a perimeter of the blower mount.
An auto-injector device comprising an injector body having a proximal end and a distal end; a syringe received in the injector body; a needle disposed in a first end of the syringe to extend toward an opening in the distal end of the injector body; and a sealing element disposed at the distal end of the injector body for making a seal against a patient's skin. The auto-injector is configured to generate a reduced pressure to draw the auto-injector device against the patient's skin. The auto-injector device comprises a pressure-reducing mechanism configured to generate the reduced pressure within the injector body during an injection process. The pressure reducing mechanism comprises a moveable member configured such that movement of the moveable member from a first position to a second position enlarges a closed volume within the injector body to generate the reduced pressure within the closed volume.
A method of manufacturing a needle-equipped outer tube includes a preheating step comprising heating a distal end connecting section to a temperature at or below a softening point of a material forming an outer tube member with a joint member inserted in a distal end connecting section of the outer tube member, and with a needle being inserted or inserted and fixed in the needle insertion hole; and a joint member welding step, performed after the preheating step, comprising thermally welding the joint member to the distal end connecting section of the outer tube member with a distal end portion of the joint member pressed toward the proximal end of the joint member by a pushing member with a pressing force in a range of 4 N to 30 N.
A medicament delivery device includes a housing having a longitudinal axis, a container holder, an axially movable plunger adapted to be displaced along the longitudinal axis into the container holder, and an energy accumulating member arranged inside the housing and adapted for displacing the plunger along the longitudinal axis. The plunger includes an outer plunger rod and an inner plunger rod arranged at least partially inside the outer plunger rod, the inner plunger rod being threadedly engaged with the outer plunger rod and manually rotatable to displace the inner plunger rod along the longitudinal axis into the container holder.
Described herein are specialized needle assemblies for injection systems. One example injection system includes a needle assembly configured to removably attach to a drug delivery device and a housing configured to receive a drug cartridge. The needle assembly includes a needle configured to extend through an outlet port of the drug delivery device and establish fluid communication with the drug cartridge within the housing of the drug delivery device. The needle assembly may include a fluid flow sensor monitoring the fluid flow and/or occlusions within the needle assembly, and provide indications of an occluded or clogged needle and/or one or more indications of proper flow through the needle, e.g., non-occlusion of the needle. In some examples, the arrangement of the needle assembly includes sensors to detect an occlusion within a portion of a needle.
Disclosed herein is a wearable drug delivery device including a container filled at least partially with a drug including at least one of a PCSK9 (Proprotein Convertase Subtilisin/Kexin Type 9) specific antibody, a granulocyte colony-stimulating factor CSF), a sclerostin antibody, or a calcitonin gene-related peptide (CGRP) antibody. The wearable drug delivery device includes a needle and an insertion mechanism configured to insert the needle into a patient. A fluid pathway connector defines a sterile fluid flowpath between the container and the insertion mechanism. A cannula initially disposed about the needle is included.
Bioactive porous bone graft implants in various forms suitable for bone tissue regeneration and/or repair, as well as methods of use, are provided. The implants are formed of bioactive glass and have an engineered porosity. The implants may take the form of a putty, foam, fibrous cluster, fibrous matrix, granular matrix, or combinations thereof and allow for enhanced clinical results as well as ease of handling.
The disclosure herein concerns a method including receiving at a computer at least one target value of a scent parameter for an environment that is remote from the computer, receiving at the computer a sensed parameter of the environment, and controlling, via the computer, diffusion of a liquid from a source of the liquid in fluid communication with at least one scent diffusion device to achieve the target value of the scent parameter, wherein controlling includes setting or adjusting an operation parameter of the at least one scent diffusion device in response to the sensed parameter.
An ethylene oxide adsorption recovery system includes a tower body defining a gas channel extending longitudinally therein. A sidewall of the tower body further comprises a plurality of mounting holes disposed longitudinally along the side wall and in communication with the gas channel. A bottom portion of the tower body includes a first pipe in communication with the gas channel, and a top portion of the tower body includes a second pipe in communication with the gas channel. A plurality of adsorption panels is coupled to the tower body through corresponding respective mounting holes of the plurality of mounting holes, each of the plurality of adsorption panels extends into the gas channel. A sealing door is movably coupled to the sidewall of the tower body and configured to selectively fix each of the plurality of adsorption panels to a respective mounting hole of the plurality of mounting hole.
A disinfectant device including a pouch, the pouch including a first layer of material coupled to a second layer of material and defining a compartment therebetween. At least one dry reactant is retained within the compartment, the at least one dry reactant producing chlorine dioxide gas when exposed to water. A wick is at least partially disposed within the compartment. At least one from the group consisting of the first layer of material and the second layer of material define an array of ports along a periphery of the pouch and an array of fluid conduits, the array of fluid conduits being proximal to the array of ports, offset from the array of ports, in fluid communication with the wick, the compartment, and the array of ports.
The present disclosure is directed to a series of target-selective chemotherapeutic ester prodrugs comprising PSA-cleavable peptides that promote the delivery of free doxorubicin and other chemotherapeutic agents into the prostate and/or prostate tumors with greater efficiency.
The purpose of the present invention is to provide a novel system for the delivery of a drug to a posterior segment of the eye. The present invention relates to: a cytophilic peptide-fused high-density lipoprotein (cHDL) which can be used as a carrier for the delivery of a drug to a posterior segment of the eye; a method for producing the cytophilic peptide-fused high-density lipoprotein; a system of the delivery of a drug to a posterior segment of the eye, a pharmaceutical composition, and a system of the delivery of a drug to a posterior segment of the eye, each of which utilizes the cytophilic peptide-fused high-density lipoprotein; and a method for diagnosing, preventing or treating posterior ocular disease.
Provided is a pharmaceutical formulation and a method associated therewith for treating bacterial vaginosis. The pharmaceutical formulation includes from 10 to 25 weight parts of poloxamer F127, from 0.5 to 3.0 weight parts of xanthan gum, from 70 to 90 weight parts of water, and a therapeutically effective amount of a pharmaceutical active ingredient. The pharmaceutical formulation may also include from 0.5 to 1.5 weight parts of benzyl alcohol.
Provided herein are recombinant nucleic acid sequences derived from the C-terminal domain of the HIV-1 gp41 protein, and more specifically compositions and methods for using these epitopes to develop vaccine protection against HIV. Also provided here are monoclonal antibodies that specifically bind to these recombinant nucleic acid sequences derived from the C-terminal domain of the HIV-1 gp41 protein.
Disclosed herein are virus-like particle (VLP)-based bivalent vaccine compositions. The compositions may comprise a spherical retroviral Group—specific Antigen (“Gag”) protein core and at least two Ebola glycoproteins. The at least two Ebola glycoproteins may be located at the exterior surface of the spherical Gag protein core, such that the VLP-based vaccine presents at least two Ebola glycoprotein antigens. In one aspect, the at least two Ebola glycoproteins are a Zaire (EBOV) glycoprotein, and a Sudan (SUDV) glycoprotein.
As disclosed herein, the preS antigen on infectious hepatitis B virus (HBV) particles can provide B and T ceil epitopes that promote the humoral and cellular responses and enhance the seroprotection rate by overcoming non-responsiveness to the S antigen-only vaccines. Therefore, compositions and methods are disclosed using the preS antigen to develop vaccines and immune therapies for treating or preventing hepatitis B infection, in particular, virus-like particles (VLPs) are disclosed that contain the preS antigen on its surface. These VLPs can be used alone or in combination with vaccines containing the hepatitis B surface antigen (HBsAg) to vaccinate subjects against HBV as well as to activate T ceils for adoptive T cell therapy to eradicate HBV infected hapatocytes.
The present invention provides microparticles that induce the migration of multipotent stem cells to the anatomical site of the microparticles. Various release profiles are demonstrated that depend upon the relative concentration of alginate in the chemokine-loaded microparticle. Local administration and/or intraarticular injection of the microparticles are useful in conditions such as osteoarthritis. Targeted systemic delivery of the alginate chemokine microparticles to distant anatomical sites subjected to autoimmune disease symptomology can be performed by encapsulation within liposomes having targeting ligands. Consequently, upon the creation of the appropriate chemokine gradient, multipotent stem cells will migrate to the distant anatomical site where the liposomes are attached.
The present invention relates to an ionic complex comprising a cationic polypeptide and an anionic excipient selected from: a PEG-carboxylic acid; a fatty acid having 10 or more carbon atoms; an anionic phospholipid; and a combination thereof. The invention also relates to a pharmaceutical composition comprising the ionic complex of the invention and a pharmaceutically acceptable carrier. The cationic polypeptide of the ionic complex has pharmacological activity and the complex can provide a more desirable pharmacokinetic profile for the cationic polypeptide of the complex as compared to the cationic polypeptide alone following administration. As such, the invention also relates to the use of the ionic complex and pharmaceutical composition comprising same to treat a subject suffering from a disease or disorder that is responsive to the cationic polypeptide of the ionic complex.
A method of treating a neurological disease (such as autism) in a subject is disclosed. The method comprises administering to the subject a therapeutically effective amount of microparticles derived from mesenchymal stem cells.
An antibacterial wound dressing, a method for preparing the antibacterial wound dressing, and a use of the antibacterial wound dressing are provided. The antibacterial wound dressing is obtained by amidating carboxymethyl cellulose with a guanidine compound. The carboxymethyl cellulose has a substitution degree of 0.1-0.6, and the guanidine compound has a grafting degree of 0.2%-10.0%.
Provided herein are methods and compositions related to treating and/or preventing kidney related diseases and disorders, treating and/or preventing acute kidney injury, and for improving kidney health in a subject by administering to the subject (e.g., orally administering to the subject) a composition comprising nicotinamide riboside and/or pterostilbene.
Methods of treating a Gram negative bacterial infection comprising a co-administration regimen of an effective amount of fosfomycin together with at least one antimicrobial agent selected from the group consisting of piperacillin-tazobactam, ceftazidime and meropenem to an infected subject. A further method of treating a subject with a bacterial infection that includes infection with a “resistant” mutant subpopulation selected from the group consisting of Staphylococcus aureus, Enterococcus faecalis, Pseudomonas aeruginosa, Acinetobacter baumannii and E. coli, the method comprising (a) obtaining a sample from a subject suffering from a bacterial infection; (b) identifying the presence of the “resistant” mutant subpopulation in said sample; and (c) co-administering fosfomycin and at least one antimicrobial agent to the subject, wherein after the co-administration, the bacterial density is effectively reduced and the “resistant” mutant subpopulation is inhibited.
This invention is based on the discovery that many eye conditions associated with aging are mediated at least in part by cells bearing a senescent phenotype. Senescent cells accumulate with age, and express factors that contribute to the pathophysiology of age related conditions. The data show that in age-matched patients, the severity of age-related conditions correlates with the abundance of senescent cells, and that clearing senescent cells can help abrogate the condition. Small molecule drugs that remove senescent cells from affected tissue in the eye are provided that have special efficacy in treating ophthalmic conditions. They not only inhibit progression of the disease, they can also reverse some of the pathophysiology—such as neovascularization and vaso-obliteration—that lead to vision loss. These senolytic agents have an appropriate dose and specificity profile to be effective in the clinical management of previously intractable ophthalmic conditions.
A method of treating psychosis, and the underlying antipsychotic formulation. The method includes administering a therapeutically effective amount of synthetic agents that selectively recruit β-arrestin to D2 receptors and have little-to-no binding to culprit receptors associated with weight gain and Type II diabetes. The synthetic agents can include SYA16263 and SYA16264, and/or derivatives or analogs thereof. The 1-(pyridin-2-yl)piperazine moiety was found to play a significant role in recruiting β-arrestin to D2 receptors. In other embodiments, the current invention relates to synthetic agents that are selective of D4 receptors for treatment of psychosis and erectile dysfunction. The synthetic agents can include SYA27287 and/or derivatives or analogs thereof. In all embodiments, extrapyramidal side effects are eliminated or minimized.
Described herein are methods of use of small molecule splicing modulator compounds that modulate splicing of mRNA, such as pre-mRNA, encoded by genes, and methods of treating diseases and conditions associated with gene expression or activity of proteins encoded by genes.
The invention provides compositions and methods for the treatment or prevention of pain. The invention provides constructs whereby hydrolysis of the construct by a specified gastrointestinal enzyme directly, or indirectly, releases an opioid when taken orally as prescribed. The gastrointestinal enzyme mediated release of opioid from constructs of the invention is designed to be attenuated in vivo via a saturation or inhibition mechanism when overdoses are ingested. The invention further provides constructs that are highly resistant to oral overdose, chemical tampering, and abuse via non-oral routes of administration.
The present invention is directed to methods for improving the therapeutic outcome of treatment with roflumilast. The therapeutic outcome is improved by consistent delivery and/or a longer plasma half-life of a topically administered roflumilast composition. The roflumilast composition preferably includes dicetyl phosphate, ceteth-10 phosphate, diethylene glycol monoethyl ether, and/or hexylene glycol.
The disclosure relates to ophthalmic pharmaceutical compositions comprising pilocarpine or a pharmaceutically acceptable salt. Aspects of the disclosure further relate to uses and preparations of ophthalmic pharmaceutical compositions comprising pilocarpine or a pharmaceutically acceptable salt, for correcting presbyopia and other ocular conditions in a subject.
Provided herein are methods of treating multiple sclerosis with a fumarate, wherein the fumarate is a dialkyl fumarate, a monoalkyl fumarate, a combination of a dialkyl fumarate and a monoalkyl fumarate, a prodrug of monoalkyl fumarate, a deuterated form of any of the foregoing, or a pharmaceutically acceptable salt, clathrate, solvate, tautomer, or stereoisomer of any of the foregoing, or a combination of any of the foregoing. The methods provided herein improve the safety of treatment by informing and monitoring patients undergoing treatment regarding progressive multifocal leukoencephalopathy, and/or by monitoring lymphocyte count.
A superior dual ACE/NEP inhibitor is a combination that selectively targets the ACE C-domain in addition to inhibiting NEP. Such a dual ACE C-domain/NEP inhibitor can be used in the treatment of diverse cardiovascular diseases, including hypertension and heart failure.
A bioactive substance carrier includes a bioactive substance and porous silica particles supporting the bioactive substance and having a plurality of pores with a diameter of 5 nm to 100 nm. The porous silica particles have particular physical properties, can deliver all various drugs by a supported amount in a sustained manner, and can be parenterally administered.
Liquid, gel, and semi-solid compositions containing naloxone base, or isomers or derivatives thereof, with one or more non-aqueous solvents, and optional viscosity adjusting agents, are provided. Methods of treating an individual exhibiting symptoms of respiratory depression associated with known or suspected opioid overdose including administering a liquid, gel, or semi-solid formulation containing a solution of naloxone base, or an isomer or a derivative thereof, in one or more non-aqueous solvents, are also provided.
Embodiments of the invention include devices, compositions and methods for the controlled release of therapeutic substances, such as drugs. Control over the rate of release of the therapeutic substances from the devices is achieved by the use of nanoporous membranes in which the pore size is matched to the molecular diameter of the therapeutic substances. Some embodiments of the invention achieve zero-order release by the use of membranes with a pore diameter that is more than five times the Stokes' diameter of the therapeutic substance released.
A method is provided for reversibly modifying a protein or peptide on its glutamine residue(s) by performing a reaction, such as a transglutaminase-catalyzed reaction, between the protein or peptide and an amine-containing reagent, whereby the reagent is linked through its amine function to a side chain of the glutamine residue. Subjecting the modified protein to an appropriate stimulus regenerates the protein or peptide in its original form.
The present invention relates to sulfate-free aqueous personal care composition comprising a surfactant system comprising at least one methyl oleoyl taurate, one isethionate and one alkoxylated sulfosuccinate, and from about 0.2 pbw to about 15 pbw of a conditioning agent. It is also directed toward the use of such a composition for washing keratin substrates, in particular the hair or the scalp.
The present invention relates to rinse-off cleansing compositions comprising a surfactant system, in which the surfactant system comprises an alkyl polyglycoside and an acyl glutamate present in specific amounts, for providing compositions that are not only mild on the skin and/or eyes that are stable especially under acidic pH conditions, but also have simpler formulations which have fewer ingredients, good rinse-off property, and preferably more cost effective.
The invention relates stable compact low viscosity hair care compositions comprising: from about 20 weight % to about 45 weight % total surfactant; from about 2 weight % to about 25 weight % branched anionic surfactant with a tail having an alkyl chain with 12 to 18 carbon atoms; from about 5% weight % to about 30 weight % linear anionic surfactant with a tail having an alkyl chain with 12 to 18 carbon atom; from about 0.1 weight % to about 8 weight % of a viscosity reducing agent; from about 40 weight % to about 80 weight % of water; wherein the concentrated shampoo has Ratio of Linear anionic surfactant to Branched anionic surfactant of about 0.3 to about 5, wherein the concentrated shampoo has a viscosity of less than 3000 cP at 26.5° C.
The is provided a compound of formula I or II or physiologically acceptable salts or solvates, or oxidised derivatives thereof: where R1 to R3, R13 and R14 are as defined herein. Also disclosed herein are methods of dyeing hair or (temporarily) tattooing the skin using the compounds of formula I or II (or physiologically acceptable salts or solvates, or oxidised derivatives thereof) in a suitable composition.
An intravenous fluid bag comprising: a primary chamber configured to retain a liquid; a valve in fluid communication with the primary chamber, the valve including a housing, a spike element, and a seal, with the housing surrounding the seal, which surrounds the spike element; the spike element having a first end culminating in a tip, a second end having an inner conduit, and one or more through holes between the tip and the second end in fluid communication with the inner conduit forming part of a continuous liquid passageway in fluid communication with the primary chamber; the seal having a relaxed state preventing fluid flow through the valve, and the seal having a compressed state through which the through holes of the spike element extend allowing fluid flow from a source external the intravenous fluid bag, through the through holes, through the inner conduit, and into the primary chamber.
Disclosed embodiments provide an improved massager for clitoral massage and stimulation. The massager in accordance with disclosed embodiments is configured and disposed to move one or more balls along an interior wall of a cavity of an housing of the massager. A membrane is disposed over at least a portion of the housing, including the cavity. Multiple ribs are formed in a contact area of the membrane. The contact area is the area of the membrane intended to be placed against the clitoris of a user during use. In embodiments, the ribs are raised such that they protrude outward from the membrane. The ribs may be arranged in a radial pattern around a center portion of the contact area, which also aligns with a center point of rotation of the balls, in order to create an enhanced user experience.
Systems and methods for robotic and exoskeleton hands are provided. An exoskeleton hand can include a flexible actuator having a cavity and a reinforcement band. The cavity can be filled with a fluid from a pressure source, forcing the actuator to deform, bend or extend. The fluid that fills the cavity as a driving force can be a gas or liquid, which can be recyclable or disposable.
In general, the present invention is directed to systems and methods for providing ostomy faceplates in proximity to negative pressure wound devices. This may be achieved, for example through the use of an ostomy appliance or faceplate with a non-circular flange for attachment of a bag or pouch. In accordance with some embodiments, this non-circular flange may be substantially “D”-shaped, and/or have at least one substantially straight edge. In some embodiments, the ostomy faceplate may itself be noncircular and/or “D”-shaped; may include a cutting guide for cutting materials used with an NPWD; may contain an asymmetrically located aperture; and/or may comprise one or more tapered edges.
A passive ankle assist apparatus with a torsional coil spring for assisting an ankle joint of a user in a state of being mounted on a shoe worn by the user includes a shank frame mountable on a shank of the user, the shank frame including a guide hole, a torsional coil spring including a coil part provided in a state of being wound around a central portion a plurality of times, the torsional coil spring slidable along the guide hole, a support part configured to support the coil part, and a coupling frame configured to support the support part, the coupling frame couplable to the shoe.
An orthopedic device has a rigid or semi-rigid frame element defining opposed first and second sides, and is adapted to extend about at least a portion of a limb. The device includes straps formed from a variety of segments having stretchable and substantially inelastic segments. The straps adjustably secure to the frame element, and stretch relative thereto. The device also includes a central strap pad arranged to connect two straps together such that a first strap of the two straps is movable relative to a second strap, and the first and second straps are maintained diagonal relative to one another.
A system for preparing a femur to receive an implant includes a saw blade, positionable in a saw blade slot of a distal cutting block and operable to form an axial cut surface on the patient's femur. The saw blade carries nominal sizing indicia that increments negatively from an anterior top of concavity of the medial condyle to a posterior top of concavity of the medial condyle, when the saw blade is positioned on the axial cut surface of the patient's femur. An A/P chamfer cutting block is positionable on an axial cut surface of a femur, the A/P chamfer cutting block carrying at least one rotational guide, the at least one rotational guide positionable on a posterior surface of at least one of the medial condyle or the lateral condyle of the patient's femur to thereby rotationally orient the chamfer cutting block relative to the patient's femur.
A pivoting wedge expandable spinal implant. An upper portion and a lower portion are pivotally connected together. The implant, in a collapsed position, is inserted into a disc space. A driving screw engages and applies a force to a pushing portion, driving the pushing portion toward the implant's distal end. The pushing portion engages and drives a wedge toward the implant's distal end. The wedge pivots upward against an inner surface of the lower portion. The wedge continues to pivot along an inner surface of the upper portion, translating the force to the upper portion, pivoting and expanding the upper portion to an expanded position.
A facet distraction prosthesis (10, 30) includes an array of facet distraction base elements (12, 32) connected to each other by one or more connector elements (14, 34). A pair of diagonally adjacent base elements (12, 32) are connected to each other by a set of or more connector elements (14, 34) which intersects with another set of one or more connector elements (14, 34) that connects another pair of diagonally adjacent base elements (12, 32). The connector elements (14, 34) are flexible so that the base elements (12, 32) can flex with respect to each other and adapt to a geometry of a facet joint.
Disclosed is a distal radio ulnar joint prosthesis system, and the method of use for the same, the system comprising an ulnar stem component, and ulnar head component, a set screw, and a sigmoid notch component, the system providing a prosthesis for replacement of the distal radio ulnar joint to restore the pronation-supination motion of the forearm as well as stability between the ulna and radius; a DRUJ prosthesis adapted for rotational alignment of the replacement joint along the axis of forearm rotation; a DRUJ prosthesis which allows for the use of a number of different sized heads having differing geometries; a DRUJ prosthesis adapted for variable pivoting alignment between the replacement distal ulnar head and the ulna; and a DRUJ prosthesis adapted for adjustment in the alignment between the articulating surface of the ulnar head and the sigmoid notch.
Methods of selecting and implanting prosthetic devices for use as a replacement meniscus are disclosed. The selection methods include a pre-implantation selection method and a during-implantation selection method. The pre-implantation selection method includes a direct geometrical matching process, a correlation parameters-based matching process, and a finite element-based matching process. The implant identified by the pre-implantation selection method is then confirmed to be a suitable implant in the during-implantation selection method. Methods of implanting meniscus prosthetic devices are also disclosed.
A knee joint prosthesis is capable of moving between an extended position and a flexion position. The knee joint prosthesis includes a femoral component that is configured to be mounted to a femur, a tibial component that is configured to be mounted to a tibia, a post fixedly connected to one of the femoral component and the tibial component, and a cam recess defined on the other of the femoral component and the tibial component that is configured to be engaged by the post in either the extended position or the flexion position of the knee joint prosthesis. The knee joint prosthesis may also include an artificial ligament that extends between the femoral component and the tibial component. The post and the ligament mimic one of the ACL and PCL.
Systems and methods for treating musculoskeletal disorders of the spinopelvic anatomy including treating spinal deformities by spinopelvic fixation including fusion of the sacroiliac joint at the base of long spinal fusion construct cases. The system may include implants designed to be used as an adjunct to long spinal fusions to further the immobilization and stabilization of the sacroiliac joint. The implants may be designed to augment an S2AI screw and an S1 screw in order to improve durability of the foundation of the spinal construct. The implants may have a triangular cross section.
An exemplary valve repair device for repairing a native valve of a patient includes: a strip of material; a coaption element formed from the strip of material; a pair of paddles formed from the strip of material and connected to the coaption element; a cap attached to the paddles; and a pair of extension members connected to the cap and movable between an open position and a closed position. The paddles are movable between an open position and a closed position and are configured to attach to the native valve of the patient. Movement of the cap toward the coaption element causes the pair of paddles to move to the closed position, and movement of the cap away from the coaption element causes the pair of paddles to move to the open position. In the closed position the extension members are biased in a closing direction.
Systems, apparatuses, and methods for treating native heart valves are disclosed herein. A system for delivering a prosthetic device into a heart of a patient includes an elongated catheter body and a delivery capsule. The delivery capsule can be hydraulically driven to deploy at least a portion of a prosthetic heart valve device. The delivery capsule can release the prosthetic heart valve device at a desired treatment site in a patient.
Provided herein is a mandrel for use in electrospinning prosthetic valve devices. Also provided are prosthetic valve devices for implantation in an animal or a human. Methods of making and using the valve devices are also provided herein.
A multifocal intraocular lens (MF-IOL) includes a circularly birefringent material with a right-handed index of refraction nR for a light with a right-handed polarization, and a left-handed index of refraction nL for a light with a left-handed polarization; and haptics, to position the multifocal intraocular lens inside a capsule of an eye; wherein the multifocal intraocular lens has a right-handed optical power DR for the light with the right-handed polarization, and a left-handed optical power DL for the light with the left-handed polarization, wherein DL/DR=(nL−1)/(nR−1). Some variations of the MF-IOL include stimulus-orientable optically anisotropic constituents. Some classes of the MF-IOL include a self-assembling optically anisotropic compound. A corresponding method of making a MF-IOL is comprising providing stimulus-orientable optically anisotropic constituents as part of an intraocular lens; orienting the optically anisotropic constituents by applying a non-stretching stimulus; and locking-in the oriented optically anisotropic constituents to form the multifocal intraocular lens.
A medical device for shutting off an anatomical channel is provided, including: a band section that can be placed around the body tissue surrounding the body channel and can be closed to form a ring enclosing a passage opening for the body tissue, and that includes a cavity which makes up one part of a receiving chamber of the arrangement, for receiving working fluid; and a pump unit for conveying the working fluid. The passage opening can be made smaller by introducing the working fluid into the cavity. An expansion body is provided having an expansion chamber, and the expansion body is arranged on the band section, on a side of the band section that faces the passage opening, and the expansion chamber can be made bigger by introducing an auxiliary fluid, which is separate from the working fluid, into the expansion chamber.
Disclosed is a method for producing an orthodontic appliance for securing to a user's teeth in order to carry out an orthodontic treatment, the appliance having an element. The method includes a) gathering information relating to the user's set of teeth; b) using the information to determine at least first and second stable shapes of the element towards which the element should tend to deform during the first and second periods of treatment, respectively; and c) producing and programming the element in such a way that the application of a stimulus during the first period of the treatment renders the second stable shape operational. In certain aspects in step c), a retractable or expansible material is incorporated into the element.
An active marker device (100) is introducible into a human tissue and for tracking a region of interest of a human body. The active marker device includes a light source (101) for emitting light such that the emitted light can be detected by an optical sensor. In this way, the active marker device and/or the region of interest can be tracked by a tracking system including the optical sensor. The active marker device (100) also includes a switch (102) for turning the light source on and off and for operating the light source in a pulsed mode.
A system for tracking at least one bone in robotized computer-assisted surgery, comprises a processing unit and a non-transitory computer-readable memory communicatively coupled to the processing unit and comprising computer-readable program instructions executable by the processing unit for: obtaining backscatter images of the at least one bone from a tracking device in a coordinate system; generating a three-dimensional geometry of a surface of the at least one bone from the backscatter images, the three-dimensional geometry of the surface being in the coordinate system; determining a position and orientation of the at least one bone in the coordinate system by matching the three-dimensional geometry of the surface of the at least one bone to a three-dimensional model of the bone; controlling an automated robotized variation of at least one of a position and orientation of the tracking device as a function of a processing of the backscatter images; and continuously outputting the position and orientation of the at least one bone in the coordinate system to a robot driver controlling a robot arm supporting a surgical tool in the coordinate system for altering the bone.
A fiber optic tracking system includes a light source, a first optical fiber, a second optical fiber, a sensing unit, and a controller operatively coupled to the sensing unit. Each optical fiber includes a plurality of sensing sections and has a fixed sensing point located along its respective length that is fixed relative to tissue. Each optical fiber is configured to receive an optical signal from the light source. The sensing sections are configured to modify the optical signals in response to a deformation of the respective optical fiber. The sensing unit is configured to receive modified optical signals from the first optical fiber and the second optical fiber. The controller is configured to determine locations in a working coordinate system of the fixed sensing points using the modified optical signals and determine a pose of the tissue based on the locations of the fixed sensing points.
A polyaxial bone anchoring device is provided including a bone anchoring element (1) comprising a head (3) and a shank (2); a receiving part (4, 4′) for receiving a rod (100) for coupling the rod to the bone anchoring element, the receiving part comprising a first end (4a), an opposite second end (4b) and a central axis (C) extending through the first end and the second end, and a channel (9) for receiving the rod and an accommodation space (11) for receiving the head; a pressure element (6, 6′) arranged in the receiving part and configured to exert pressure onto the head; wherein the pressure element (6) comprises flexible sections (66a, 66b) facing away from the head (3), characterized in that the flexible sections (66a, 66b) comprise a free end portion (69a, 69b) with respect to the central axis (C) that cooperates with an inclined surface portion (15a, 15b) of the receiving part (4) such as to hold the pressure element (6) in a position in which it exerts a pre-load onto the head before the head is locked.
Illustrative methods of manufacturing flexible drive shaft assemblies for preparing bone can include steps such as providing, receiving or manufacturing a mold. Injecting a first polymeric material into the mold to form a coupling member, the coupling member adapted for attachment to a torque-providing driving tool. Injecting a second polymeric material into the mold to form a work member, the work member adapted to interface with the bone to prepare the bone. The method can further include injecting a third polymeric material into the mold in an overmolding process to form a flexible shaft extending from the coupling member to the work member. The assemblies resulting from such methods can include a flexible shaft that is adapted to transmit a majority of a torque received from a torque-providing driving tool through the flexible shaft. In some examples, the flexible shaft can include a solid polymeric shaft.
Devices, systems, and methods for treating vascular defects are disclosed herein. One aspect of the present technology, for example, includes an occlusive device comprising a mesh having a low-profile state for intravascular delivery to the aneurysm and a deployed state, the mesh comprising a first end portion, a second end portion, and a length extending between the first and second end portions, and a first lateral edge, a second lateral edge, and a width extending between the first and second lateral edges. The mesh may have a predetermined shape in the deployed state in which (a) the mesh is curved along its width, (b) the mesh is curved along its length, and (c) the mesh has an undulating contour across at least a portion of one or both of its length or its width. The mesh is configured to be positioned within the aneurysm in the deployed state such that the mesh extends over the neck of the aneurysm.
Tissue anchors comprise a woven filament braid body having an elongated tubular configuration and a foreshortened configuration where proximal and distal ends of the body expand radially into double-walled flange structures while leaving a cylindrical saddle region therebetween. The tissue anchors are deployed through penetrations between adjacent tissue layers, where the flanges engage the outer surfaces of the tissue layers and the saddle region resides within the tissue penetrations.
Tissue adhesions using surgical adjuncts and medicants are provided. In general, an implantable adjunct can have one or more medicants releasably retained therein that are configured to induce tissue adhesions. The adjunct can be configured to be applied to lung tissue in conjunction with surgical staples using a surgical stapler. Pleurodesis can be encouraged through delivery of the adjunct to the lung tissue.
A method and apparatus for distracting a joint during a procedure are disclosed. The apparatus can include bone engaging portions and an articulating bearing. The bone engaging portions can engage the bone and then the articulating portions can allow joint motion. The method can use the apparatus to perform a procedure with the apparatus.
A device for mechanically assisting with scleral depression is disclosed. A top ring and a bottom ring are rotationally engaged where the bottom ring is capable of attachment to an eyelid speculum, and is thus fixed while in use. A variable vertical displacement apparatus is attached to the top ring. A rod and depressing member are engaged with the variable vertical displacement apparatus such that the depressing member is capable of both vertical and horizontal travel around the periphery of a patient's eye, allowing a surgeon to depress the sclera of a patient's eye while at the same time performing a surgical procedure.
Disclosed are ultrasound devices and methods for use in guiding a subdermal probe during a medical procedure. A device can be utilized to guide a probe through the probe guide to a subdermal site. In addition, a device can include a detector in communication with a processor. The detector can recognize the location of a target associated with the probe. The processor can utilize the data from the detector and create an image of a virtual probe that can accurately portray the location of the actual probe on a sonogram of a subdermal area. In addition, disclosed systems can include a set of correlation factors in the processor instructions. As such, the virtual probe image can be correlated with the location of the actual probe.
A computer tomography installation having contactless data signal transmission is provided. The device includes a conductor element that is longitudinally slit coaxial, at least one high-frequency transmitting unit that feeds a high-frequency carrier signal modulated with a data signal to be transmitted into the conductor element, and at least one longitudinally slit coaxial coupling conductor element that is configured to receive the emitted modulated high-frequency carrier signal from the near field of the conductor element. The device also includes a high-frequency receiving unit that is electrically connected to the coupling conductor element and is configured to extract the data signal from the received modulated high-frequency carrier signal. The conductor element and the coupling conductor element are arranged to be movable relative to each other. The conductor element is arranged on a rotatable gantry part, and the coupling conductor element is arranged on a stationary gantry part.
The present disclosure directs to a system and method for image processing. The method for image processing comprises acquiring a plurality of original computed tomography (CT) images of a spine of a subject; generating CT value images of the spine of the subject by processing the plurality of original CT images. The method further includes identifying an optimal sagittal image in which a centerline of the spine is located based on the CT value images. The method further includes identifying the centerline of the spine within the optimal sagittal image. The method further includes identifying a center point and a direction of at least one intervertebral disc along the centerline of the spine. The method still further includes reconstructing an image of the at least one intervertebral disc based on the center point and the direction of the at least one intervertebral disc.
The present invention provides a personal hand-held monitor comprising a signal acquisition device for acquiring signals which can be used to derive a measurement of a parameter related to the health of the user, the signal acquisition device being integrated with a personal hand-held computing device. The present invention also provides a signal acquisition device adapted to be integrated with a personal hand-held computing device to produce a personal hand-held monitor as defined above.
A data acquisition device includes measuring instruments to generate physiological and/or psychological data streams. Microprocessors within the acquisition device process the generated data streams into metrics, which feed into stress function algorithms. Algorithm processing may occur either on the device, or metrics may be communicated via wireless communication for external processing on mobile devices and/or cloud-based platforms. The calculated stress functions inform cloud-based computational systems biology-derived models describing the dynamics of hormones and neurotransmitters released in the body in response to stressful stimuli. Stress hormone levels are quantified using these models, and are used in combination to serve as biologically inspired metrics of acute and chronic stress an individual is experiencing.
A non-invasive method of detecting anomalous tissue, such as cancerous or injured tissue, in a patient. At least two hemoglobin signal components of hemoglobin levels in at least one segment of tissue of the patient are non-invasively measured over time. Time varying changes of at least a first of the hemoglobin signal components are measured with respect to at least time varying changes of a second of the hemoglobin signal components. A co-varying coordinate system of the time varying changes is generated. Any anomalous tissue in the measured segment of tissue is detected from a signature of the measured segment of tissue in the co-varying coordinate system which differs from a signature of non-anomalous tissue in the co-varying coordinate system. Preferably, five hemoglobin signal components are measured: oxyHb, deoxyHb, total Hb (totalHb=oxyHb+deoxy Hb), Hb oxygen saturation (HbO2Sat=(oxyHb/totalHb)*100), and tissue-hemoglobin oxygen exchange HbO2Exc (deoxyHb−oxyHb).
A switchable filter device for use in a system for recording electro-physiological signals. The filter device includes a plurality of recording channels, the recording channels having an ablation recording channel. Each recording channel has a patient side terminal at a patient interface and a corresponding recording side terminal at a recording device interface. Each recording channel includes a first signal path with a first frequency dependent transmission characteristic having a first pass band, a second signal path with a second frequency dependent transmission characteristic different from the first frequency dependent transmission characteristic, the second frequency dependent transmission characteristic having a second pass band overlapping the first pass band, and switching devices operable to switch between the first signal path and the second signal path in response to a control signal indicative of a transient interference signal. Preferably, switching from the second signal path to the first signal path is performed with a switching delay after termination of the transient interference signal.
Embodiments herein relate to chemical sensors for detecting a physiological analyte. In an embodiment, an implantable medical device including a chemical sensor for detecting an ion concentration in a bodily fluid is provided. The chemical sensor can include a sensing element having an outer barrier layer forming a top, a bottom, and opposed sides, where the top of the outer barrier layer can be created from a polymeric matrix permeable to sodium ions, potassium ions, and hydronium ions. An active agent can be disposed within the top of the outer barrier layer, the active agent having anti-inflammatory effects. The chemical sensor can include an optical excitation assembly configured to illuminate the sensing element. The chemical sensor can also include an optical detection assembly configured to receive light from the sensing element. Other embodiments are also included herein.
The concentration of an administered compound, such as a drug (D), in an organ or a bodily fluid, such as blood, is determined directly through detecting the drug (D) or its metabolites (DM) in sweat. The concentration may be determined indirectly by administering the drug (D) together with one or more tracer compounds (T, T2) or metabolites thereof (TM, T2M) or by detecting concentrations and trends of other analytes present in the body that react to the presence of the drug (D). By determining tracer concentration in sweat, the concentration of the drug (D) in blood or an organ can be determined. The tracer (T, T2) is a compound selected for ease of detection in sweat, known metabolic and solubility profiles that correspond to those of the drug (D), and safety of use. A smart transdermal delivery patch (300) is used to administer a dosage of drug to a wearer in coordination with at least one sweat sensor (324) reading conveying information about the wearer.
In an embodiment, the present invention is an apparatus, comprising: a foot mat; a depth sensing camera; an elevated foot platform that reduces or prevents rotational movement of a foot; a processor in communication with the depth sensing camera, the processor further configured to calculate the circumference of a user's leg based on data from the depth sensing camera while the user has one foot on the foot mat and one foot on the elevated foot platform, the processor further configured to select a recommended product for the user's knee or ankle from among a set of pre-manufactured candidate products for knees or ankles based at least in part upon the leg circumference of the user; and an output device to display information received from the processor, the information identifying the recommended product to the user.
A system and method are presented for use in monitoring one or more conditions of a subject's body. The system includes a control unit which includes an input port for receiving image data, a memory utility, and a processor utility. The image data is indicative of data measured by a pixel detector array and is in the form of a sequence of speckle patterns generated by a portion of the subject's body in response to illumination thereof by coherent light according to a certain sampling time pattern. The memory utility stores one or more predetermined models, the model comprising data indicative of a relation between one or more measurable parameters and one or more conditions of the subject's body. The processor utility is configured and operable for processing the image data to determine one or more corresponding body conditions; and generating output data indicative of the corresponding body conditions.
Embodiments relate to an implantable device for detecting leakage of matter from a mammalian lumen, the device comprising a mesh structure that is attachable to a lumen of a mammalian. The mesh structure comprises a material or a material composition that is electrically conductive and which is measurably responsive in terms of its electrical conductivity when being subjected to leakage of matter from the lumen.
Disclosed examples include heart rate monitor systems and methods to estimate a patient heart rate or rate of another pulsed signal, in which rate hypotheses or states, are identified for a current time window according to digital sample values of the pulsed signal for a current sample time window, and a rate change value is computed for potential rate transitions between states of the current and previous time windows. Transition pair branch metric values are computed as a function of the rate change value and a frequency domain amplitude of the corresponding rate hypothesis for the current time window, and the pulsed signal rate estimate is determined according to a maximum path metric computed according to the branch metric value and a corresponding path metric value for the previous time window.
A secure medical device system (30; 30′) includes a computer processing device (42) that includes a processor, memory in communication with the processor, an interface enabling communication between the processor and a diagnostic test unit (40; 40′), a first wireless access point (48A), computer-readable instructions stored in the memory and executable by the processor providing a locally-served web site (46) that is browser accessible over the first wireless access point, and a second wireless access point (48B) operable concurrently with and independent from the first wireless access point. The locally-served web site is adapted to receive control instructions over the first wireless access point and to generate command signals transmittable over the interface to the diagnostic test unit, and the second wireless access point enables communication between the processor and an external network (36).
A device and computer program for determining the spherocylindrical refraction of an eye are disclosed. A component having adjustable optics is provided, the refractive power of which can be adjusted via a refractive power adjustment device. The spherocylindrical refraction is then determined from the adjustment of the refractive power adjustment device at different orientations of a typical direction of the optics or a typical direction of eye test characters.
The invention relates to a measurement system for optically measuring an object, comprising a dental camera and an optical attachment. In this case the optical attachment comprises at least one lens, which is shaped and arranged in such a way that the optical attachment has a negative focal length so that a measurement field or a measurement volume of the dental camera is enlarged by the optical attachment.
A scrub glove (G′) has an inner layer (IL) fitting over a wearer' thumb, fingers, palm, and back of their hand, the wearer's wrist and a portion of their forearm. The glove further has an outer layer (OL) of an abrasive, woven mesh material formed to fit over the inner layer and enclosing the wearer's thumb, fingers, palm, the back of their hand, and their wrist. A band (D) fits over an open end of the outer layer where it fits over the open end and a cuff portion of the inner layer and is permanently secured to both the inner and outer layers. While the outer layer fits over the inner layer, it does not adhere to the inner layer whereby when the glove is used fin cleaning, the outer layer is free to move separately from the inner layer.
An autonomous floor cleaner can include a housing, a drive system for autonomously moving the housing over the surface to be cleaned, a controller for controlling the operation of the autonomous floor cleaner, a tank adapted to hold liquid, and a carry handle joined with the tank and/or the housing. The carry handle is movable between a stowed position and a carry position. The carry handle can include one or more capturing assemblies such that the carry handle can be selectively rotated between different orientations allowing for one or more of: locking/securing the tank to the housing, activating/deactivating the floor cleaner based on handle position; carrying the entire floor cleaner; ejecting the tank from the housing; carrying the tank separately; and emptying the tank.
A cutting board is configured to be suspended above a sink basin. The cutting board includes a top, cutting surface, and a bottom surface opposite the top surface. The cutting board also includes a bevel, an upper ledge, and a bumper. The bevel is disposed along a first edge of the bottom surface. The upper ledge extends outwardly beyond the bevel to support the cutting board along a rim of the sink or countertop. The bumper is disposed on the bevel and engages with the sink to prevent movement of the cutting board in one direction. The cutting board is configured to be used in both a mounted configuration above a basin of the sink and an unmounted configuration on a flat surface away from the sink.
A beverage brewing apparatus includes at least one material storing unit, at least one brewing unit, at least one brewing cup and a matching system. The material storing unit is suitable for storing materials. The matching system is suitable for matching the brewing cup and the material storing unit, so that the brewing cup is suitable for receiving materials from the material storing unit. The matching system is suitable for matching the brewing cup and the brewing unit, so that the brewing unit is suitable for brewing materials in the brewing cup.
A beverage-making apparatus includes: an ingredient package accommodation portion. The ingredient package accommodation portion includes: an ingredient package accommodation body including a plurality of ingredient package receiving parts configured to accommodate a plurality of ingredient packages; and an ingredient package accommodation cover configured to couple with and cover the ingredient package accommodation body and secure the plurality of ingredient packages in the ingredient package accommodation portion. Each of the plurality of ingredient package receiving parts, which is configured to accommodate a corresponding ingredient package among the plurality of ingredient packages, includes: at least one discharge channel configured to discharge contents of the ingredient package provided in the ingredient package receiving part, and at least one water supply channel configured to supply water to the ingredient package provided in the ingredient package receiving part.
A wall mount deposit box is provided. A housing includes a front side and a back side. A rotatable content deposit includes a content delivery door and an inner panel affixed on a proximate end at an angle to a bottom of the content delivery door, and is pivotably attached to the front side of the housing. A content slot is formed as an opening within a front surface of the housing when the rotatable content deposit is in a fully open position allowing content to be deposited through the opening over each of the inner panel and the safety arm. A content retrieval door is located below the rotatable content deposit and is pivotably attached to the front side of the housing.
A transport, storage and display case (10) and a transport storage and display case system of stacking compartments that can be interconnected and formed into multiple orientations according to the user's needs. The system is convertible between a display configuration and a stacked transport/storage configuration. Each case has rabbet ledges (62, 64) at its upper and lower edges for cooperating with adjacent cases. The outer surface of each case has one or more magnets provided to facilitate secure interaction between adjacent cases arranged in the display configuration.
An apparatus includes a base to switch the apparatus between slidable and non-slidable states, for example a laboratory analysis device, wherein the base is adapted to be located on a flat surface, the base comprising a bottom section adapted to contact the flat surface when the base is located on the flat surface, a movable section that is adapted to assume a retracted position and an extended position, wherein, in the retracted position, the movable section does not contact the flat surface when the base is located on the flat surface, and, in the extended position, the movable section contacts the flat surface when the base is located on the flat surface.
The invention relates to a rack for a cabinet, preferably a corner cabinet, comprising at least two shelves, which can be rotated about an axis and can be slid transversely to the axis. The shelves can be operated independently of each other, can be arranged one over the other, and can be slid on shelf supports. The shelves are mounted on the shelf supports in such a way that rotation by 360° is enabled. Each shelf not mounted on a bottom of the cabinet is mounted on at least one support, which can be fastened to a stable wall in a rear region of the cabinet and is arranged in such a way that the height of the support can be varied.
Embodiments of the invention relate to load carrier systems and associated manufacturing methods. In one embodiment, a load carrier system can include a unitary piece of material. The unitary piece of material can include a body portion comprising a first face side, an opposing face side, a first peripheral edge and an opposing second peripheral edge; and one or more straps comprising a respective extended end, wherein the straps are an integral part of the body portion; wherein the one or more straps are folded over onto the first face side adjacent to the first peripheral edge; and wherein at least one respective end of the one or more straps is fastened to the opposing second peripheral edge.
An arm wearable apparatus includes a telescoping arrangement having a plurality of sections, a user interface system that removably attaches the telescoping arrangement with an arm of a wearer, and a plurality of illuminable rings. Each ring of the plurality of illuminable rings is attached with a respective section of the plurality of sections and has an inner diameter such that the plurality of illuminable rings form an opening to receive the arm when the telescoping arrangement is in a retracted configuration. At least some of the plurality of illuminable rings are arranged beyond an extent of the arm when the telescoping arrangement is in an extended configuration.
A refill lipstick cartridge that prevents or avoids operation of the dispensing mechanism for the lipstick until the cartridge has been secured into the lower case of a lipstick case. The refill lipstick cartridge has a locked or non-functioning configuration, in which the lipstick cannot be dispensed from the refill lipstick cartridge until the refill lipstick cartridge is installed into the lower case of the lipstick case, and an unlocked or functioning configuration when installed into the lipstick case, in which the dispensing mechanism for the lipstick can function to both extend from the lipstick bullet, and retract the lipstick bullet into, the lipstick case, typically manually under the control of the user of the lipstick product. A locking mechanism that employs either friction or mechanical locking elements is manipulated to position the refill lipstick cartridge between the locked configuration and the unlocked configuration.
An opening/closing nozzle of a discharge pump for a cosmetic container is configured such that it is advantageous in that inflow of air into a nozzle of the cosmetic container can be prevented such that not only degeneration of the content and hardening of the content inside the nozzle, which would otherwise occur if air flows into the nozzle, can be prevented, but the reliability of the product can also be improved.
A portable hair drying assembly for drying a user's hair includes a bowl that is wearable on a user's head thereby facilitating the bowl to be in thermal communication with hair on the user's head. The bowl has an air chamber that is positioned within the bowl and a plurality of air apertures that is each in fluid communication with the air chamber. A housing is removably coupled to the bowl and the housing has an intake and an exhaust. The exhaust is in fluid communication with the air chamber when the housing is removably coupled to the bowl. A blower is positioned within the housing to blow air onto the user's hair when the bowl is worn on the user's head. A heating unit is positioned within the housing to heat the air being blown by the blower thereby enhancing drying the user's hair.
A hair curler has a cylindrical body with a net attached to a first end of the cylindrical body, the net invertable to permit extension of the net around the cylindrical body, holding hair in place that is wrapped around the cylindrical body. Because no hard plastics or other hard or rigid materials are present, the hair curler is comfortable for a user while sleeping or lying.
A hair styling iron with a built-in Bluetooth for using functionalities of the built-in Bluetooth while using the hair styling iron at high temperature is disclosed. The disclosed hair styling iron includes a circuit board with a built-in Bluetooth, a speaker, control button(s) and a rechargeable battery. Once the hair styling iron is paired with another Bluetooth device, the user can control certain function(s) of the connected Bluetooth device and also stream audio media from the connected Bluetooth device. The rechargeable battery provides power to the speaker and the circuit board when the hair styling iron is not connected to an alternative current (AC) power source.
A position sensing assembly for a tensioning system designed to provide tension to a lace, cord, or other type of strand is disclosed. The tensioning system includes a reel member configured to rotate about a central axis and the position sensing assembly. The position sensing assembly includes a shaft, an indicator tab, and an optical sensing unit. The position sensing assembly assists in controlling the degree to which the strand is tightened and loosened. The position sensing assembly prevents tightening of the strand when the strand is meant to be loosened.
An upper for an article of footwear may be at least partially formed with a knitted component. The knitted component may include a sock portion and a tongue portion, the sock portion having a hollow structure and a toe area, the hollow structure (a) forming an ankle opening in a heel region of the footwear and (b) extending between the heel region and a forefoot region of the footwear to define a void within the footwear for receiving a foot. The tongue portion may have an elongate configuration (a) located in at least a portion of a length of a throat area of the upper and (b) including at least two knit layers that are coextensive.
An article of footwear includes a knitted upper component including a heel reinforcement area and monofilament in the heel reinforcement area. The article of footwear also includes a thermoplastic polyurethane yarn stitched into the knitted upper component. The thermoplastic polyurethane yarn is fused with the knitted upper component at the heel reinforcement area. The article of footwear may include at least one of an outer sole and a midsole connected to the upper, with at least one of the outer sole and the midsole formed of knitwear.
An apparatus for applying studs on strips of material includes a lower plate having a plurality of upward-protruding pins, an intermediate plate intended to be disposed on the lower plate and having a plurality of through housings suitable for receiving the body of the studs and letting the pins of the lower plate pass through, and an upper plate with housings to cooperate with the attaching means of the studs. The pins of the lower plate have a head made of a soft material intended to stop against the body of the studs, in such manner not to damage the body of the studs, when the studs are pressed between the pins of the lower plate and the housings of the upper plate.
A power supply unit for an aerosol inhaler includes: a power supply capable of supplying power to a load capable of generating aerosol from an aerosol source; and a connector serving as a physical and electrical contact with an external power supply, in which the power supply unit for the aerosol inhaler further includes: a power reception coil capable of receiving the power in a wireless manner.
A portable vaporizing device and/or cartridge comprises a product chamber capable of holding a vaporizable product therein, and a porous valve element configured to be heated to flow the vaporizable product therethrough and generate vapor from the vaporizable product, and optionally including a heat transfer element to heat the vaporizable product as it flows through the product chamber towards the porous valve element.
A multipurpose snuffer device is provided. The device includes a sleeve, configured to receive and secure a lighter therein, and a circular lower cylinder, having a convex protrusion having a flexible lip member that is configured to snugly fit around a top edge of a pipe bowl and extinguish a burning material in the pipe bowl. The device may further include a circular intermediate cylindrical cavity, within the circular lower cylinder, configured to store a material capable of burning in the pipe bowl. The circular intermediate cylindrical cavity may be accessed by removing a bottom portion of the circular lower cylinder from an upper portion of the circular lower cylinder. The invention is useful for storing and organizing a plurality of items and functionalities of interest to a smoker, including a lighter, a material capable of burning in the pipe bowl, and a pipe extinguishing structure and functionality.
In some embodiments, a system includes a cartridge assembly and a pen assembly. The cartridge assembly includes a mouthpiece assembly and a bracket cartridge assembly. The mouthpiece assembly includes a mouthpiece component defining a mouthpiece opening and an outer housing defining a vapor outlet and including a recessed sidewall portion. The pen assembly includes a pen housing and a bracket assembly configured to engage with the bracket cartridge assembly of the cartridge assembly such that a temperature of a coil of a wick assembly of the cartridge assembly may be increased such that a carrier material disposed near the coil may be vaporized by the coil. When the cartridge assembly is engaged with the pen housing, the recessed sidewall portion of the outer housing and an inner surface of the pen housing form a fluid path from the vapor outlet to the mouthpiece opening.
A cigarette rolling machine deposits uniformly metered charges of smoking material into a trough formed in a belt as dispensed from a bulk supply. A length of smoking paper sufficient for the combined length of two cigarettes is deposited nearby on the belt on a movable platen. As the platen moves, the belt glides over a fixed arbor and at least one other movable arbor, and the belt forms into a bight, rolling the material into a cylindrical volume. Filters are delivered and abutted to the ends of the volume and the smoking paper is entrained into the bight to encircle the smoking material and filters. A pre-moistened adhesive along a leading edge of the paper adheres to its trailing edge as a circular ouroboros and forming a tube. The twinned pair of cigarettes is then drawn across a cutting plane knife and parted into two individual cigarettes.
An orally-enjoyable tobacco product includes a portion of smokeless tobacco comprising an active ingredient and either: (1) a collection of tobacco particles at least partially enclosed by a coating comprising a water-soluble non-crosslinked component and a substantially water-insoluble cross-linked component, or (2) a pouch comprising smokeless tobacco enclosed in a water-permeable wrapper. The active ingredient is selected from the group consisting of a mercaptan, camphor, borneol, isoborneol, bornyl acetate, isobornyl acetate, mono-bornyl succinate, mono-isobornyl succinate, mono-bornyl formate, and mono-isobornyl formate. The active ingredient is present in an amount effective to reduce or eliminate the sensory irritation arising from the smokeless tobacco. Also disclosed is a method of making such a product.
A method for ecological utilization of silver carp, including the pretreatment of silver carp and the process of making canned fish surimi. The fish meat of silver carp is processed canned surimi. The fish heads and bones are heated and undergo enzymatic hydrolysis by enzymes, and the residues of the filtration are prepared for fish bone powder. A filtration membrane is used to reduce the volume of the filtrate to 50% of fish surimi and then the filtrate is frozen to ice. The frozen part can be added to fish surimi. The transparent part from membrane filtration was used to produce protein powder or ingredients for beverages. Fish offal can be used to produce protein liquid fertilizer. Fish scales and skins can be used to produce collagen. The method adopts ecological utilization, which makes the silver carp meat used effectively, including its processed wastes. The method is a closed cycle process such that that no pollutants or wastes are discharged during the process.
Disclosed are an in-line direct cryogenic method and system for cooling heated fluid food products, such as sauces. The method includes injecting cryogen directly into the fluid to be cooled while the flow rate of the fluid to be cooled is adjusted in response to downstream temperature measurements and while maintaining the injection rate of the cryogen into the fluid. According to the method the flow of the sauce is adjusted during the flow of the cryogen to achieve process stability, product uniformity and efficient use of the cryogen.
The present invention relates to a formulation that can be utilised to facilitate expression of natural behaviour in pigs, and in particular sows and weaners and a method which utilises the formulation for the same.
A system and a method for producing a cold brew extract are provided. The system and method include the use of an extraction tank adapted to receive raw material such as ground coffee beans therein. Water is pumped into the extraction tank. A back pressure control valve is provided so as to pulse the back pressure within the tank. This pulsed back pressure increases turbulence within the tank. Combined with the flow rate and pressure within the tank, the turbulence allows for cold brewed extract concentrate to be produced in a much quicker time than associated with prior art methods. A number of extraction tanks may be provided in the system of the present invention so as to increase yield. A gas may be introduced in line with the pumped water.
A chicken wing meat removal apparatus for removing meat from chicken wings includes a planar tool body with a left end portion, a right end portion, and a body portion extending between the left end portion and the right end portion. The left end portion has a first left jaw and a second left jaw defining a left receiving area to receive a chicken wing. The first left jaw has a first left notch along a first left inner edge and the second left jaw has a second left notch along a second left inner edge. The right end portion has a first right jaw and a second right jaw defining a right receiving area to receive a chicken leg. The first right jaw has a first right notch along a first right inner edge.
Compounds of the formula (I) wherein the substituents are as defined in claim 1. Furthermore, the present invention relates to agrochemical compositions which comprise compounds of formula (I), to preparation of these compositions, and to the use of the compounds or compositions in agriculture or horticulture for combating, preventing or controlling infestation of plants, harvested food crops, seeds or non-living materials by phytopathogenic microorganisms, in particular fungi.
A minnow capturing system includes a tubular member that has an open first end, an open second end and a perimeter wall having a plurality of elongated slits. The slits expose portions of a minnow held within the tubular member such that a hook can extend through the slits and through the minnow. A housing for holding minnows and water has a bottom wall and a peripheral wall. The peripheral wall includes a front wall, a rear wall, a first side wall and a second side wall. A juncture is defined where the bottom wall meets the first side wall. The interior surface of the first side wall is concavel arcuate from the front wall to the rear wall. The tubular member is positionable against the juncture such that a minnow in the housing swims into the second end.
The invention discloses a deep sea fishing cage comprising supporting frameworks and cage nets arranged therebetween; said supporting framework comprises a float supporting component and cage frameworks symmetrically arranged on two sides of float supporting component; said cage frameworks are connected with float supporting component via cage nets; the float supporting component comprises a float support rod and a support frame counterweight steel bar; said float support rod is arranged above support frame counterweight steel bar and funnel-shaped escape-proof plate is arranged on lower side of float support rod; said cage framework comprises a supporting component and a cage sealing component, wherein said supporting component is connected with cage sealing component via net surface, said supporting component comprises an upper supporting frame and a lower supporting frame, and two ends of said upper supporting frame are connected with two ends of lower supporting frame respectively to form a semicircular structure.
Collar devices including interlinking collar components that have a hollow portion and a securing portion connected by a flexible portion have increased strength and security. The number of collar components included in a collar device may be adjusted in order to properly fit a collar to a particular animal. Such collar devices generally include a plurality of interlinking collar components, as well as first and second loop attachment components, which couple to respective ends of interlinked collar components. A loop with a fastening element is then inserted into openings of the first and second loop attachment components.
The subject invention provides the materials and methods for synthesizing novel training devices for biological detectors, such as canines, to locate a specific material by recognizing a characteristic scent associated with the material. In an exemplary embodiment, the training devices encapsulate at least one active odorant of certain illicit materials, such as cocaine, within a sol-gel polymer network. By manipulating the process of molecular encapsulation and polymer network synthesis, the novel training devices can reduce the influence of contaminants and dissipate the encapsulated odorant in a controlled fashion, allowing for the added benefit of improved shelf-life as compared to currently available training devices.
A method and system for monitoring conditions of an animal cage. An animal caging system including a plurality of animal cages removably connected to an exhaust. Cage collection media is removably mounted in a cage media housing coupled to an exhaust port of the animal cage. Exhaust air dust clings to the collection media as exhaust from the animal cages flows along the length of the collection media.
An innovative nestable cat litter box is disclosed herein for use with pellet-type cat litter such as, for example, pine pellets. The nestable cat litter box comprises a bottom collection box, a middle support shell removably attachable to the bottom collection box, and an upper sift box removably attachable to the middle support shell. The upper sift box may be characterized as further including a bottom screen that has a plurality of discrete screen regions separated from one another and further sub-divided within each discrete screen by a plurality of first, second, and third intersecting cross members. In certain preferred embodiments, the depths of the first cross members are greater than the depths of the second cross members, and the depths of the second cross members are greater than depths of the third cross members.
A portable livestock handling apparatus features a set of arc-shaped wall panels carried on a rearmost section of a towable chassis, and pivotally interconnected to one another for swinging movement between deployed positions forming continuous arcuate extensions of one another to collectively define an arcuate wall span of the tub, and stowed positions folded up alongside one another to occupy a compact area on the chassis. The rearmost chassis section is longer on one side than the other, and features a chassis extension extendable from the rear end of the chassis to connect to one of the deployed panels. This elongated side and extension form the only ground-level connections between the chassis and the tub wall to minimize tripping hazards.
A light-deprivation system includes shades having a fixed end that form a perimeter that defines a growing environment, cables attached to a free end of each shade, a cable guide located near a pinnacle of the light-deprivation system, and a winch to draw the shades. The cables run from the free end of each shade, through the cable guide, to the winch. Operation of the winch draws the shades simultaneously to block substantially all light from sources external to the growing environment from reaching the growing environment.
An unloading device for unloading a round bale from a round baler includes a first support arm for unloading the round bale, a second support arm for unloading the round bale, and an actuator for operably controlling the first and second support arms. The first and second support arms are adjustably mounted on the round baler. Moreover, the first and second support arms are adjustably controlled by the actuator as a function of an unloading direction of the round bale.
A baler for forming a bale includes a frame, an axle, and a sensor. The frame supports a bale chamber. The axle is connected to the frame at a first location and spaced apart from the frame at a second location. The sensor is positioned to measure the deflection of the axle based on a distance. The deflection of the axle changes based upon a weight of the bale.
The present disclosure relates to a lawn mower robot, and the lawn mower robot may include an outer cover; an inner body accommodated into the outer cover, and provided with a plurality of wheels for traveling on both sides thereof; a blade drive motor mounted inside the inner body; a rotating plate driven by the blade drive motor, and rotatably mounted on a bottom surface of the inner body; a plurality of blades rotatably mounted on the rotating plate, and unfolded to an outside of the rotating plate or folded to an inside of the rotating plate; a blade protection cover disposed on a bottom surface of the inner body to cover the rotating plate and the plurality of blades; and a sealing portion configured to seal between the inner body and the blade protection cover.
A vertical crop divider knife is mounted at each end of the cutter bar of a header and stands upwardly from the end to cut crop tending to collect over the end divider. Each divider knife includes a drive linkage in the housing for communicating drive to the knife sickle bar. Each divider housing has a mounting assembly for coupling to a cooperating mounting assembly on the housing of the crop divider knife structure by which the crop divider knife structure is readily attachable to the crop divider housing using a hook coupling at the bottom and a latch at the top for operation and releasable from the crop divider housing when not required. The divider housing carries a hydraulic motor and a forwardly facing output coupling mounted on the divider housing which automatically meshes with an input coupling on the knife housing when the knife drive housing is installed.
The present disclosure relates to a support system for determining a trajectory to be followed by an agricultural work vehicle when weeding distinct areas of weed within a field of crops, the system comprising: a mapping unit configured for receiving: i) coordinates relating to the boundaries of a field to be worked; and ii) coordinates relating to the boundaries of distinct areas of weed being located within the boundary of the field of crops; a capacity parameter unit configured for receiving one or more capacity parameters relating to the working vehicle; a trajectory calculating unit configured for calculating an optimized trajectory to be followed by the work vehicle upon weeding the distinct areas of weed; wherein the optimized trajectory is being calculated on the basis of the coordinates received by the mapping unit; and one or more of the one or more capacity parameters received by the capacity parameter unit.
A system including: an automatic exchanging device configured to move along the multiple component mounters arranged in a line and automatically exchange automatically exchangeable units of the component mounters; an operation monitoring device configured to monitor an operation state of the automatically exchangeable units of the component mounters and monitor whether it is necessary to exchange the automatically exchangeable units due to maintenance or a breakdown; and a management device configured to, when the operation monitoring device determines that exchange of one of the automatically exchangeable units of the component mounters is necessary due to maintenance or a breakdown, move the automatic exchanging device to the component mounter in question and cause the automatic exchanging device to perform automatic exchange of the automatically exchangeable unit of the component mounter with an exchange-use unit.
A power conversion device capable of suppressing air from flowing back into a housing is provided. The power conversion device includes a power conversion unit configured to perform power conversion, a housing for accommodating the power conversion and having an air inlet and an air outlet, a fan provided inside the housing and generating airflow in such a manner that air flows to the outside of the housing via the air outlet after flowing into the housing via the air inlet, and a cover provided at the air outlet, the cover being configured to be brought into an opened state with respect to the air outlet if the airflow generated by the fan is stronger than airflow moving from the outside of the housing toward the air outlet, and to be brought into a closed state with respect to the air outlet if the airflow generated by the fan is weaker than the airflow moving from the outside of the housing toward the exhaust of the housing.
An autonomous vehicle is disclosed which can map a facility and navigate its way to a particular liquid cooling system. The vehicle can be in communication with a central server, which can control the vehicle. The vehicle can align itself against the liquid cooling system and receive a computing device on a platform of the vehicle. The platform can be lowered and secured in an enclosure of the vehicle. Then, the vehicle can transport the computing device to a storage facility.
A slide rail mechanism includes a first slide rail assembly, a second slide rail assembly and a supporting assembly. Each of the slide rail assemblies includes a first rail, a second rail and a third rail movably mounted between the first rail and the second rail. The second rail is longitudinally movable relative to the first rail. The second rail of the first slide rail assembly and the second rail of the second slide rail assembly are respectively arranged with a first mounting device and a second mounting device. The supporting assembly includes a supporting member, and a first connecting device and a second connecting device arranged on the supporting member. The first connecting device and the second connecting device are respectively connected to the first mounting device and the second mounting device.
An electronic device including a display module is provided. The electronic device includes a housing, a display module including a cover layer forming one surface of the housing, a first panel disposed below the cover layer and including pixels, and a second panel disposed below the first panel and including a layers, and a sensor coupled to the display module and forming a sensing region on the one surface of the housing. The display module includes an opening which penetrates the second panel, and the sensor is disposed in the second panel. A thermal shrinkage film is disposed in the opening to be in contact with the first panel. The thermal shrinkage film includes a first film being in contact with the first panel and having adhesion at a temperature above a specific first temperature, and a second film including a shrinking member which contracts at a temperature above the first temperature, and a light shielding member.
A printed circuit board has a first base region and a flexible region. The printed circuit board includes a core layer including a first insulating layer including a high elastic material and a first wiring layer disposed on the first insulating layer; a first build-up layer disposed on the core layer in the first base region, and including a second insulating layer including a low elastic material, and having a first through portion penetrating through the second insulating layer; and a first electronic component disposed in the first through portion and connected to the first wiring layer.
A method for preparing a conductive circuit can begin with the preparation of a non-conductive substrate having a top surface and a bottom surface, and then utilizing a pulse laser to create a top circuit pattern upon the top surface, a bottom circuit pattern upon the bottom surface, and a through hole connecting the top circuit pattern with the bottom circuit pattern. Subsequently, a conductive circuit is formed upon the top circuit pattern and the bottom circuit pattern and inside the through hole, wherein the conductive circuit is restricted from being formed upon the top surface outside of the top isolation region and the bottom surface outside of the bottom isolation region.
Provided is a high-frequency circuit laminate that can reduce the transmission loss of electrical signals in high-frequency circuits and produce circuit boards with excellent smoothness.
The high-frequency circuit laminate according to the present invention includes a metal layer and a resin layer which are laminated in contact with each other, the resin layer having an elastic modulus from 0.1 to 3 GPa, and the resin layer having an dielectric loss tangent from 0.001 to 0.01 and a relative permittivity from 2 to 3 at a frequency of 10 GHz at 23° C.
A wiring board includes a rod-shaped shaft member including at one end a flange that has a larger diameter than any other portion, a heat-releasing plate including a first through-hole in which the shaft member is inserted, and a board including a second through-hole in which the shaft member is inserted. In the wiring board, a gap is formed at least in part between the heat-releasing plate and the board.
It is recognized herein that current cellular radio access technologies lack capabilities for both long range and low power usage devices. Public LPWAN networks are described herein that may use multiple network servers. Further, the network may distribute IoT devices (e.g., LoRa end nodes) across network servers. This may allow the public IoT networks to balance loads across network servers, to allow for redundancy of network servers, to provide differentiated services across network servers, and to permit roaming of end nodes across different public IoT networks, among other things.
A terminal apparatus includes a receiver configured to receive, from a base station apparatus, a signal including first information for indicating a plurality of Quasi Co-Location (QCL) parameters associated with a plurality of reference signals, and receive, from the base station apparatus, a signal including second information for configuring one of the plurality of QCL parameters, and a monitor unit configured to receive a downlink control channel of a QCL parameter of the plurality of QCL parameters based on the first information and the second information.
The present disclosure relates to an SMS processing method in an Internet of Things, a mobility management network element, and a terminal device, to provide an SMS service for an Internet of Things terminal device. One example method includes receiving, by a mobility management network element in a packet switched (PS) domain, a non-combined registration request from a terminal device. The non-combined registration request carries SMS only indication information. When determining that the mobility management network element in the PS domain cannot transfer an SMS for the terminal device through the PS domain, the mobility management network element in the PS domain sends a location update request to a mobility management network element in a circuit switched (CS) domain. The location update request is used to implement registration of the terminal device with the CS domain.
A first base station (BS) of a first network for handling a dual connectivity (DC) comprises a storage device and a processing circuit, coupled to the storage device. The storage device stores, and the processing circuit is configured to execute instructions of: transmitting a Secondary Node (SN) Request message comprising a protocol data unit (PDU) Session identity of a communication device, to a second BS of a second network; receiving a SN Request Acknowledge message comprising a first radio resource control (RRC) message, from the second BS, in response to the SN Request message; and transmitting the first RRC message to the communication device, wherein the first RRC message configures a data radio bearer (DRB), a DRB identity and the PDU Session identity of the communication device to communicate with the second BS.
The present disclosure provides a method executed at UE. The method comprises: determining whether a DRB-related identifier that is part of current UE configurations is included in a received RRC configuration, wherein the DRB-related identifier comprises one of the following: a PDU session identifier, a QoS flow identifier, and an SDAP identifier, and if the DRB-related identifier is included in the RRC configuration, then releasing one or a plurality of the following items of a DRB associated with the DRB-related identifier: a PDCP entity, an RLC entity, a DTCH, a DRB identifier, and an SDAP entity. The present disclosure further provides corresponding UE.
Described herein are systems, methods, storage media, and computer programs that support communication in a movable object environment. In one embodiment, information for a set of communication parameters is provided, a modified value for at least one of the set of communication parameters is obtained from an affiliated device; and a connection established between the movable object and the affiliated device is configured based on the modified value. In another embodiment, a connection between a movable object and an affiliated device is established, wherein the connection uses a set of communication parameters, values of which are set to default values; a modified value for at least one of the set is obtained, based on values for the set of communication parameters provided by the movable object and values for the set of communication parameters provided by the affiliated device, and the connection is configured based on the modified value.
A method for electronically transmitting data based on a physical gesture includes: storing at least one gesture pair, wherein each gesture pair includes at least a physical gesture and an associated data conveyance, the physical gesture being stored as one or more data points telegraphing three-dimensional movement; capturing a plurality of movement data points based on movement of one or more motion capturing devices; identifying a specific gesture pair where at least one of the captured plurality of movement data points corresponds to the included physical gesture; establishing a communication channel with an external computing device; and transmitting the associated data conveyance included in the identified specific gesture pair to the external computing device using the established communication channel.
A radio communication apparatus that is a transmission opportunity holder efficiently transmits an instruction of frame transmission, to multiple terminal apparatuses. A radio communication apparatus of the present invention includes a transmission unit configured to transmit a first frame to obtain a TXOP, transmit a Trigger frame providing an instruction of transmission of a second frame addressed to the radio communication apparatus itself, to at least one of the multiple terminal apparatuses in the TXOP, and transmit a third frame addressed to at least one of the multiple terminal apparatuses in the TXOP. A value indicating a TXOP that is written in the second frame and that the third frame is to obtain is different from a value obtained by dividing a value indicating the TXOP written in the first frame by a value indicating a duration elapsed from start of transmission of the first frame to communication completion of the second frame.
A method for wireless accessing a node of a radio access network by a wireless device include the steps of launching by the wireless device a first access try to a node of said data network through a wireless access channel provided by said node, and if the first access try fails, launching by the wireless device a second access try to a network node through a wireless access channel after expiry of a second backoff time. The second backoff time is set in the wireless device in accordance with a priority value applying to the second access try.
A cooperative multi-band wireless station architecture that enables full duplex operations of wireless stations (STAs). Such an STA includes a WIFI transceiver and one or more additional transceivers. The two transceivers (and the associated channels) operate in mutually exclusive WIFI bands or different types of protocols and therefore can transmit and/or receive simultaneously without signal interference to each other. The multiple transceivers can perform independent clear channel assessment (CCA) and then simultaneously perform signal transmission or reception jointly or independently. In a cooperative multi-band operation, one channel may be used as an independent assistant channel and responsible for supplying assistant information relevant to a transmission opportunity (TXOP) for the other channel (primary channel) to take corresponding actions. Alternatively, coordinated by a cooperative management unit (CMU) in the STA, the multiple channels in the STA may jointly and simultaneously perform data transmission or reception as peers.
Provided are a method for indicating and determining a start transmission timing of a subframe of a physical uplink shared channel, and a base station and a user equipment. The method includes: receiving downlink control information from a base station, the downlink control information comprising indication information about the start transmission timing, and a listen before talk (LBT) type; determining the structure of the previous subframe to the current subframe; and determining, from four timings different from one another, the start transmission timing of the current subframe based on the indication information, the LBT type, and the structure of the previous subframe.
Wireless communication is performed in a wireless network by dividing up a data transmission interval (DTI) within the communication frame into a plurality of time slots based on determining the number of best sector directions from the AP to each STA in the wireless network. Each STA transmits only during this time slot, while the AP uses receiver beamforming and receives only from a single beamforming direction for each of these time slots. A time slot may be used by more than one STA if they are in the same best antenna sector direction from the AP, wherein they contend for access within this time slot.
Example random access methods and apparatus are described. In one example method, a terminal device receives a system message that is sent by a network device on a first downlink carrier. The system message includes first information for performing random access on a first uplink carrier and second information for performing random access on a second uplink carrier. A frequency of the first uplink carrier is higher than a frequency of the second uplink carrier, and a frequency of the first downlink carrier is the same as the frequency of the first uplink carrier. The terminal device sends a random access request message on the first uplink carrier or on the second uplink carrier, and receives a random access response message that is sent by the network device on the first downlink carrier.
Technologies transmit scheduling in multi-radio devices are described. One multi-radio device includes first and second radios and a scheduler circuit. The scheduler circuit outputs a first signal to the radios in a first mode in which the first radio is transmitting first data and the second WLAN radio is transmitting second data concurrently. The first signal increases a first clear channel assessment energy detect (CCA-ED) threshold to a second CCA-ED threshold. The scheduler circuit outputs a second signal to the second WLAN radio in a second mode. The second signal causes transmission of fourth data to be delayed until after the first radio completes reception of third data. In a third mode, the scheduler circuit outputs a third signal to the first WLAN radio. The third signal causes transmission of fifth data to be delayed until after the second radio completes reception of sixth data.
Wireless communications systems and methods related to uplink (UL) communications in a wireless network are provided. In one embodiment, a first wireless communication device receives a transmission grant indicating a transmission period. The first wireless communication device selects a starting location for transmitting a communication signal from among a plurality of starting locations within the transmission period. The first wireless communication device transmits the communication signal during the transmission period based on the selected starting location. In one embodiment, a first wireless communication device transmits, to a second wireless communication device, a transmission grant indicating a transmission period. The first wireless communication device monitors for a communication signal from the second wireless communication device in the transmission period. The first wireless communication device identifies, upon detection of the communication signal, a starting location of the communication signal from among a plurality of starting locations within the transmission period.
Provided are a data processing method based on a radio access technology, and a transmission node. The method includes: selecting, by a first transmission node, a radio access technology (RAT) according to a specific rule, where the specific rule includes selecting the RAT according to at least one of the following: a coverage level, a frequency domain bandwidth, a resource unit type, a transmission mode, a pre-configuration of a first node, and a second transmission node capability; the RAT includes at least one of the following: a multiple access mode, a modulation mode, a sub-carrier spacing, and a maximum number of carriers used for carrying data; and the second transmission node capability is defined according to an RAT supported by a second transmission node; and receiving or sending, by the first transmission node, data on a radio resource unit corresponding to the selected RAT according to the selected RAT.
A method of a user equipment (UE) for a beam failure recovery procedure in a wireless communication system is provided. The method comprises receiving, from a base station (BS), at least one beam failure detection reference signal (RS) and at least one new candidate beam RS over a downlink channel; identifying a set of RS resources including an index for the at least one beam failure detection RS; identifying a set of RS resources including an index for the at least one new candidate beam RS; identifying a dedicated control-resource set (CORESET) received from the BS for a beam failure recovery request; transmitting, to the BS, the beam failure recovery request associated with a quality measurement of the at least one beam failure detection RS over a physical random access channel (PRACH); and receiving, from the BS, a beam failure response in response to the beam failure recovery request based on the dedicated CORESET indicated to the UE.
Embodiments of the present disclosure relate to frequency or RAT selection based on slice availability. In one aspect, a core network function is provided for determining information for RAT and/or frequency selection based on knowledge of network slices and providing that information to a RAN node, which may provide that information to a UE. The information may be a RFSP index or other index parameter, which may be set based on subscription related information or other information. Slice knowledge may include knowledge of availability of network slices at the network, active slices for the UE, slices to which the UE is registered or connected, and/or slices to which the UE is allowed access. In another aspect, a RAN node performs mapping to mobility policies for UE active or idle mobility based on the determined information along with slice or subscription information provided by a CN node.
To provide a base station apparatus, a terminal apparatus, and a communication method for achieving a high frequency efficiency while coexisting with other radio access systems in an environment where multiple frame formats are multiplexed for use. A base station apparatus according to the present invention includes a transmitter configured to configure at least one frame structure of multiple frame structures in the second frequency band, notify the terminal apparatus of control information relating to the frame structure, and configure a non-transmit period with prescribed length between multiple signal transmit periods of the frame structure.
A method for transmitting feedback information by a first user equipment (UE) in a wireless communication system supporting a full duplex radio (FDR) scheme includes measuring, based on information on a second UE received from a base station (BS), an inter-device interference (IDI) related to the second UE; and transmitting, to the BS, feedback information related to the IDI.
Disclosed are a device-to-device (D2D) communication method and a D2D device, the method including: a first D2D device generates a data packet, the data packet being a semi-persistent scheduling (SPS/SPT) service data packet, the data packet comprising first scheduling assignment (SA) information, the first SA information comprising SPS/SPT service cycle information; the first D2D device sends the data packet to a second D2D device. The first D2D device carries the SPS/SPT service cycle information in the SA information so that the second D2D device learns a resource usage situation in order to implement SPS/SPT service transmission with autonomous resource selection by the second D2D device, thereby preventing a plurality of D2D devices from simultaneously transmitting SPS/SPT service data on the same resources and thus producing conflicts.
Example implementations may relate to making a determination of whether a mobile device is positioned indoors or outdoors. More specifically, processor(s) may detect that the mobile device is connected to a particular access point and may determine that the particular access point is stationary rather than moving. In response to determining that the particular access point is stationary, the processor(s) may determine (i) a distance between the mobile device and the particular access point, and/or (ii) a connection duration representing a length of time that the mobile device has been connected to the particular access point. Based at least on the determined distance and/or on the determined connection duration, the processor(s) may then make the determination of whether the mobile device is positioned indoors or outdoors.
A terminal apparatus in an initial access calculates, from the RSRP of the SS block, a downlink path loss used for transmission power of the PRACH, and determines a reference used for the downlink path loss used for transmission power of a first PUSCH scheduled by a random access response grant, based on system information included in the random access response grant, wherein the system information further includes a first parameter for indicating a subcarrier spacing for the first PUSCH and a second parameter for indicating a signal waveform for the first PUSCH.
A user equipment (UE) receives, from a base station, a parameter indicating a power control loop out of a plurality of power control loops. Further, the UE receives a single downlink channel, wherein the single downlink channel carries a channel allocation and a transmit power control (TPC) command for the UE. The UE transmits a shared uplink physical channel using resources based on the channel allocation and at a transmission power level based on the transmit power command and the indicated power control loop.
Some aspects of the disclosure provide various methods, apparatuses and computer-readable medium configured for wireless communication. A method operable at a user equipment (UE) may include transmitting a connection request message configured to request initial connection with a radio access network (RAN) node. The connection request message may include information configured to indicate a service profile of the UE. A method operable at the RAN node may include receiving the connection request message from the UE. The connection request message may include information configured to indicate the service profile of the UE. A method operable at a serving node may include receiving a connection request message from the RAN node. The connection request message may be configured to establish communication with the UE and may include a service profile corresponding to the UE.
A network device receives control plane (CP) traffic transiting a first mobile network. The network device determines CP traffic loads handled by network functions of the first mobile network and determines availability of CP resources within the first mobile network. The network device performs at least one of load balancing, network selection or overload protection, when switching the CP traffic from a source to a destination, based on the determined CP traffic loads and/or the determined availability of CP resources.
The present invention relates to a measurement reporting method, and a communications apparatus. In the method, measurement reporting parameters reported to a base station satisfies reporting rules including: (a) a reporting setting with a smaller identifier has priority over a reporting setting with a larger identifier; (b) a serving cell with a smaller identifier has priority over a serving cell with a larger identifier; (c) a reporting type involving a beam index indication has priority over a reporting type involving an RI; and (d) aperiodic measurement reporting has priority over semi-persistent measurement reporting, or semi-persistent measurement reporting has priority over periodic measurement reporting. According to the method, performance of a wireless communications system is improved.
A computer implemented method, device, and computer program product for managing extender nodes for a wireless device. The method identifies request attributes of interest (AOI) associated with a request to route a communication stream for a wireless device. The method detects, at a current physical location of the wireless device, candidate extender nodes to extend a network signal. The method analyzes the candidate extender nodes, based on the request AOI, to determine one or more of: i) predictive characteristics of interest (COI) associated with the corresponding candidate extender node; and ii) an announced behavior COI broadcast by one or more of the candidate extender nodes. The method determines a resultant extender node from the candidate extender nodes based, at least in part, on one or more of the predictive COI and the announced behavior COI. The resultant extender node is determined pursuant to managing switching during performance of the request.
This disclosure describes a spectrum sharing system that is configured to identify bandwidth allocation criteria for spectrum sharing at a base station node, which has a first cell configured for communications via a first spectrum and a second cell configured for communications via a second spectrum. The spectrum sharing system may further determine a select number of subframes on the second cell for configuration as Multicast Broadcast Single Frequency Network (MBSFN) subframes, based on the bandwidth allocation critical, and in doing so, generate spectrum sharing data for delivery to the base station node to dynamically configure the select number of subframes to support communications via the first spectrum.
Methods and devices enable connecting devices to cellular networks using the devices' hardware identifiers. Subscriber records include a hardware identifier assigned when the devices are manufactured. A target hardware identifier included in an attachment request is associated with an International Mobile Subscriber Identity, IMSI, available to the cellular network if, according to subscriber records, the device is registered.
This application discloses an identity authentication method, a device, and a system. The method includes: obtaining a first master public key and a first private key from a key generation center; sending a ClientHello message; obtaining a second identity from a ServerKeyExchange message; generating a pre-shared key of a selected PSK mode by using the second identity, the first private key, and the first master public key; and completing identity authentication with a second device by using the pre-shared key. According to the method, device, and system provided in embodiments of this application, an identity can be transmitted by using information in the TLS protocol, without extending the TLS protocol. This can avoid a compatibility problem caused by TLS protocol extension.
A main Bluetooth circuit for use in a multi-member Bluetooth device is disclosed including: a first Bluetooth communication circuit, a first packet parsing circuit, and a first control circuit. In a period during which the auxiliary Bluetooth circuit operates at the sniffing mode, the first control circuit utilizes the first Bluetooth communication circuit to receive packets transmitted from the remote Bluetooth device. In a situation of that a throughput of packets sniffed from the remote Bluetooth device by the auxiliary Bluetooth circuit is lower than a predetermined threshold, the auxiliary Bluetooth circuit switches from the sniffing mode to the relay mode. In a period during which the auxiliary Bluetooth circuit operates at the relay mode, the first control circuit utilizes the first Bluetooth communication circuit to receive the packets transmitted from the remote Bluetooth device and to forward received packets to the auxiliary Bluetooth circuit.
A Location Management Component (LMC) may be included in a gNB and connected to a gNB Central Unit (gNB-CU). The gNB-CU receives location related messages from any of (i) a UE via a gNB Distributed Units (gNB-DU), (ii) another gNB via an Xn interface, or (iii) a core network entity (e.g. AMF) via an NG interface. These messages can be transported in container messages (e.g., an RRC container for LPP messages sent to or received from a UE; an NGAP container for messages sent to or received from an AMF, or an XnAP container for messages sent to or received from another gNB). The gNB-CU removes the location related messages from the container messages and forwards them to an LMC using F1-AP container messages. Location related messages sent from an LMC to other entities are transported in a reverse manner through a gNB-CU using corresponding container messages.
A method of audio signal processing, the method comprising: accessing user-specific audio processing information for a particular user; determining identity information of an audio device for producing sound output from an audio signal; based on the identity information of the audio device, accessing device-specific audio processing information for the audio device; generating a customized audio-processing procedure for the audio signal based on the user-specific audio processing information and the device-specific audio processing information; and generating a customized audio signal by processing the audio signal with the customized audio-processing procedure.
An apparatus with a hearing device housing including at least one wall with a sound aperture and a counterbore around the sound aperture, and a bushing, having a portion thereof located within the counterbore and secured thereto, configured to receive a hearing device cerumen guard.
Provided is an audio transmission method between at least two audio communication systems including a transmitting audio communication system with first and second audio transmitting devices and a receiving audio communication system with at least one audio receiving device. The method includes transmitting a first wireless audio stream, via a first wireless audio link, by the first audio transmitting device and a second wireless audio stream, via a second wireless audio link, by the second audio transmitting device; and selecting, by the at least one audio receiving device, one of the first wireless audio stream or the second wireless audio stream based on quality parameters of the first audio link and the second wireless audio link.
A piezoelectric assembly, a screen component, and a mobile terminal are provided. The piezoelectric assembly can include a vibrating member made of a piezoelectric material and a signal line connected to the vibrating member. The vibrating member includes two or more piezoelectric elements stacked in sequence. A size of at least one of the piezoelectric elements is smaller than a size of any remaining one of the piezoelectric elements to form a stepped structure. Each of the piezoelectric elements is provided with two or more piezoelectric layers of the same size.
A speaker includes a vibrating body having an annular valley portion recessed rearward and a diffuser having an annular or arcuate base part, which is positioned so that an end of the base part on the side of the vibrating body is opposed to the valley portion. The base part is provided, at the end on the side of the vibrating body, with one or more recessed parts from which distance to the vibrating body is larger than a distance of the other portion of the end to the vibrating body, each of the recessed parts being formed in any one of a sine-wave shape, a triangular-wave shape and an arc shape.
A case-baffle-stand system utilized with a dipole speaker, in which the case-baffle-stand system has a cover that, when opened, is a baffle to enhance the sound waves emitting from the speaker system and is also a stand to stabilize the speaker in its proper standing orientation, and when closed, protects the speaker.
Embodiments of apparatus for affecting air flow and/or pressure wave propagation in relation to an audio source enclosure are disclosed. The apparatus may include two waveguide sections mounted within an audio source enclosure. The waveguide sections may include complementary nested first and second funnels disposed relative to each other in a manner to channel air flow in and/or from the enclosure.
An ear tip for a hearing device includes a body member having a receiver retention portion that is communicably coupled to a sound port. The receiver retention portion is configured to receive and capture a receiver such as a balanced armature receiver. An electrical interface of the receiver is accessible via an opening in the receiver retention portion. The ear tip also includes an ear interface portion that is disposed at least partially about the body member. The ear interface portion is configured to be disposed in a user's ear canal. The ear interface portion and the body member are integrally formed as a unitary member.
This disclosure includes several different features suitable for use in circumaural and supra-aural headphones designs. Designs that include earpad assemblies that improve acoustic isolation are discussed. User convenience features that include automatically detecting the orientation of the headphones on a user's head are also discussed. Various power-saving features, design features, sensor configurations and user comfort features are also discussed.
A microphone assembly has an interconnect substrate and a microphone transducer coupled with the substrate. A lid overlies the microphone transducer. At least a portion of the lid is spaced from the substrate, defining an acoustic chamber for the microphone transducer. The lid can have a layer of discretized metal or other patterned conductor. The discretized layer of metal or other patterned conductor is configured to inhibit formation of eddy currents, as when exposed to electromagnetic radiation. The lid can be grounded. Microphone modules and electronic devices also are described.
A probe used with food preparation, rethermalization, storage, transportation, and/or service includes a head portion with a display, and a shaft portion that is coupled to the head portion and is configured to be at least partially immersed in a foodstuff. The probe further includes a sensing unit configured to collect data including the temperature of the foodstuff and a wireless device configured to transmit data collected by the sensing unit to a supervisory control device.
System and devices for live captioning events is disclosed. The system may receive event calendar data and a first plurality of caption files and preselect a first caption file based on the event calendar data. The system may then access an audiovisual recorder of a user device, and receive a first feedback from the recorder. The system may then determine whether the first caption file matches the first feedback. When there is a match, the system may determine a first synchronization between the caption file and the feedback. When there is no match, the system may determine if there is a match with a second caption file of the first plurality of caption files and determine a second synchronization. When the second caption file does not match, the system may receive at least a third caption file over a mobile network and determine a third synchronization for display.
Systems for utilizing video media include processing the video media that has a plurality of objects within one or more frames of the video media to generate a first interactive video layer. The processing includes associating product information to one or more of the plurality of objects to correspondingly form one or more items of interest, tracking the one or more items of interest through the one or more frames of the video media, and assigning a selectable visual indicator for each of the one or more items of interest. The first interactive video layer is distributed with the video media to a viewer. A second interactive video layer having a social media portion for the user to interact with another user is also distributed with the video media. The system generates video data that includes video media, the first interactive video layer, and the second interactive video layer.
An electronic apparatus includes: a signal receiver configured to receive a signal; a display; a communicator configured to communicate with an external apparatus; and a processor configured to: receive a signal of content corresponding to one format among a plurality of formats, request and receive playback information about the content corresponding to the format of the content from a server, perform a playback process with regard to the received signal of the content based on the playback information received from the server, and control the display to display an image of the content.
A system that distributes channels, to be viewed on consumer devices, receives a media feed and a first programming schedule of a first channel from a source device, and selects pre-encoded media assets for insertion in the media feed based on defined selection parameters. New channels are dynamically created based on the inserted selected pre-encoded media assets in the new channels and based on the defined selection parameters. The defined selection parameters correspond to user-preferences received from the plurality of consumer devices on which the first channel is viewed, and/or a received input that corresponds to user-selections on the consumer devices. The defined selection parameters may include audience-based parameters from an external data source. The first programming schedule is modified based on the differential insertion of the selected one or more pre-encoded media assets in different channels to generate a plurality of programming schedules for the plurality of new channels.
Media content is paired with context-relevant supplemental content, and the media and supplemental content are provided to a user. A media stream containing the media content may be received from a source system, and context information about the media content is determined from information about the media stream. The supplemental content may be selected based on the determined context information. This may enable a business model in which third parties can register advertising or other supplemental content and specify the criteria that cause it to be combined with the media content.
In the described examples, a video integrated circuit (IC) chip includes a video input port (VIP) that receives a video stream. The video IC chip also includes a processing unit coupled to a non-transitory memory and is configured to detect the presence of a data stream provided to the VIP, cause the VIP to switch a target partition for the data stream from a given partition in the memory to another partition in the memory and to write the data stream to the other partition in the memory.
The present invention relates to an image display apparatus and a mobile terminal. The image display apparatus according to one embodiment of the present invention comprises: a display; an interface unit for exchanging data with the mobile terminal; and a control unit for controlling a mirroring related menu including mirroring related server information or content related to the server information such that the mirroring related menu is displayed on the basis of a user input, receiving a mirroring application item from the mobile terminal through the interface unit, and controlling the received mirroring application item such that the received mirroring application item is displayed in the mirroring related menu. Therefore, the mirroring application item received from the mobile terminal can be simply installed and displayed.
A method, system, or device to determine when media content has been displayed. The method can include receiving a unique identifier (UID) and fingerprint for a media segment. The method can also include determining a media segment ID for the media segment, generating and submitting a query for the media segment ID in a record database, determining that the media segment ID is not stored in the record database, and identifying an overlay content segment ID. The method can include generating and submitting for the overlay content segment ID in the record database, determining it is not stored in an entry, sending the overlay content segment to the electronic device, and receiving a notification from the electronic device.
Aspects of the subject disclosure may include, for example, embodiments include providing video streams of video content to displays, each video stream includes a portion of the video content, determining that a viewer reaction to a first portion of the video content in a first video stream satisfies a viewer reaction threshold when the first video stream is presented on a first display, and determining that a sub-portion of the first portion of the video content caused the viewer reaction to satisfy the viewer reaction threshold in response to analyzing the first portion of the video content. Further embodiments include generating a second video stream of the video content, the second video stream comprises the sub-portion without a remainder of the first portion, and providing the second video stream to a second display. Other embodiments are disclosed.
Systems and methods for efficiently determining that a media asset scheduled to be stored from one content source has been rescheduled to another content source. For example, by examining the contents of data packets received with a media asset which identify the media asset currently being received (e.g., a field in an event information table), a media guidance application executed on a set-top box or other user equipment device may determine in real-time that the media asset scheduled to be stored is not currently being transmitted from the originally-scheduled content source. In response to determining the media asset is not available from the originally-scheduled content source, the media guidance application may search through packets received from other content sources to determine a content source the media asset has been rescheduled to and store the media asset from that content source.
A media system replaces content in a first sequence of media content. The media system presents the first sequence of media content to an end-user and generates a fingerprint of the sequence of media content. The fingerprint is for comparison with a plurality of reference fingerprints so as to identify the first sequence of media content and determine a reference position within the first sequence of media content. The media system sends a request for a replacement sequence of content to a content replacement system, and receives replacement media content selected based on the identified first sequence of media content. The media system presents the replacement media content to the end-user instead of the first sequence of media content. Presenting the replacement media content begins at a position in the first sequence of media content that is determined based on the reference position.
A video decoder configured to determine a residual block by, for a first coefficient of a coefficient group, receiving a first instance of a flag, wherein the first instance of the flag is set to a first value; in response to the first instance of the flag being set to the first value, copying a coefficient value of a neighboring coefficient for the first coefficient; for a second coefficient of the coefficient group, receiving a second instance of the flag, wherein the second instance of the flag is set to a second value; in response to the second instance of the flag being set to the second value, receiving an index; determining, from a list of coefficient values, a value corresponding to the index; and set a value for the second coefficient to the value corresponding to the index.
A binary arithmetic device includes an LPS/MPS determining unit that determines, using a context variable, a range length, and an offset, whether a code is an inferior probability code or a superior probability code, a renormalization processing unit that performs renormalization processing on the range length and the offset, and a context-variable calculating unit that derives the binary data of the code using a determination result and updates the context variable according to the determination result. The renormalization processing unit 15 includes a first renormalizing unit and a second renormalizing unit and a selecting unit that selects, according to the determination result, an output of the first renormalizing unit or an output of the second renormalizing unit.
An efficient high quality video coding and decoding technique is described. A prediction block is generated that contains modified coefficients. The modified coefficients improve the efficiency of the compression process once the prediction block is subtracted from the original block to generate a residual signal for quantisation and encoding. A similar process operates at the decoder side. The processes may operate in both the frequency and the spatial domain.
There is provided an information processing apparatus, an information processing method, and a program capable of reducing a decrease in resolution in overlapping areas of multiple projection in cases where a plurality of projectors is used to perform the multiple projection onto an object. An information processing apparatus according to one aspect of the present technology generates, in regard to a plurality of projectors irradiating an object serving as a projection target with projection light rays as superimposing light rays depicting a projection image having pixels, mask information for regulating intensity of the corresponding light ray of each pixel of the projection image. The mask information includes information indicating, in regard to the object having a surface including a predetermined position, that the position is irradiated by a predetermined projector. The present technology can be applied to computers each of which causes a plurality of projectors to project images.
The light control device includes a light modulation module and a dispersion compensation module. The light modulation module is used for modulating an incident light field to obtain a target diffraction light field. The dispersion compensation module is used for performing dispersion compensation on the target diffraction light field, so that light fields having different wavelength in the target diffraction light field have the same spatial location distribution, or the light fields having different wavelength in the target diffraction light field have the same spatial angle distribution.
A surveillance system (1) includes an area information acquisition unit (101), a position information acquisition unit (102), a candidate determination unit (103), and a notification unit (104). The area information acquisition unit (101) acquires information of a surveillance-desired area. The position information acquisition unit (102) acquires pieces of position information of a plurality of portable terminals (20), each portable terminal performing surveillance using an image capturing unit. The candidate determination unit (103) determines a candidate portable terminal (20) to be moved to the surveillance-desired area from among the plurality of portable terminals (20) based on the acquired pieces of position information of the plurality of portable terminals (20). The notification unit (104) outputs a notification to the candidate portable terminal requesting to move to the surveillance-desired area.
Techniques are described for using an integrated lightbulb camera system for monitoring a property. The integrated lightbulb camera system can have a housing that includes one or more cameras, a power-line communication (PLC) chip, and one or more processors. The PLC chip can be configured to enable communications between the lightbulb camera system and one or more external devices. The one or more processors can be configured to control the one or more cameras to capture one or more images and control the PLC chip to transmit at least one of the one or more captured images over a power-line to at least one of the one or more external devices. The integrated lightbulb camera can also have a lightbulb compatible screw base that is configured to mount the housing to a lightbulb socket and accept electrical current that is provided to the housing.
A vehicular control system includes a forward sensing sensor, a rearward sensing sensor and a forward viewing camera disposed at a vehicle. The forward and rearward sensing sensors each have an antenna array that emits a beam forward or rearward of the vehicle. An ECU includes an image processor operable to process image data captured by the camera. The ECU, responsive at least in part to processing by the image processor of image data captured by the camera, determines presence of snow and/or a driving condition at the vehicle. The ECU may adjust the beam emitted by the antenna array of the forward sensing sensor and/or the rearward sensing sensor responsive to determination of snow and/or the driving condition at the vehicle. The control may adjust power of the beam and/or a beam pattern of the beam responsive to determination of snow and/or the driving condition at the vehicle.
In image processing apparatus, a sample hold unit samples and holds an output signal of the image sensor. A timing signal generating circuit generates a sampling clock to specify a sampling timing of the sample hold unit. A controller sets a phase of the sampling clock to the timing signal generating circuit. In an adjustment process that adjusts the phase of the sampling clock, the controller (a) causes the image sensor to scan a reference board, (b) sets predetermined plural phases to the timing signal generating circuit in turn, (c) calculates average values of image data obtained correspondingly to the plural phases and calculates a value of a parameter that indicates a fluctuation width of the average values, and (d) sets the phase of the sampling clock as a phase corresponding to the smallest value of the parameter.
Digital circuitry is provided that periodically reads at least one bit of digital counters associated with pixels of an image sensor. When the read bit(s) of a particular digital counter decrease between subsequent reads, then the digital circuitry increments an overflow counter associated with the particular digital counter. The value of each of the overflow counters of the digital circuitry are used with the corresponding values of the digital counters to generate pixel values for a frame (also referred to as an image).
An optical system includes an optical element configured to emit light emitted from a light source; and an optical modulation element configured to receive the light emitted from the optical element and emit first light rays in a first direction and second light rays in a second direction different from the first direction. The optical element has an interface that transmits one and reflects the other of: the first light rays to be directed to a projection target; and the second light rays and the light emitted from the light source.
Disclosed are a detection method for static image of a video, a detection terminal, and a computer-readable storage medium. The method includes: obtaining a frame image from the video as a reference frame image in a playback order, obtaining an image set comprising n frame images after the reference frame image in the playback order; sequentially determining whether first (n−1) frame images in the currently obtained image set satisfy a preset static image brightness requirement; determining whether a nth frame image in the image set satisfies a preset gray histogram judgment condition; determining whether a stop condition is satisfied according to the reference frame image and the nth frame image in the currently obtained image set; if the above determination results are yes, determining that a video image including the frame images from the reference frame image to the nth frame image in the current image set is a static image.
An electronic device is provided. The electronic device includes a first image sensor, a second image sensor electrically connected to the first image sensor, and a processor operatively connected to the first image sensor and the second image sensor. The processor may be configured to generate first image data using the first image sensor and generate second image data using the second image sensor based on a synchronizing signal, transmit the second image data generated by the second image sensor to the first image sensor, and control the first image sensor to generate and output image data by processing the first image data and the second image data based on the synchronizing signal.
An image forming apparatus performs a halftone process using plural dither matrices. Generated is calibration data to calculate a color registration error amount corresponding to a primary scanning directional position of an image forming available width. An image area dividing unit determines an image boundary position that is identical to any of matrix boundaries of plural dither matrices arranged in an image forming target area, and divides the image forming target area into plural image adjustment areas using the image boundary position. A correction processing unit corrects secondary scanning directional positions of the plural image adjustment areas, using respective correction amounts calculated with the calibration data. Further, the image area dividing unit determines the image boundary position using a remainder left by dividing in the primary scanning direction the number of pixels of the image adjustment area by the number of pixels of the dither matrix.
Example methods and systems are described in which a color space vector is transformed into a Neugebauer primary area coverage (NPac) vector, to be used for printing. In some examples, the color space vector is transformed into a NPac vector on the basis of criteria associated to amounts or probabilities of Neugebauer primaries (NPs).
An image processing apparatus and a method of controlling the image processing apparatus are provided. The image processing apparatus sets whether or not a function provided in the image processing apparatus requires user authentication, and upon issuance of an instruction to activate an application, determines whether or not a function used by the application is set to require the user authentication. If it is determined that the function used by the application is set to require the user authentication, the image processing apparatus permits the application to use the function in a case that the user authentication has succeeded.
An image processing apparatus that executes jobs in parallel using a small number of resources. A controller includes an image processor that applies an image process to image data. A scanner controller includes storage for storing image data generated by scanning a document with a scanner and transfers the image data stored to the controller through a data bus. A processor executes instructions to set a frequency of an image transfer clock to a first frequency when a first job including a process that transfers image data generated by scanning documents to the controller is executed alone, and set the frequency of the image transfer clock to a second frequency lower than the first frequency when the first job is executed in parallel to a second job including an image process. The frequency of the image transfer clock is maintained at the second frequency until finishing the first job.
An information processing apparatus includes a collecting unit that collects data from communication equipment; a transmission unit that transmits the data to an external apparatus; an execution unit that executes a function of the information processing apparatus; an association unit that associates the function with the collected data; and a control unit that controls the transmission unit so as to transmit the data associated with the executed function to the external apparatus.
An image forming apparatus includes an exit tray, a displacing mechanism, and a controller. A sheet is ejected on the exit tray. The displacing mechanism displaces a position of the sheet on the exit tray. The controller controls the displacing mechanism. The controller determines whether the sheet is a valid sheet that meets a predetermined condition or an invalid sheet that does not meet the predetermined condition. The controller controls the displacing mechanism so that a position of the valid sheet differs from a position of the invalid sheet on the exit tray.
To provide a called one with information on the caller, a reference to a resource containing real-time or near-real-time information relating to the caller, or information deduced using the real-time or near-real-time information, or the real-time or near-real-time information, or the information deduced using the real-time or near-real-time information, is transmitted with a connection establishment request, and the information in the resource or the received information is displayed to the called one before the requested connection is established so that the called one can make a decision whether or not to answer the call.
Various embodiments of the present invention provide a method and electronic device for supporting an edge computing service (e.g., a multi-access edge computing (MEC) service). An electronic device according to various embodiments comprises a network interface, and a processor, wherein the processor is configured to: acquire, using the network interface, information relating to applications which can be provided within a base station or to at least one external server connectable through the base station by the at least one external server; select an external server including an application corresponding to a specified condition, on the basis of the information relating to the applications; and perform data transmission with the selected external server. Various embodiments are possible.
Disclosed herein are system, method, and computer program product embodiments for providing an API description of an external network service and using the API to integrate the external service into a network. An embodiment operates by receiving, from a service provider, a description of an application programming interface (API), transmitting a call to the service provider using the API for creating a new instance of a service and transmitting to the service provider a traffic flow upon which the service will be applied.
Embodiments of the present application provide a method, system, and a storage medium for a browser application to load a target page's first screen. The method comprises: in response to a request to load a target page, obtaining page information of the target page from a local storage associated with the browser application; rendering the page information of the target page, and requesting first screen information of the target page through a network; comparing the first screen information obtained through the network with the page information of the target page to determine whether the page information of the target page is updated; and in response to the page information of the target page being determined as updated, continuing to render the target page's first screen based on the first screen information obtained through the network.
Methods for synchronizing a client application user interface (UI) state of content of a client application on a client device corresponding with a host application on a host device are presented, the method including: receiving an update on the host application; transmitting a request for remote notification to the client device to synchronize the UI state of content of the client application responsive to receiving the event; displaying a notification corresponding with the request for remote notification on the client device indicating content is available to the client device; selecting the notification; launching the client application on the client device; transmitting a synchronizing request by the client device to the host device; enabling a synchronization mode of the host application; determining a host application UI state; transmitting content data associated with the UI state of the host application to the client device; and displaying the client application UI state based on the content data from the host device.
Methods and systems for secure multi-party generation of random bits are disclosed. These random bits can be generated securely, even if some parties (i.e., less than a corruption threshold) are dishonest or malicious. Methods and systems can use secure environments in order to securely generate and store cryptographic keys. Using broadcast protocols such as Dolev-Strong, a generator computer can distribute a public protocol instance key to other participant computers. Each participant computer can generate a random bit and encrypted the random bit with the public protocol instance key, and broadcast its encrypted random bit to the other participant computers. Once each participant computer has received the encrypted random bits from all other participant computers, the private protocol instance key can be released to the participant computers, enabling the participant computers to decrypt the encrypted random bits, and calculate an output random bit based on the encrypted random bits.
The present disclosure relates to a method and system for managing a meeting session. In accordance with one example, there is provided a method of managing a meeting session on a server that manages the meeting session, the meeting session comprising one or more participant devices and a presenter device. The method comprises receiving one or more break request messages from the participant devices, and sending a break message to the participant devices, the break message causing a break notification to be displayed on a display of the participant devices.
A method for dynamically adapting to increased system load at a selective forwarding unit (SFU) is disclosed. In an embodiment, an SFU sends a plurality of video streams to a plurality of participant computing devices. The SFU monitors a system load value on the SFU according to any of a plurality of metrics. When the SFU determines that the monitored system load value exceeds a stored load threshold value, the SFU selects one or more of the streams being sent to participant computing devices and disables them.
A third-party system for controlling conference equipment includes at least one conference device, at least one server, and at least one host device. The conference device, arranged in a physical room, corresponds to at least one recognition datum, and the recognition datum corresponds to the physical position of the physical room. The server, signally connected to the conference device, stores the recognition datum. The host device, wirelessly connected to the server, stores the recognition datum. The host device has at least one first control APP program built therein, and the first control APP program corresponds to the server. The host device uses the first control APP program and the recognition datum to control the conference device through the server during at least one given period.
Mobile device security, device management, and policy enforcement are described in a cloud-based system where the “cloud” is used to pervasively enforce security and policy and perform device management regardless of device type, platform, location, etc. A cloud-based method includes monitoring traffic between a mobile device and a network in a cloud-based system that is implemented as an overlay network relative to the mobile device and the network; analyzing the traffic from the mobile device to the network, for enforcing policy thereon, wherein the policy includes a set of use guidelines associated with the user of the mobile device; and blocking or allowing the traffic from the mobile device to the network based on the analyzing.
The disclosure is directed towards systems and methods for improving security in a computer network. The system can include a planner and a plurality of controllers. The controllers can be deployed within each zone of the production network. Each controller can be configured to assume the role of an attacker or a target for malicious network traffic. Simulations of malicious behavior can be performed by the controllers within the production network, and can therefore account for the complexities of the production network, such as stateful connections through switches, routers, and other intermediary devices. In some implementations, the planner can analyze data received from the controllers to provide a holistic analysis of the overall security posture of the production network.
Methods and apparatus, including computer program products, implementing and using techniques for enhancing the security of Internet of Things (IoT) devices. A homogenous and leaderless group of IoT devices sharing one or more common features is defined. During operation of the IoT devices, it is identified whether an IoT device in the group operates outside an expected tolerance for the operation of the IoT devices in the group. In response to identifying that an IoT device in the group operates outside an expected tolerance, an action is performed on the IoT device.
A cybersecurity platform that process collected data using a data model to generate security events linked to IP addresses, locations, or other variable information. The platform identifies potential false positive security events using a stability measure based on the variable information, which is then used to constrain the set of security events to reduce the effect of or remove the false positive security events from an output data structure.
A method of a communication device of requesting data of a destination network node via at least one intermediate node in a service chain. The method comprises acquiring a secret session key configured to subsequently verify authenticity of the requested data and first seed data to be used by the at least one intermediate node and the destination node to generate the session key, transmitting the data request, an indication of the service chain to be traversed, and the first seed data to a next-hop node in the service chain, receiving, in response to the forwarded data request, the requested data having been provided with an indication of authenticity by the next-hop node, and verifying the authenticity of the received data using the acquired session key, wherein the received requested data is considered authenticated.
A network-accessible service provides an enterprise with a view of identity and data activity in the enterprise's cloud accounts. The service enables distinct cloud provider management models to be normalized with centralized analytics and views across large numbers of cloud accounts. Using a domain-specific query language, the system enables rapid interrogation of a complete and centralized data model of all data and identity relationships. The data model also supports a cloud “least privilege and access” framework. Least privilege is a set of minimum permissions that are associated to a given identity; least access is a minimal set of persons that need to have access to given piece data. The framework maps an identity to one or more actions collected in cloud audit logs, and dynamically-build a compete view of an identity's effective permissions. The resulting least privilege and access policies are then applied natively to a given cloud environment to manage access.
Described are techniques for collaboration-based authentication including a method comprising storing a user profile comprising information related to a user account, a plurality of user devices, and a user calendar. The method further comprises detecting an authentication attempt associated with the user account and retrieving device information associated with a first device initiating the authentication attempt, a first location of the first device, a second location of a second device of the plurality of user devices, and a scheduled location based on the user calendar. The method further comprises determining that the authentication attempt comprises a security risk based on the device information associated with the first device, the first location of the first device, the second location of the second device, and the scheduled location. The method further comprises performing a mitigation action in response to determining that the authentication attempt comprises the security risk.
Techniques for described for generating session-related timeout parameters that are user-specific in value. A user-specific timeout parameter offers several advantages over a static timeout parameter, including minimized the risk of session hijacking, fewer stale sessions to manage, and timeout parameters that more closely match the user's actual behavior. A value for a timeout parameter can therefore depend on information stored for a specific user. The stored information can indicate user behavior observed over a period of time encompassing multiple sessions and/or multiple accesses to the same or different resources. In certain embodiments, a value for a timeout parameter is determined by a prediction engine implemented using a machine learning (ML) model. The ML model may determine the timeout parameter based on information obtained records associated with the user for whom the timeout parameter value is being determined, as well as information from records associated with other users.
Systems and methods for establishing a secure connection between a client computing device and a server hosted website. The method includes requesting an HTTPS connection with a server hosted website. The method further includes receiving a certificate from the server hosted website. The certificate is signed by a certificate authority and certificate validators. The method also includes delivering the certificate to each of the certificate validators. The method further includes receiving a certificate status for each of the certificate validators. Each certificate status indicates whether the certificate is valid or has been revoked. The method also includes determining a quantity of valid certificate statuses received from the certificate validators. The method further includes establishing the HTTPS connection with the server hosted website in response to determining that the quantity of valid certificate statuses meets or exceeds an assurance quantity threshold or a Transmission Layer Security Level of Assurance (“TLS-LoA”).
Provided is a method for checking a safety rating of a first device with the aid of an associated digital certificate, including the steps: sending the digital certificate having an identifier of a safety rating from the first device to a second device, checking the identifier of the safety rating with respect to a predefined safety rule by means of the second device, executing safety measures in accordance with the result of checking the safety rules.
The present invention relates to a network guard unit for an industrial embedded system and a guard method. The specific method is to form the network guard unit (NGU) through security technologies, such as integrated access control, identity authentication and communication data encryption, to provide active guard for a site control device. The NGU comprises an access control module, an identity authentication module, a data encryption module, a key negotiation module and a PCIE communication module, and supports the communication modes of dual network cards and PCIE bus. The present invention builds a secure and trusted operating environment for industrial control systems in combination with an active guard technical means in the field of information security on the basis of ensuring the correctness and the feasibility of security of various terminal devices in the industrial control systems.
Typically, a business desires to track and monitor all applications run on its servers. Nonetheless, one or more unauthorized applications may be running on the business's servers, exposing the business to potential regulatory liability and security breaches. Apparatus and methods are provided for isolating and disabling one or more unauthorized applications running on a server. The apparatus may comprise a system including a content-filtering web proxy server configured to filter outgoing requests and data associated with the requests. The system may also include a remediation framework configured to monitor request data in a proxy log stored by the proxy server. The remediation framework may be triggered to perform remedial action when the remediation framework determines that a request and associated data, as stored in the proxy log, meets predetermined conditions. The remediation framework, when triggered, may execute steps to truncate functionality of the unauthorized applications.
A threat management facility detects a device on an enterprise network and determines whether the device is one of a set of managed devices for the enterprise network. When the device is not one of the set of managed devices, the device may be directed to a portal that manages admission of unrecognized devices onto the enterprise network. Based on a response of the unrecognized device to the portal (e.g., if the unrecognized device does not respond to the portal), the device may be listed on an unclaimed device page published by the portal and accessible to authorized users of the enterprise network. An authorized user may claim the unrecognized device from the unclaimed device page and, in the process, may provide additional information regarding the unrecognized device. Once claimed, the previously unrecognized device may be permitted to communicate over the enterprise network.
A method for execution by a computing device of an access layer of an object storage system includes receiving, via a network, a request message from an edge node, wherein the request message indicates a requested access of a data object. An update frequency of the data object is determined in response to receiving the request message, and a cache time to live (TTL) is determined based on the update frequency. Performance of the requested access of the data object is facilitated in response to receiving the request message, and a response message that includes the cache TTL is generated in response to performing the requested access. The response message is transmitted to the edge node via the network.
Disclosed is a system and method for allowing one or more users to interact with models from a distance, for example, by enabling the users to input the models during online video chat sessions, wherein the models can define input parameters and provide at least one interactive interface, receive an interactive result according to the interactive interface to perform predefined acts, via an adult toy, based on the the interactive result received. The adult toy can be Wi-Fi or Bluetooth™ enabled to receive commands directly from the server via a web browser extension, the website hosting an online video chat session, or connect to an application installed on a device operated by the model, wherein the application communicates with the web browser extension to relay commands to the adult toy therefrom. In some embodiments, the interactive interface provides a finger guessing game, a dice game or a lottery game.
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for performing dynamic control of social messaging platform client-side and server-side behavior according to current and historical environmental, service, and application conditions.
A technique increases capacity in a topic-subscription messaging system. The technique involves, during a first time period, operating a first topic structure of the system. The first topic structure includes a first topic and a plurality of first subscriptions coupled with the first topic. The technique further involves, during a second time period, providing a second topic structure which includes a second topic and a plurality of second subscriptions coupled with the second topic. The technique further involves, during a third time period, providing a link from the second topic structure to the first topic structure making (i) the second topic structure a parent to the first topic structure and (ii) the first topic structure a child to the second topic structure, the link conveying messages from a particular second subscription of the second topic structure to the first topic of the first topic structure.
A method and apparatus for allocating server resources to services are provided. Multiple services compete for resources on one or more servers and bid for resources. Servers assign resources based on bids according to an auctioning rule mechanism. Services update bids according to a probabilistic dynamic that can approximate a continuous-time Markov chain, both for each service and for the collection of services. The method and apparatus can involve multiple separate but interacting agents, and can be implemented for example for self-organization of a datacentre. The behaviours of the agents can be configured so that the collective behaviour results in a proportional fair resource allocation.
A communication apparatus for controlling a received packet includes a memory configured to store program instructions, and a processor configured to execute the program instructions to select, whether the received packet is controlled with one of the communication apparatus or an external control apparatus, based on an input port of the received packet, send a notice of detecting a new packet flow to the external control apparatus when the processor selects to control the received packet with the external control apparatus, and set a processing rule for processing the received packet to the communication apparatus when the processor selects to control the received packet with the communication apparatus.
A method, an apparatus, and a system for measuring a network delay are disclosed. The method includes: acquiring delay measurement information obtained by measuring a service flow by at least one target logical port TLP, where the delay measurement information includes: timestamp information, a service flow identifier, and a TLP identifier; and transmitting the delay measurement information to a measurement control point MCP, so that the MCP determines details about a network delay according to the timestamp information, the service flow identifier, and the TLP identifier. Embodiments of the present application further provide an apparatus and a system for measuring a network delay. Embodiments of the present application achieve direct and accurate delay measurement of a service flow in scenarios of point to point transmission or point to multipoint transmission on the network, and reflect details about a real delay of the service flow.
Described is a method and system for connectivity diagnostics in communication systems. The method comprises: querying a first communication device at a first time and a second time to determine whether a second communication device is connected to the first communication device and to determine a value of an operational parameter at the first and second times; and determining the second communication device disconnected from the first communication device based on detecting the second communication device was connected to the first communication device at both the first time and the second time, and detecting the value of the operational parameter at the second time is inside a range of threshold values. In one embodiment, the method comprises determining a link is unstable for connectivity based on connection duration, number and/or pattern of connection and/or disconnection events, and/or traffic activity during connection and/or disconnection events.
The present invention provides a detection method used for transmission bandwidth detection in multi-level transmission bandwidth assurance, including: detecting, by at least two transmission bandwidth detection units, a transmission bandwidth of a transmission link; where each transmission bandwidth assurance level in the multi-level transmission bandwidth assurance is corresponding to only one of the at least two transmission bandwidth detection units, and when the transmission link operates at a first transmission bandwidth assurance level, a first transmission bandwidth detection unit corresponding to the first transmission bandwidth assurance level detects the transmission bandwidth of the transmission link.
A system and method for providing a dynamic comparative network health analysis of a network environment, the method comprising: obtaining dynamic and static network environment parameters of a plurality of network environments; creating network environment profiles of each network environment of the plurality of network environments based on the dynamic and static network environment parameters; performing comparative analysis of network environment profiles of a first network environment of the plurality of network environments with network environment profiles of a second network environment of the plurality of network environments to generate a comparative analysis; based on the comparative analysis, determining whether to reconfigure the first network environment or create a new network environment; if it is determined to reconfigure the first network environment, generating a remedial plan for the first network environment; if it is determined to create a new network environment, generating a new plan for the new network environment.
Technologies for using edge devices in a cellular network as compute nodes to participate in a blockchain network are described. A cellular network may provision one or more edge devices in communication with the cellular network to instantiate a virtual machine on the edge device to act as a compute node. The cellular network may submit a bid to solve a blockchain hash function using the compute nodes and may instruct the edge to solve the blockchain hash function.
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for detecting sources of computer network failures. One of the methods includes identifying a network flow in a computer network between a source and a destination; performing a first probe to determine whether there is end-to-end connectivity between the source and the destination; in response to determining that there is no end-to-end connectivity between the host and the destination, performing one or more additional probes including a second probe to determine whether each hop in the path of the network flow between the source and the destination is operational including requesting that the source transmit a respective first trace diagnostic packet to each hop in the path of the network flow; and determining whether at least one link of the computer network that is part of the path of the network flow has failed based on the results.
In one embodiment, a device in a network receives a query walker agent configured to query information from a distributed set of devices in the network based on a query. The device executes the query walker agent to identify the query. The device updates state information of the executing query walker agent using local information from the device and based on the query. The device unloads the executing query walker agent after updating the state information. The device propagates the query walker agent with the updated state information to one or more of the distributed set of devices in the network, when the updated state information does not fully answer the query.
The present disclosure discloses a method of receiving a downlink channel by a user equipment (UE) in a wireless communication system. Particularly, the method includes receiving a synchronization signal block (SSB) including a primary synchronization signal (PSS), a secondary synchronization signal (SSS), and a physical broadcast channel (PBCH), obtaining information about the position of a downlink bandwidth from the PBCH, and receiving the downlink channel within the downlink bandwidth determined on the basis of the obtained information about the position of the downlink bandwidth. The information about the position of the downlink bandwidth is an offset from the position of a bandwidth of the SSB to the position of the downlink bandwidth.
A radio node (14) is configured to perform frequency offset estimation. The radio node (14) in this regard receives a first set (22-1) of reference symbols of a reference signal during respective time resources, and determines a first frequency offset estimate (26-1) using the first set (22-1) of reference symbols. The radio node (14) also receives a second set (22-2) of 5 reference symbols of the reference signal during respective time resources, e.g., using the same local oscillator frequency for down conversion as with the first set (22-1). The radio node (14) further determines, based on the first frequency offset estimate (26-1), a second frequency offset estimate (26-2) using the second set (22-2) of reference symbols. In some embodiments, the radio node (14) determines a third frequency offset estimate as a sum of the first and 10 second frequency offset estimates, and tunes a local oscillator frequency, or performs frequency offset compensation, based on the third frequency offset estimate.
System and methods for testing smart device functions within a smart environment are disclosed. In embodiments, a method includes accessing test case data that associates one or more smart device commands with an event type based on historic event data from a plurality of participating smart environments; determining a test case for the event type based on the test case data, wherein the test case is configured to initiate a test of a smart device command of a smart device within a smart environment of a participant; determining that the test case can be initiated at the smart environment based on rules and participant data indicating a location of the participant with respect to the smart environment; and initiating execution of the test case by a smart device controller of the smart environment, wherein the execution causes the smart device controller to test the smart device command.
Disclosed herein is a method of connection of home appliance to a network, a network-connection system for home appliances, and an apparatus related to a network-connection setting for home appliances. The network connection method of home appliance includes operations in which a terminal device receives an input of an authentication key of an access point (AP) apparatus and the terminal device or the AP apparatus verifies and authenticates the authentication key; a home appliance is set to be in a state of communicating with the terminal device; the home appliance is interconnected to the terminal device and the terminal device transmits an identification number and the certificated authentication key of the AP apparatus to the home appliance; and the home appliance is connected to the AP apparatus based on the identification number and the authentication key of the AP apparatus.
A system provides integrity validation of authorization codes using cryptographic hashes. In particular, the system may use various types of input data to generate a randomized hash value which may be associated with a user, device, or set of data (e.g., an authorization code). For instance, the input data may include historical log data, location and/or geolocation data, contextual data, salt values, or the like. In this way, the system may generate a hash value that is randomized while adding meaning that is unique to the user, device, or data with which the randomized hash value is associated.
A moving target defense scheme for a serial communications system is disclosed herein. A bus controller generates and broadcasts a nonce to remote terminals over a bus. The bus controller and the remote terminals generate a randomized sequence based upon the nonce and a shared secret that is shared between the bus controller and the remote terminals. The bus controller broadcasts first messages over the bus on first addresses that are derived from first portions of the randomized sequence. The remote terminals listen for the first messages that are broadcast over the bus on the first addresses. The bus controller broadcasts a shift message that causes the remote terminals to listen for second messages that are broadcast over the bus on second addresses that are derived from second portions of the randomized sequence.
Systems are provided for managing access to a log of dataset that is generated when the dataset is accessed. A system stores, with respect to each of a log producer and a log accessor, an encrypted symmetric key for dataset that is encrypted using a corresponding public key. The system returns the encrypted symmetric key for the log producer, such that the log producer can decrypt the dataset that is encrypted using the symmetric key. A log of the dataset is generated when the log producer accesses the dataset.
A display device including: a timing controller outputting a reference clock signal and a data packet, wherein the data, packet includes a clock signal embedded in a data signal; a clock and data recovery (CDR) circuit receiving the reference clock signal and the data packet; and a display panel displaying an image based on the data packet, wherein, when the CDR circuit receives the reference clock signal, a frequency band of the reference clock signal is detected using a first internal clock signal, a parameter associated with jitter characteristics of the clock and data recovery circuit is adjusted according to the detected frequency band, and a second internal clock signal is output by adjusting a frequency of the first internal clock signal and when the CDR circuit receives the data packet, the data signal and a clock signal synchronized with the data signal are recovered from the data packet.
A cable modem supporting full duplex (FDX) operations. The cable modem includes a transmit circuitry configured to process a transmit signal and a receive circuitry configured to process a receive signal. The receive circuitry includes a switchable analog filter configured to filter the receive signal. The switchable analog filter is configurable for different passband frequencies. The receive circuitry also includes a digital compensation filter configured to compensate a difference in frequency response in a specific frequency band due to switching of the switchable analog filter for a different passband frequency. The cable modem also includes an adjacent channel interference (ACI) cancellation filter and an adjacent leakage interference (ALI) cancellation filter. A digital compensation filter is also used in processing the ACI cancellation signal and the ALI cancellation signal to impose or compensate the difference in frequency response due to the switchable analog filter switching.
A method and device for hybrid automatic repeat request feedback are provided. The method includes: a terminal device sends data to be transmitted to a network device; if the terminal device determines that feedback information for the data to be transmitted is not received in a first target time period, the terminal device sends feedback request information to the network device, the feedback request information is used for requesting the network device to send feedback information for the data to be transmitted, a start time point of the first target time period is a time point that the terminal device finishes sending the data to be transmitted, and a time length of the first target time period is a first time length.
Adaptive multi-standard signal classification and synchronization is disclosed. Devices, systems and methods include an auto-correlation bank and a signal classifier to efficiently and reliably distinguish signals of wireless protocols, such as Bluetooth, 1 megabit-per-second (Mbps) Bluetooth low energy (BLE), 2 Mbps BLE, long range (LR) BLE, ZigBee (ZB), high-rate ZB, and so on. The auto-correlation bank includes a set of auto-correlators with different delays, which facilitate distinguishing between the different wireless protocols. Exemplary aspects can further distinguish and/or compensate for interference sources, such as WiFi, constant wave (CW) clock sources, and so on. In some examples, a frequency offset of an incoming signal can be output for further signal processing. In a parallel path, a cross-correlation circuit facilitates synchronization to the incoming signal based on a signal type identified by the signal classifier.
A method of communication includes receiving configuration data at a first device from a configuration server, the configuration data indicating a first packet loss rate threshold associated with a first codec configuration. The method includes determining a packet loss rate at the first device, the packet loss rate associated with one or more first packets received at the first device via a network from a second device. The method includes, based on determining that a decoder of the first device has the first codec configuration and that the packet loss rate satisfies the first packet loss rate threshold, sending, to the second device, a request to change a codec configuration of the second device. The method also includes receiving a second packet at the first device via the network from the second device, the second packet encoded based on a second codec configuration.
In some examples, an audio signal is received and divided into a plurality of frames. Frequency domain data of the audio signal may be generated for an individual frame of the plurality of frames. For example, the frequency domain data may include a plurality of frequency waveform components. Data may be embedded into a selected frequency waveform component having a lower frequency, selected from the frequency domain data of the individual frames, by controlling a phase value of the frequency waveform component to represent a selected bit of the data. For instance, a first range of the phase value may represent a first type of bit and a second range of the phase value may represent a second type of bit.
The disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security or safety services.
A beam layout is optimised for a given traffic distribution and network state by determining optimum beam centre positions and generating a beam layout so as to meet system requirements and minimise the distances of locations within a coverage area from the optimum beam centre positions. Adjacent beams in low traffic areas may be merged.
A method configured to selectively retransmit a message includes analyzing a message received by a device to determine a set of radio access technologies (RATs) in which the message has been transmitted. If the device supports a device RAT that is different from set of RATS the message is updated to include the device RAT and the updated message is transmitted using the device RAT.
Examples described herein include Weighted Overlap Beamform and Add techniques for calculating frequency-localized weights for adaptive beamformers. Intermediate weights are calculated for overlapping subbands (e.g., using a least-squares solution or a windowed least-squares solution). Each set of intermediate weights may be multiplied by an overlap factor, and combined to provide final weights for a subcarrier.
This disclosure describes techniques for operating an inductive coupling reader. The techniques include operations comprising: detecting a change in a resonance frequency of the inductive coupling reader; comparing the change in the resonance frequency to a threshold; determining that the change in the resonance frequency falls outside the threshold; and activating a compensation circuit to offset the change in the resonance frequency of the inductive coupling reader in response to determining that the change in the resonance frequency falls outside the threshold.
An integrated-circuit output driver generates, in response to an input signal constrained to a first voltage range, a control signal at one of two voltage levels according to a data bit conveyed in the input signal, the two voltages levels defining upper and lower levels of a second voltage range substantially larger than the first voltage range. The output driver generates an output-drive signal constrained to a third voltage range according to the one of the two voltage levels of the control signal, the third voltage range being substantially smaller than the second voltage range.
A power line communication sender generates a command signal that comprises a series of alternate first level voltage signals and second level voltage signals, while the time periods of each first level voltage signal and each second level voltage signal are determined according to the value of each corresponding bit in a command information. A power line communication receiver is connected to the sender through power lines to receive power and command signals. When the receiver receives the command signal, the time periods of each first level voltage signal and second level voltage signal is calculated to record each bits of the command signal. Since the information is carried in every first level voltage signal and second level voltage signal, it requires only half the time and requires no quick switching in every binary bit of the transmitted signal, therefore efficiency is improved and signal distortion is lowered.
A radio frequency (RF) switch circuit is provided. The switch includes a branch configured and arranged to transfer an RF signal coupled at an input node to an output node when a control signal is at a first logic value. A first transistor in the branch includes a first current electrode coupled at the input node and a second current electrode coupled to an intermediate node. The first transistor is formed in a first isolation well coupled to a bias voltage supply terminal. A second transistor in the branch includes a first current electrode coupled to the second current electrode of the first transistor at the intermediate node and a second current electrode coupled at the output node. The second transistor is formed in a second isolation well coupled to the bias voltage supply terminal. A third transistor includes a first current electrode coupled at the first intermediate node and a second current electrode coupled at a first supply terminal.
Quantum compression using quantum communication driver (QCD) computing devices employing superdense encoding of conventionally compressed files is disclosed. In one example, a first QCD computing device receives a compressed file that was compressed using conventional compression formats by a computing device. The first QCD computing device performs superdense encoding of the compressed file using one or more first qubits that are each in an entangled state with a corresponding one or more second qubits of a second QCD computing device. The first qubit(s) are then sent to the second QCD computing device. In some examples, the second QCD computing device generates a sequential qubit mapping that represents a sequence in which the one or more first qubits encode the compressed file, and stores the first qubit(s) in association with the sequential qubit mapping.
To simplify the circuit configuration and design of an analog-digital converter. A low-order bit latch section latches, as low-order bits, Gray code data corresponding to a reference clock by using, as a trigger, inversion of an output of a comparator. A high-order bit counter section counts one or both of edges of a CNT signal corresponding to the reference clock and stops a count of high-order bits by using, as a trigger, inversion of an output of the comparator.
A integrated circuit device includes digital-to-analog converter (DAC) circuitry including a resistor DAC that includes a resistor-two-resistor DAC configured to receive a first sub-word that includes a most significant bit (MSB) of a digital input signal and to output an analog output signal representative of the first sub-word, a resistor ladder configured to receive the analog output signal and a second sub-word that includes an intermediate significant bit (ISB) of the digital input signal and to generate an analog interpolated signal. The resistor ladder includes a plurality of resistor elements connected in series with one another to define a plurality of tap nodes, wherein a respective tap node is arranged between every two adjacent ones of the resistor elements, and a switching circuit having plurality of switches, wherein each switch is configured to selectively connect a respective one of the tap nodes to an output of the resistor ladder to generate the analog interpolated signal.
An analog-digital converter includes a first analog-digital conversion unit configured to, during a first analog-digital conversion operation, sequentially charge each of n first differential node pairs, in response to a respective one of a differential sampling signal pair and first to (n−1)th differential signal pairs among n differential signal pairs, in response to each of the n first differential node pairs being sequentially charged, sequentially generate each of n first differential data pairs, and sequentially generate each of n upper differential data pairs to be used as n-bit upper digital data, in response to a respective one of the sequentially-generated n first differential data pairs. The first analog-digital conversion unit is further configured to, during a second analog-digital conversion operation, simultaneously discharge each of the n first differential node pairs, in response to a nth differential signal pair among the n differential signal pairs.
A high resolution analog to digital converter (ADC) with improved bandwidth senses an analog signal (e.g., a load current) to generate a digital signal. The ADC operates based on a load voltage produced based on charging of an element (e.g., a capacitor) by a load current and a digital to analog converter (DAC) output current (e.g., from a N-bit DAC). The ADC generates a digital output signal representative of a difference between the load voltage and a reference voltage. This digital output signal is used directly, or after digital signal processing, to operate an N-bit DAC to generate a DAC output current that tracks the load current. In addition, quantization noise is subtracted from the digital output signal thereby extending the operational bandwidth of the ADC. In certain examples, the operational bandwidth of the ADC extends up to 100s of kHz (e.g., 200-300 kHz), or even higher.
In an embodiment, an apparatus includes a first integrated circuit (IC) chip configured to receive a timing signal and a reference clock signal; a second IC chip configured to receive the timing signal from the first IC chip and the reference clock signal; and a third IC chip configured to receive the timing signal from the second IC chip and the reference clock signal. The second IC chip is electrically coupled between the first and third IC chips. The first, second, and third IC chips include respectively first, second, and third phase lock loop (PLL). The first, second, and third IC chips are configured to generate respective first, second, and third reference time signals based on the timing signal and the reference clock signal. The first, second, and third PLLs are synchronized to each other based on the respective first, second, and third reference time signals.
A device includes a plurality of superconducting components, each having a first terminal and a second terminal; a plurality of current sources, being electrically-connected to the first terminal of a corresponding superconducting component and configured to selectively provide a first current; and a bias current source electrically-connected to the respective first terminal of each of the plurality of superconducting components. The bias current source is configured to provide a second current adapted to bias the superconducting components such that (1) a combination of the second current and the first current from each current source causes the plurality of superconducting components to transition from the superconducting state to the non-superconducting state, and (2) a combination of the second current and the first current from each current source of only a subset of the plurality of current sources does not cause the plurality of superconducting components to transition to the non-superconducting state.
A MOS device of an IC includes pMOS and nMOS transistors. The MOS device further includes a first Mx layer interconnect extending in a first direction and coupling the pMOS and nMOS transistor drains together, and a second Mx layer interconnect extending in the first direction and coupling the pMOS and nMOS transistor drains together. The first and second Mx layer interconnects are parallel. The MOS device further includes a first Mx+1 layer interconnect extending in a second direction orthogonal to the first direction. The first Mx+1 layer interconnect is coupled to the first Mx layer interconnect and the second Mx layer interconnect. The MOS device further includes a second Mx+1 layer interconnect extending in the second direction. The second Mx+1 layer interconnect is coupled to the first Mx layer interconnect and the second Mx layer interconnect. The second Mx+1 layer interconnect is parallel to the first Mx+1 layer interconnect.
An acoustic wave device includes a piezoelectric substrate with a reverse-velocity surface having an ellipse shape, an IDT electrode on the piezoelectric substrate, and a dielectric film on the piezoelectric substrate and covering the IDT electrode. The acoustic wave device utilizes a Love wave. The IDT electrode includes an intersecting region in which first electrode fingers and second electrode fingers are interdigitated. The intersecting region includes a central region, a first edge region and a second edge region located at both ends of the central region. When x (%) denotes a wavelength-normalized film thickness of the IDT electrode and y (g/cm3) denotes an electrode density of the IDT electrode, the wavelength-normalized film x is set at a value not less than x that satisfies Equation 1. The film thicknesses of the dielectric films in the first and second edge regions are smaller than the dielectric film in the central region.
An acoustic wave device includes a layered substrate having a piezoelectric material layer bonded to a second material layer including a material having a higher thermal conductivity than the piezoelectric material layer, interdigital transducer electrodes disposed on a surface of the piezoelectric material layer, contact pads disposed on the piezoelectric material layer and in electrical contact with the interdigital transducer electrodes, external bond pads disposed on the second material layer, and conductive vias passing through the layered substrate and providing electrical contact between the contact pads and external bond pads.
A variety of methods, controllers and electric machine systems are described for pulse control of electric machines (e.g., electric motors and generators). To improve the energy conversion efficiency of the machine, pulse control involves determining if the machine should operate in a continuous mode or pulse mode, and if the latter, defining a magnitude, duty cycle, and frequency for the pulses. One or more tables, indexing by a wide range of speeds and torque requests, is/are used to define the pulsing frequency or a pulsing frequency pattern.
An electric working machine in one aspect of the present disclosure includes a driving device, a controller, a control power source, and an operation state determiner. The control power source includes a first converter and a second converter. The control power source transitions to a first conversion state when the operation state determiner determines that the controller is in a control operation state. The control power source in the first conversion state supplies a first control current to the controller. The control power source transitions to a second conversion state when the operation state determiner determines that the controller is in a low power operation state. The control power source in the second conversion state (i) stops operation of the first converter, and (ii) supplies a second control current to the controller.
A signal converter, including: a power circuit, a microprocessor, a plurality of input signal interface circuits, a first multiplexer switch, and an output signal interface circuit. The power circuit supplies power for each circuit of the signal converter. The plurality of input signal interface circuits is disposed side by side, and in operation, one of the plurality of input signal interface circuits is connected to the first multiplexer switch to work. The plurality of input signal interface circuits includes input terminals and output terminals. The input terminals receive corresponding input signals, and the output terminals are connected to the microprocessor. The microprocessor includes an output terminal which is connected to the output signal interface circuit. The microprocessor controls the first multiplexer switch to connect to one of the plurality of input signal interface circuits.
Described herein are devices incorporating Casimir cavities, which modify the quantum vacuum mode distribution within the cavities. The Casimir cavities can drive charge carriers from or to an electronic device disposed adjacent to or contiguous with the Casimir cavity by modifying the quantum vacuum mode distribution incident on one side of the electronic device to be different from the quantum vacuum mode distribution incident on the other side of the electronic device. The electronic device can exhibit a structure that permits transport or capture of hot carriers in very short time intervals, such as in 1 picosecond or less.
A power control circuit according to one embodiment includes an H-bridge circuit formed using a plurality of power transistors. The power transistors are respectively connected to current measurement circuits that measure currents flowing through the power transistors. Each of the power transistors includes a main emitter and a sense emitter through which a current corresponding to a current flowing through the main emitter flows. Each of the current measurement circuits measures a current flowing through each of the power transistors by using a current flowing through the sense emitter included in the power transistor. A control circuit controls the power transistors based on current values respectively measured by the current measurement circuits.
A modular multilevel converter with multi-port DC power flow control includes a modular multilevel converter topology and a DC power flow controller, wherein an input terminal of the DC power flow controller is connected in series to uppermost submodules of upper arms of the modular multilevel converter topology, and with power transfer and energy interaction between the modular multilevel converter topology and an AC power grid, a converter station or a solid state transformer based on the modular multilevel converter topology has a function of direct current power flow control. The output terminal of the DC power flow controller adopts DC/DC converters to regulate the output voltage, and a plurality of DC/DC converters share a common DC bus with the ports connected with different DC outlet lines, thereby providing a plurality of flexible and controllable DC ports.
A switching control circuit that controls switching of a switching device of a bridge circuit for driving a load. The switching control circuit includes a control circuit that outputs, on a signal line, a control signal at first and second logic levels for turning on and off the switching device based on a set signal and a reset signal, respectively, a setting circuit that is connected to the signal line, and that sets the logic level of the signal line to the second logic level for a period after the reset signal is inputted to the control circuit and before the set signal is inputted to the control circuit, a holding circuit that is connected to the signal line, and that holds the logic level of the signal line, and a drive circuit that is connected to the holding circuit, and that drives the switching device based on the output of the holding circuit.
In one embodiment, the electronic circuit includes a first amplifying circuit configured to generate a first compensation voltage based on a first reference voltage and an output voltage. The output voltage is from a functional circuit bloc. A second amplifying circuit is configured to generate a control voltage based on an input voltage, a second reference voltage and the first compensation voltage. The second reference voltage is different than the first reference voltage.
An axial flux motor is disclosed, with at least one rotor, with at least one stator that has a stator yoke and at least one stator tooth made of a soft magnetic powdered material, which stator tooth has a tooth neck and a tooth head that adjoins the tooth neck and constitutes the pole face of the stator tooth, and with a fastening means that comprises at least one mechanical connecting element, which connecting element fastens the stator tooth to the axial flux motor. In order to embody this in a durable way, it is proposed for the stator tooth to have a fastening opening, which, starting from the pole face of the stator tooth, passes through its tooth head and tooth neck, with the mechanical connecting element being accommodated in the fastening opening in countersunk fashion relative to the pole face.
A brushless winding field rotational electric machine positioned between a starting device and a case enclosing the starting device includes: a stator, which is held to the case, including an alternating-current coil configured to generate a rotation magnetic field by alternating current; a field core, which is held to the case, including a field coil to be excited by direct current; and a rotor disposed on an outer periphery of the starting device and rotatably held about a rotational axis relative to the stator and the field coil. The rotor includes a connection portion to be connected to a synchronized rotation member configured to rotate in synchronization with an engine along the rotational axis, on a facing surface to the synchronized rotation member.
A printed circuit board and an electric filter. The printed circuit board is arranged to accommodate an electric circuitry on one side, and an electrically conductive material on the other side which forms a common ground point with the electric circuitry and a device contacting the conductive material. The electric filter for filtering electric signals of a DC motor includes a freewheeling diode coupled in parallel to the motor, a capacitor coupled in parallel to the motor, where a ground terminal of the capacitor is coupled to a chassis of the motor, a low pass filter including a ferrite bead and another capacitor is connected to each motor terminal (M+, M−), and a resistor-capacitor filter is coupled in parallel to the motor.
A wireless power transfer apparatus for providing wireless power; it has an array of resonators; a powered resonator for providing power through electromagnetic resonance to said array of resonators; wherein said resonators transfer power from said powered resonator to any one of said array of resonators for delivering wireless power to said device by a modified connection between said array of resonators except the powered resonator; and/or wireless weak electromagnetic field coupling between neighboring resonators of said array of resonators each having a tuning frequency of resonance wherein said array of resonators has at least two distinct tuning frequencies from all the resonators constituting said array of resonators; wherein said modified connection is one of or a combination of: a wired connection; and a strong electromagnetic field coupling.
The disclosed apparatus may include (1) a mount of an infrastructure component, where the mount includes an installation surface that contacts an installed electronic device, and (2) a coupling mechanism that (a) provides a force causing a corresponding installation surface of the installed electronic device to maintain contact with the installation device, and (b) delivers electrical power via the installation surface to the installed electronic device. Various other apparatuses, devices, and methods are also disclosed.
In a vehicle power supply system, when a main power supply device is normal, a backup controller turns on a switch circuit and turns off a switch circuit to supply power from the main power supply device to a load unit LD1 and a load unit, and can travel a vehicle in a normal mode which is in a normal driving state. On the other hand, when the main power supply device is abnormal, the backup controller supplies power from the backup battery to the load unit and does not supply power from the backup battery to the load unit by turning on the switch circuit and turning off the switch circuit, and can travel the vehicle in the limit mode in which the functions are more limited than in the normal mode.
A power feed unit that includes multiple first terminal sections, a second terminal section, and a switch is disclosed. Each first terminal section includes a first power supply terminal directed to receive electric power from a battery, and a first communication terminal directed to perform a communication with the battery. The second terminal section includes a second power supply terminal directed to supply electric power to an electronic apparatus, and a second communication terminal directed to perform a communication with the electronic apparatus. The switch electrically couples one of the first communication terminals with the second communication terminal.
An electronic device charges a battery. The electronic device includes a charging circuit, a power supply controller, and a detector. The charging circuit charges the battery. The power supply controller controls charging of the battery performed by the charging circuit. The detector detects information about a use environment where the electronic device is used. When the power supply controller determines that the use environment for the electronic device is a specific environment based on the information detected by the detector, the power supply controller regulates the charging performed by the charging circuit.
A battery charging and balancing circuit, for charging a battery pack having a plurality of cells. The battery charging and balancing circuit having a detecting circuit to provide a balancing connection indicating signal; a charging circuit to charge the battery pack based on the cell voltages when the balancing connection indicating signal is valid, and to charge the battery voltage otherwise; and a balancing circuit to control the discharging switches coupled with the cells based on the cell voltages when the balancing connection indicating signal is valid.
An intelligent rechargeable battery pack having a battery management system for monitoring and controlling the charging and discharging of the battery pack is described. The battery management system includes a memory for storing data related to the operation of the battery, and the battery management system is also configured to communicate the data related to the operation of the battery to other processors for analysis.
A recognition interface recognizes a reverse flow state in which power flows from a customer's site to a power system or a forward flow state in which power flows from the power system to the customer's site. When the recognition interface recognizes a reverse flow state, a controller causes at least one of a first power storage system through a third power storage system to be charged, based on a priority level related to charge defined for the first power storage system through the third power storage system. When the recognition interface recognizes a forward flow state, the controller causes at least one of the first power storage system through the third power storage system 40c to be discharged, based on a priority level related to discharge defined for the first power storage system 40a through the third power storage system.
Method and apparatus for synchronizing decentralized power conditioner start-up in a distributed resource island system (DRIS). In one embodiment the method comprises determining, by a power conditioner in the DRIS, when a line voltage of the DRIS collapses to zero; starting, by the power conditioner, when the line voltage collapses to zero, a black-start timer, wherein the black-start timer is set to the same amount of time as a plurality of black-start timers corresponding to a plurality of power conditioners of the DRIS; and initiating, by the power conditioner, following expiration of the black-start timer, a black-start.
An example method may include generating an alternating current (AC) output at a power source within a borehole in a subterranean formation. An electrical component may receive a direct current (DC) output from a converter circuit coupled to the power source and the electrical component. One or more measurements corresponding to the power source, the converter circuit, the electrical component, or a protection circuit coupled to the converter circuit may be received. Blocking devices within the protection circuit may be selectively caused to block current flow in the converter circuit based, at least in part, on the one or more received measurements.
A cable manager includes one or more cable manager units. Each cable manager unit includes a pair of side cable guides, each comprised of a plurality of finger-like projections extending forwardly from a support column. At least one of the pair of support columns has a socket arranged at a side thereof. Each cable manager unit further includes a separate midsection member capable of insertion into the socket for interconnecting the pair of side cable guides.
A stripping tool for a cable includes a cutting unit with at least one blade, a cable seat, and a kinematic structure. The kinematic structure is operatively coupled with the cutting unit to move the at least one blade radially with respect to, and rotationally around, a tool axis and the cable seat. A method for stripping a cable includes moving a plurality of blades of a cutting unit with respect to each other radially to and rotationally around a tool axis. The method includes controlling and coordinating the movement of the blades via a kinematic structure.
A gas-insulated line is provided. The gas-insulated line defines an axial direction and includes an enclosure configured to surround a nominal conductor and a pressurized insulation gas in the enclosure, wherein the enclosure includes: a first attachment point and a second attachment point, the first attachment point and the second attachment point being spaced apart from each other in the axial direction; a rope element fixed between the first attachment point and the second attachment point and loaded with a pretension; and a flexible enclosure element arranged between the first attachment point and the second attachment point.
A packaged electronic device structure includes a substrate having a major surface. A semiconductor device is connected to the major surface of the substrate, the semiconductor device having a first major surface, a second major surface opposite to the first major surface, and a side surface extending between the first major surface and the second major surface. A package body encapsulates a portion of the semiconductor device, wherein the side surface of the semiconductor device is exposed through a side surface of the package body. In some examples, the side surface of the semiconductor device is an active surface. In some examples, the package body comprises a molded structure that contacts and overlaps the first major surface of the semiconductor device.
A plug and socket combination together with a light source for achieving the look and effect of a recessed lighting fixture with only a standard electrical junction box and without any type of recessed lighting housing. For renovations, a plug and socket combination can be used with an existing conventional recessed lighting housing.
Embodiments of the present disclosure provide a power strip, including at least one socket, and a display unit configured to display information of a device plugged into the at least one socket. Through the display unit, the information of the device corresponding to the socket can be conveniently provided, preventing operating incorrectly.
An arc prevention system including a jack having a receptacle, a modular plug sized to be positioned in the receptacle of the jack, the modular connector including, a plurality of contacts, with at least two of the contacts creating an energized electrical path with an external power source in electrical communication with the external power source, a latch extending from a top surface of the modular plug, a switching unit positioned on the latch, a control circuit in electrical communication with the switch and the at least two energized contacts, where the electrical path between the control circuit and the switching unit is not energized, and the control circuit adjusts the energized electrical path to a predetermined electrical level.
Disclosed are embodiments of an electrical plug, in particular a medium voltage plug or a high voltage plug, for a power cable including at least one housing configured to receive at least one electrical plug module. The plug includes at least one fiber optic cable arranged in the housing as a temperature sensor of a temperature measuring arrangement.
A low insertion force contact includes a conductive base layer extending to a mating end including a mating interface configured for mating electrical connection to a mating contact. A silver coating layer is provided on the conductive base layer. The silver coating layer is provided at the mating end. A silver sulfide surface layer forms a solid lubricant directly on the silver coating layer. The silver sulfide surface layer forms a film defining a surface of the low insertion force contact having a controlled thickness at the mating interface.
A base of an electrical connector includes a fixing pin and a base body. The fixing pin includes a pin body, a stopping element and one or more latches. The pin body includes a lower end and an upper end, the stopping element is disposed at the upper end, and the latch is disposed on the pin body in a protruding manner. One or more installation troughs are formed on a rear surface of the base body and the installation trough is in communication with a front surface of the base body through an insertion hole. The base body further includes a pin hole formed on an outer peripheral surface of the base body, and the pin hole is intersected with and in communication with the installation trough. The latch is adapted to be engaged with a stopper block formed on an inner wall of the pin hole.
A semiconductor device includes: an insulation circuit substrate including a metal layer and an insulation substrate, the metal layer being formed on one surface of the insulation substrate, a connecting member having a cylindrical shape joined to the metal layer via a bonding material, a terminal pin inserted in the connecting member, and a reinforcement member having a cylindrical shape disposed on an outer periphery of the connecting member. The reinforcement member is made of a material having a hardness greater than that of the connecting member.
In certain exemplary embodiments, register banks are used to allow for fast beam switching (FBS) in a phased array system. Specifically, each beam forming channel is associated with a register bank containing M register sets for configuring such things as gain/amplitude and phase parameters of the beam forming channel. The register banks for all beam forming channels can be pre-programmed and then fast beam switching circuitry allows all beam forming channels across the array to be switched to use the same register set from its corresponding register bank at substantially the same time, thereby allowing the phased array system to be quickly switched between various beam patterns and orientations. Additionally or alternatively, active power control circuitry may be used to control the amount of electrical power provided to or consumed by one or more individual beam forming channels such as to reduce DC power consumption of the array and/or to selectively change the effective directivity of the array.
An antenna device includes: a dielectric substrate 1; a first conductor 2 provided on a first surface of the dielectric substrate 1; a second conductor 100 provided on a second surface of the dielectric substrate 1, the second surface being opposite to the first surface on which the first conductor 2 is provided, the second conductor 100 having a feeding point 12; a third conductor 200a provided on the same second surface on which the second conductor 100 is provided; and a pair of transmission lines that electrically connect the second conductor 100 and the third conductor 200a.
An apparatus is disclosed herein for a cylindrically fed antenna and method for using the same. In one embodiment, the antenna comprises an antenna feed to input a cylindrical feed wave and a tunable slotted array coupled to the antenna feed.
An electronic apparatus, according to various embodiments of the present invention, comprises: a first antenna of a first bandwidth; a second antenna of a second bandwidth which partially overlaps with the first bandwidth; a third antenna of the first bandwidth; a fourth antenna of the second bandwidth; a transmission/reception path corresponding to each of a plurality of bandwidths; a reception path corresponding to each of the plurality of bandwidths; and a path formation unit which forms a path such that any one of the first antenna and the third antenna is connected to the transmission/reception path, the other of the first antenna and the third antenna is connected to the reception path, and any one of the second antenna and the fourth antenna is connected to the transmission/reception path, and the other of the second antenna and the fourth antenna is connected to the reception path.
A semiconductor package structure having an antenna module includes: a substrate, having a first surface, a second surface, and at least one via hole made by a laser running through the substrate; a rewiring layer, disposed on the first surface of the substrate; metal bumps, disposed on the rewiring layer and electrically connected to the rewiring layer; a semiconductor chip, disposed on and electrically connected to the rewiring layer; a conductive column, filling the via hole, and an antenna module, disposed on the second surface of the substrate and electrically connected to the metal bumps through the conductive column and the rewiring layer.
Apparatuses, methods of assembling a resonator, and methods of tuning a resonator are provided. An example apparatus may include at least one resonator, at least one input tap coupled to the at least one resonator via capacitive coupling, and at least one tuning element that comprises at least one plate of material. At least a portion of the at least one tuning element may be configured to be positioned between the at least one resonator and the at least one input tap. The at least one tuning element may be configured to be positioned between the at least one resonator and the at least one input tap by at least one spring retention element.
A metal-air battery is comprised by a metal-air battery unit having a plurality of juxtaposed metal-air battery cells with a small number of components and a simple structure for injection of the electrolytic solution into each cell. Each metal-air battery cell has an air electrode, a metal electrode arranged to face the air electrode, and a casing configured to support the air electrode and the metal electrode. Each casing includes an air chamber and a liquid chamber. Each air chamber has an upper part opened to the outside. The casing has a liquid feeding port communicating with the liquid chamber for admitting an electrolytic solution when the metal-air battery unit is lowered into a container of electrolytic solution.
This application relates to a positive electrode plate and an electrochemical device. The positive electrode plate includes a current collector, a safety coating, a difficultly soluble layer and a positive active material layer, wherein the safety coating, the difficultly soluble layer and the positive active material layer are successively disposed on the current collector; wherein the safety coating includes a polymer matrix, a conductive material and an inorganic filler; wherein the difficultly soluble layer includes a binder and a conductive agent, and wherein the binder of the difficultly soluble layer has a solubility in an oil solvent smaller than the solubility of the polymer matrix of the safety coating in such oil solvent.
An electronic device includes a battery; a display; a touch sensor configured to detect a touch on the display; a pressure sensor disposed between the display and the battery configured to detect a pressure on the display; and a processor, wherein the processor is configured to obtain a pressure signal using the pressure sensor, to identify, in response to the obtaining of the pressure signal, touch information including at least one of an occurrence of a touch signal and a position of the touch signal corresponding to the touch obtained through the touch sensor, and to adjust at least one characteristic related to charging of the battery based on at least a portion of the pressure signal and the touch information.
The present application relates to the field of energy storage devices and, particularly, relates to an insulating tape and a Li-ion battery adopting the same. The tape includes a substrate, a hard particle layer and an adhesive layer; the substrate is of a microporous structure, the hard particle layer is stacked on the surface of the substrate, and the particle diameter of the particles of the hard particle layer is greater than the pore diameter of the microporous structure of the substrate, the adhesive layer and the hard particle layer are compositely arranged or separately arranged, the adhesive layer is stacked on a side of the hard particle layer far away from the substrate. The Li-ion battery includes the insulating tape. The Li-ion battery provided by the present application reduces the influence on energy loss of the cell caused by the arrangement of the insulating tape.
Disclosed herein is a battery pack including a box body and a plurality of battery modules disposed in the box body and arranged in a horizontal direction. The battery module can include a plurality of battery cells electrically connected to each other by a plurality of first bus bars, the battery cell can include a battery case and two electrode terminals. The disclosed arrangement of the battery modules in the battery pack can effectively avoid short-circuiting the electrode terminals of the battery module caused by the collapse of the box body toward the inside, thereby improving the safety of the battery pack.
A battery module for a motor vehicle includes a battery module housing, at least one battery cell package which is inserted into the battery module housing in an assembly direction, at least two battery cells which are connected electrically in series, and two head plates for closing the battery module housing. The head plates are arranged and configured in order to indirectly or directly exert a pretensioning force onto the battery cell package in the assembly direction.
Provided are battery management apparatuses and methods. The battery management apparatus includes a converter configured to acquire and convert information of a battery cell, an antenna configured to transmit the converted information to an adjacent battery cell and to receive converted information of the adjacent battery cell, in response to a command of a controller, and a coil configured to wirelessly charge or discharge the adjacent battery cell, in response to another command of the controller, wherein the controller is configured to control the wireless charging or the wireless discharging based on information of the adjacent battery cell.
Electrochemical energy storage devices are provided comprising an anode, a cathode and a solid-state electrolyte adapted for Na-ion conduction between the anode and cathode. The solid-state electrolyte includes, for example, a solid solution of doped NaAlO2 having a composition defined by one of Dx(NaAlO2)1-x in which D is at least one of GeO2, SnO2, TiO2, ZrO2 and HfO2, and Dx/2(NaAlO2)1-x in which D is PAlO4, where 0
The present invention relates to a solid electrolyte comprising a first polymer which is a polyvinyl acetal or polyvinyl acetate, or a copolymer having vinyl acetal and/or vinyl acetate units, doped with a sodium or lithium salt. The solid electrolyte may be used as an ionically conductive membrane in a battery such a Li-air battery.
One example discloses an organic matter powered device, comprising: a set of electrodes configured to be coupled to a set of biologically active organic matter; a power generation circuit coupled to the electrodes; wherein the power generation circuit is configured to receive a first voltage and current from the organic matter, and output a second voltage and current generated by the first voltage and current; a monitoring circuit coupled to the electrodes and coupled to monitor the first voltage and current, and to be powered by the second voltage and current; wherein the monitoring circuit is configured to translate variations in the first voltage and current into an environmental attribute.
A system for maintaining insulation resistance of a fuel cell includes a fuel cell stack, a coolant line that allows coolant to pass through the fuel cell stack, a circulation pump that circulates the coolant in the coolant line, a deionizer that removes impurities or ions from the coolant in the coolant line, and a controller configured to measure the insulation resistance of a high-voltage terminal connected to the fuel cell stack, to determine whether recovery control is necessary based on the measured insulation resistance, and upon determining that recovery control is necessary, to control the circulation pump so as to change the flow of the coolant passing through the deionizer.
A resin frame equipped membrane electrode assembly includes a membrane electrode assembly and a resin frame member around an outer peripheral portion of the membrane electrode assembly. An inner end of the resin frame member is joined to an electrolyte membrane. In the state before the inner end is joined to the electrolyte membrane, the inner end is narrowed inward in a manner that a surface of the inner end adjacent to the electrolyte membrane gets closer to a surface of the inner end opposite to the electrolyte membrane.
The present disclosure relates to a positive electrode material for a lithium secondary battery which includes a positive electrode active material and a dielectric. The dielectric is a composite oxide represented by a general formula AmBnOδ and has a dielectric constant of 10 to 500. Here, m and n are real numbers that satisfy 1.01≤m/n≤1.6, δ is a value that is determined so that charge neutral conditions are satisfied, A is one or more elements among alkali metal elements, alkaline earth metal elements, rare earth elements, Cu, Pb and Bi, and B is one or more elements among transition metal elements and Sn.
A gelled anode for an alkaline electrochemical cell contains zinc-based particles, an alkaline electrolyte, a gelling agent, and two or more additives selected from the group consisting of an alkali metal hydroxide, an organic phosphate ester surfactant, a metal oxide, and tin, which as reduced cell gassing properties relative to cells lacking such additives.
A display device according to the present disclosure includes a first electrode, an inorganic hole injecting and transporting layer which is formed of an inorganic material and is formed on the first electrode, at least two light emitting units including a first organic light emitting unit and a second organic light emitting unit having different luminescent colors which are formed on the inorganic hole injecting and transporting layer, an electron transport layer which is formed on the at least two organic light emitting units, and a second electrode which is formed on the electron transport layer. Furthermore, a light emitting layer of the first organic light emitting unit is formed by laminating a light emitting layer of a first luminescent color and a light emitting layer of a second luminescent color, and a light emitting layer of the second organic light emitting unit is formed of the light emitting layer of the second luminescent color.
A display substrate is provided. The display substrate includes a functional area; and a buffer area substantially surrounding the functional area, wherein the functional area includes a display area and a peripheral area between the display area and the buffer area; one or more insulating layers on a base substrate, and in the functional area and the buffer area; and an encapsulating structure on a side of the one or more insulating layers away from the base substrate, and encapsulating a plurality of light emitting elements in the display area. The one or more insulating layers include a first part in the functional area and at least a second part in the buffer area. The second part is spaced apart from the first part. The display substrate further includes a first enclosure ring on a side of the second part away from the base substrate.
The present application relates to a hetero-cyclic compound represented by Chemical Formula 1, and an organic light emitting device comprising the same.
Disclosed is a compound represented by chemical formula (1). In addition, disclosed is an organic electronic element comprising: a first electrode; a second electrode; and an organic layer between the first electrode and the second electrode, wherein the organic layer contains the compound represented by chemical formula (1). Light-emitting efficiency, stability and lifespan may be enhanced when the compound represented by chemical formula (1) is contained in the organic layer.
Devices and systems having a diffusion barrier for limiting diffusion of a phase change material including an electrode, a phase change material electrically coupled to the electrode, and a carbon and TiN (C:TiN) diffusion barrier disposed between the electrode and the phase change material to limit diffusion of the phase change material are disclosed and described.
A semiconductor device structure includes an MRAM metallization stack. A via is disposed within a dielectric cap layer that is on and in contact with the metallization stack. A liner is disposed on sidewalls and a bottom surface of the via. A recessed electrode contact is disposed within a portion of the via and in contact with a first part of the liner in contact with sidewalls of the via. A second part of the liner is in contact with the sidewalls is above a top surface of the contact. A method for forming the semiconductor device structure includes forming a via within a MRAM metallization stack. The via exposes a top surface of the second metal layer. An electrode contact is formed within a portion of the via. A cap layer is formed within a remaining portion of the via in contact with a top surface of the electrode contact.
According to one embodiment, a magnetic storage device includes: a magnetoresistive effect element including a non-magnet, and a stacked structure on the non-magnet, the stacked structure including: a first ferromagnet on the non-magnet; an anti-ferromagnet being exchange-coupled with the first ferromagnet; and a second ferromagnet between the first ferromagnet and the anti-ferromagnet. The stacked structure is configured to: have a first resistance value in response to a first current flowing through the stacked structure in a first direction, and have a second resistance value different from the first resistance value in response to a second current flowing through the stacked structure in a second direction opposite to the first direction.
A device includes a first chip having a first circuit element, a first interconnect pad in electrical contact with the first circuit element, and a barrier layer on the first interconnect pad, a superconducting bump bond on the barrier layer, and a second chip joined to the first chip by the superconducting bump bond, the second chip having a first quantum circuit element, in which the superconducting bump bond provides an electrical connection between the first circuit element and the first quantum circuit element.
A micro light-emitting device includes an epitaxial structure layer, a first-type electrode, a second-type electrode, and a light guide structure. The epitaxial structure layer has a top surface and a bottom surface opposite to each other and a plurality of first grooves located on the top surface. The first-type electrode and the second-type electrode separated from each other are disposed on the epitaxial structure layer and located at the bottom surface. The light guide structure is disposed on the epitaxial structure layer. The light guide structure covers a portion of the top surface and a portion of inner walls of the first grooves to define a plurality of second grooves corresponding to the portion of the first grooves.
Provided are a metal-base circuit board having excellent solder crack resistance, thermal conductivity, adhesive property, and insulation property and a resin composition for a circuit board used for the metal-base circuit board. A resin composition for a circuit board comprises a vinylsilyl group-containing polysiloxane (having a vinylsilyl group equivalent of 0.005 to 0.045 mol/kg) comprising (A) a dual-end type vinylsilyl group-containing polysiloxane having a weight average molecular weight of 30,000 to 80,000 and (B) a side-chain dual-end type vinylsilyl group-containing polysiloxane having a weight average molecular weight of 100,000 or more, a hydrosilyl group-containing polysiloxane (having a hydrosilyl group equivalent of 6 mol/kg or more), and an inorganic filler at 60 to 80% by volume. The mass ratio of (A) to (B), (A)/(B), is 80/20 to 30/70, and the molar ratio of (C) a hydrosilyl group to (D) a vinylsilyl group, (C)/(D), is 2.5 to 5.0.
A light emitting device package includes a mounting substrate including first and second lower electrode portions separated by a first groove, first and second upper electrode portions separated by a second groove connected to the first groove and disposed on the first and second lower electrode portions respectively, and an insulation support member filling the first groove, a light emitting device mounted on the first and second upper electrode portions of the mounting substrate, a double phosphor film covering an upper surface of the light emitting device, including a phosphor layer and a barrier layer sequentially stacked on each other, and having a thickness of 200 μm or less, and a sealing member on the mounting substrate covering the light emitting device and the double phosphor film.
Provided is a light emitting device, comprising: a light emitting element including a light emission peak wavelength in a range of 440 nm or more and 470 nm or less; a first fluorescent material having a light emission peak wavelength in a range of 480 nm or more and 518 nm or less; a second fluorescent material having a light emission peak wavelength in a range of 510 nm or more and less than 590 nm and having an x value of the chromaticity coordinate in CIE1931 in a range of 0.27 or more and 0.40 or less; and a third fluorescent material having a light emission peak wavelength in a range of 590 nm or more and 670 nm or less. The light emitting device is capable of reducing the human eye fatigue and having a light emission spectrum with excellent visual work.
A semiconductor optical device is comprised of a phonon donating material structurally connected to an indirect bandgap material to improve absorption and emission of light in the indirect bandgap material. An excitation energy source provides excitation radiation to the semiconductor optical device to excite electrons in the semiconductor optical device. Phonons from the phonon donating material present in the indirect bandgap material provide a mechanism for increased rates of electron-hole generation and recombination, and electrical leads provide an electrical connection to the semiconductor optical device.
The present disclosure provides a display panel, a manufacturing method thereof, and a display device. The method includes: providing a first substrate; forming first via holes into a first surface; forming a first metal layer on the first surface and in the first via holes; patterning the first metal layer to form first portions, including first sub-portions in the first via holes; forming second via holes into a second surface; forming a second metal layer on the second surface and in the second via holes; patterning the second metal layer to form second portions and pads, that the second portions and the pads are electrically connected, the second portions includes second sub-portions in the second via holes, and the first sub-portions and the second sub-portions are electrically connected; and bonding and electrically connecting electronic components with the plurality of pads.
A method for manufacturing a solar cell can include forming a tunneling layer on first and second surfaces of a semiconductor substrate, the tunneling layer including a dielectric material; forming a polycrystalline silicon layer on the tunnel layer at the first surface and on the second surface of the semiconductor substrate; removing portions of the tunnel layer and the polycrystalline silicon layer formed at the first surface of the semiconductor substrate; forming a doping region at the first surface of the semiconductor substrate by diffusing a dopant; forming a passivation layer on the polycrystalline silicon layer at the second surface of the semiconductor substrate; and forming a second electrode connected to the polycrystalline silicon layer by penetrating through the passivation layer.
An optical device includes a first circuit layer, a light detector, a first conductive pillar and an encapsulant. The first circuit layer has an interconnection layer and a dielectric layer. The light detector is disposed on the first circuit layer. The light detector has a light detecting area facing away from the first circuit layer and a backside surface facing the first circuit layer. The first conductive pillar is disposed on the first circuit layer and spaced apart from the light detector. The first conductive pillar is electrically connected to the interconnection layer of the first circuit layer. The encapsulant is disposed on the first circuit layer and covers the light detector and the first conductive pillar. The light detector is electrically connected to the interconnection layer of the first circuit layer through the first conductive pillar. The backside surface of the light detector is exposed from the encapsulant.
An embodiment is a semiconductor device which includes a first oxide semiconductor layer over a substrate having an insulating surface and including a crystalline region formed by growth from a surface of the first oxide semiconductor layer toward an inside; a second oxide semiconductor layer over the first oxide semiconductor layer; a source electrode layer and a drain electrode layer which are in contact with the second oxide semiconductor layer; a gate insulating layer covering the second oxide semiconductor layer, the source electrode layer, and the drain electrode layer; and a gate electrode layer over the gate insulating layer and in a region overlapping with the second oxide semiconductor layer. The second oxide semiconductor layer is a layer including a crystal formed by growth from the crystalline region.
A device includes a substrate, a first doping portion, a second doping portion, a channel, a semiconductor film, a high-k layer, and a gate. The first doping portion and the second doping portion are over the substrate. The channel is over the substrate and between the first doping portion and the second doping portion. The semiconductor film is around the channel. The high-k layer is around the semiconductor film. The gate is over the high-k layer.
To provide a semiconductor device including an oxide semiconductor layer with high and stable electrical characteristics, the semiconductor device is manufactured by forming a first insulating layer, forming oxide over the first insulating layer and then removing the oxide n times (n is a natural number), forming an oxide semiconductor layer over the first insulating layer, forming a second insulating layer over the oxide semiconductor layer, and forming a conductive layer over the second insulating layer. Alternatively, the semiconductor device is manufactured by forming the oxide semiconductor layer over the first insulating layer, forming the second insulating layer over the oxide semiconductor layer, forming the oxide over the second insulating layer and then removing the oxide n times (n is a natural number), and forming the conductive layer over the second insulating layer.
Provided is a semiconductor device including a substrate with an active pattern, a gate electrode crossing the active pattern, a source/drain region in an upper portion of the active pattern at a side of the gate electrode, the source/drain region including a recess region at an upper region thereof, a contact electrically connected to the source/drain region, the contact including a lower portion provided in the recess region, and a metal silicide layer provided at a lower region of the recess region and between the source/drain region and the contact.
A transistor device includes, in a semiconductor body, a drift region, a body region, and a source region separated from the drift region by the body region and connected to a source node. The transistor device further includes a gate electrode dielectrically insulated from the body region by a gate dielectric, and a field electrode structure. The field electrode structure includes: a first field electrode connected to the source node and dielectrically insulated from the drift region by a first field electrode dielectric; a second field electrode dielectrically insulated from the drift region by a second field electrode dielectric; and a coupling circuit connected between the second field electrode and the source node and configured to connect the second field electrode to the source node dependent on a voltage between the source node and the second field electrode.
An organic material with a porous interpenetrating network and an amount of inorganic material at least partially distributed within the porosity of the organic material is disclosed. A method of producing the organic-inorganic thin films and devices therefrom comprises seeding with nanoparticles and depositing an amorphous material on the nanoparticles.
In a general aspect, a semiconductor device can include a semiconductor region of a first conductivity type and a well region of a second conductivity type. The well region can be disposed in the semiconductor region. An interface between the well region and the semiconductor region can define a diode junction at a depth below an upper surface of the semiconductor region. The semiconductor device can further include at least one dielectric region disposed in the semiconductor region. A dielectric region of the at least one dielectric region can have an upper surface that is disposed in the well region at a depth in the semiconductor region that is above the depth of the diode junction; and a lower surface that is disposed in the semiconductor region at a depth in the semiconductor region that is the same depth as the diode junction or below the depth of the diode junction.
Display panel and display device are provided. The display panel includes fingerprint recognition units, a substrate, drive circuits, and organic light-emitting units. A distance between two adjacent drive circuits in each drive circuit group is less than a distance between two adjacent drive circuits in two adjacent drive circuit groups along a first direction. The drive circuits from a first row to an i-th row is a first drive circuit, and the drive circuits from a j-th row to an M-th row is a second drive circuit. A first direction component, along the first direction, of each of vias that correspond to at least a portion of the first drive circuit pointing to a first corresponding electrically-connected anode, and a second direction component, along the first direction, of each of vias that correspond to at least a portion of the second drive circuit pointing to a second corresponding electrically-connected anode, are opposite components.
An optical wireless communication system includes an optical wireless transmitter configured to emit a discrete-time signal of first light, second light, and third light having different wavelength spectra; and a light-receiving sensor including an optical wireless receiver including first, second, and third photoelectric conversion devices configured to convert discrete-time signals of the first, second, and third light beams into first, second, and third photoelectric conversion signals, respectively, wherein the second photoelectric conversion device at least partially overlaps the first photoelectric conversion device, and the third photoelectric conversion device at least partially overlaps at least one photoelectric conversion device of the first photoelectric conversion device or the second photoelectric conversion device, and at least one photoelectric conversion device of the first photoelectric conversion device, the second photoelectric conversion device, or the third photoelectric conversion device includes an organic light absorbing material, a quantum dot, or a combination thereof.
Thermoelectric generator elements and associated circuit elements are simultaneously formed using a common semiconductor device fabrication process to provide an integrated circuit including a dynamically reconfigurable thermoelectric generator array on a common chip or die substrate. A switch logic circuit formed together with the thermoelectric generator elements is configured to control series and parallel connections of the thermoelectric generator elements is the array in response to changes in circuit demand or changes in the available ambient energy source. In an example implementation, the number of generators connected in series may be varied dynamically to provide a stable voltage source, and the number of generators connected in parallel may be varied dynamically to provide a stable current source.
A 3D flash memory is provided to includes a gate stack structure comprising a plurality of gate layers electrically insulated from each other, a cylindrical channel pillar vertically extending through each gate layer of the gate stack structure, a first conductive pillar vertically extending through the gate stack structure, the first conductive pillar being located within the cylindrical channel pillar and being electrically connected to the cylindrical channel pillar, and a second conductive pillar extending through the gate stack structure, the second conductive pillar being located within the cylindrical channel pillar and being electrically connected to the cylindrical channel pillar, the first conductive pillar and the second conductive pillar being separated from each other. The 3D flash memory also includes a ferroelectric layer disposed between gate layers of the gate stack structure and the cylindrical channel pillar.
A three-dimensional semiconductor device includes: a common source line passing between a first channel structure and a second channel structure and between a first dummy channel structure and a second dummy channel structure, in which a distance in a first direction between the common source line and the first channel structure is equal to a distance in the first direction between the common source line and the second channel structure, and a distance in the first direction between the common source line and the first dummy channel structure is different from a distance in the first direction between the common source line and the second dummy channel structure.
A semiconductor device includes a plurality of high-voltage insulated-gate field-effect transistors arranged in a matrix form on the main surface of a semiconductor substrate and each having a gate electrode, a gate electrode contact formed on the gate electrode, and a wiring layer which is formed on the gate electrode contacts adjacent in a gate-width direction to electrically connect the gate electrodes arranged in the gate-width direction. And the device includes shielding gates provided on portions of an element isolation region which lie between the transistors adjacent in the gate-width direction and gate-length direction and used to apply reference potential or potential of a polarity different from that of potential applied to the gate of the transistor to turn on the current path of the transistor to the element isolation region.
The present disclosure provides a semiconductor structure. The semiconductor structure includes: a polysilicon layer, having a first surface and a second surface opposite to the first surface; a substrate, disposed on the second surface of the polysilicon layer; a bit line structure, disposed on the substrate, penetrating through the polysilicon layer and protruding from the first surface of the polysilicon layer; and a spacer structure, disposed on lateral sidewalls of the bit line structure, including an air gap sandwiched by a first dielectric layer and a second dielectric layer, wherein a first portion of the second dielectric layer is in the polysilicon layer, a second portion of the second dielectric layer is outside the polysilicon layer, and a thickness of the second portion of the second dielectric layer is less than a thickness of the first portion of the second dielectric layer.
A semiconductor device and a method of manufacturing a semiconductor device, the device including a substrate; a lower structure including pad patterns on the substrate, upper surfaces of the pad patterns being at an outer side of the lower structure; a plurality of lower electrodes contacting the upper surfaces of the pad patterns; a dielectric layer and an upper electrode sequentially stacked on a surface of each of the lower electrodes; and a hydrogen supply layer including hydrogen, the hydrogen supply layer being between the lower electrodes and closer to the substrate than the dielectric layer is to the substrate.
An integrated circuit can include a MOM capacitor formed simultaneously with other devices, such as finFETs. A dielectric layer formed on a substrate has a first semiconductor fin therein and a second semiconductor fin therein. Respective top portions of the fins are removed to form respective recesses in the dielectric layer. First and second electrodes are formed in the recesses. The first and second electrodes and the interjacent dielectric layer form a MOM capacitor.
A semiconductor device has first second-conductivity-type high-concentration regions, second second-conductivity-type high-concentration regions, third second-conductivity-type high-concentration regions, and fourth second-conductivity-type high-concentration regions. The first connecting regions each connect a portion of each of the first second-conductivity-type high-concentration regions and a portion of each of the second second-conductivity-type high-concentration regions. The second connecting regions each connect a portion of each of the third second-conductivity-type high-concentration regions and a portion of each of the fourth second-conductivity-type high-concentration regions. A ratio of a mathematical area of the first connecting regions to a mathematical area of the second second-conductivity-type high-concentration regions is greater than a ratio of a mathematical area of the second connecting regions to a mathematical area of the fourth second-conductivity-type high-concentration regions.
A memory-containing die includes a three-dimensional memory array, a memory dielectric material layer located on a first side of the three-dimensional memory array, and memory-side bonding pads. A logic die includes a peripheral circuitry configured to control operation of the three-dimensional memory array, logic dielectric material layers located on a first side of the peripheral circuitry, and logic-side bonding pads included in the logic dielectric material layers. The logic-side bonding pads includes a pad-level mesh structure electrically connected to a source power supply circuit within the peripheral circuitry and containing an array of discrete openings therethrough, and discrete logic-side bonding pads. The logic-side bonding pads are bonded to a respective one, or a respective subset, of the memory-side bonding pads. The pad-level mesh structure can be used as a component of a source power distribution network.
Three-dimensional (3D) memory devices with 3D phase-change memory (PCM) and methods for forming and operating the 3D memory devices are disclosed. In an example, a 3D memory device includes a first semiconductor structure including a substrate, an array of NAND memory cells above the substrate, and a first bonding layer above the array of NAND memory cells. The first bonding layer includes first bonding contacts. The 3D memory device also further includes a second semiconductor structure including a second bonding layer above the first bonding layer and including second bonding contacts, a peripheral circuit and an array of PCM cells above the second bonding layer, and a semiconductor layer above and in contact with the peripheral circuit. The 3D memory device further includes a bonding interface between the first and second bonding layers. The first bonding contacts are in contact with the second bonding contacts at the bonding interface.
A chip package structure including a first chip stack and a redistribution layer is provided. The first chip stack includes a plurality of first chips, a first molding layer and at least one first vertical conductive element. The plurality of first chips are sequentially stacked, wherein each of the plurality of first chips includes at least one first bonding pad, and the first bonding pads are not covered by the plurality of first chips. The first molding layer encapsulates the plurality of first chips. The at least one first vertical conductive element penetrates through the first molding layer, wherein the at least one first vertical conductive element is disposed on and electrically connected to at least one of the first bonding pads. The redistribution layer is disposed on the first chip stack and electrically connected to the at least one first vertical conductive element.
A semiconductor package may include: a chip stack including first to Nth semiconductor chips stacked with an offset to one side such that edges thereof on the other side are exposed, and having first to Nth chip pads disposed at the other-side edges, respectively; a bridge unit disposed adjacent to the other side of the chip stack and spaced apart from the chip stack; kth to Nth wires extended in a vertical direction while one ends thereof are connected to the kth to Nth chip pads among the first to Nth chip pads; first to (k−1)th wires having one ends connected to the first to (k−1)th chip pads among the first to Nth chip pads; and an additional wire electrically coupled to the first to (k−1)th wires, and extended in the vertical direction while one end thereof is connected to the bridge unit.
Integrated fan-out devices, wafer level packages, and methods of manufacturing the same are described herein. Die-attach pads and leveling film are used to attach a plurality of heterogeneous semiconductor dies to a substrate to align external contacts of the semiconductor dies at a first level. The leveling film may also be used during deposition of an encapsulant to at least partially fill a gap between the semiconductor dies. Once the leveling film is removed, a protection layer is formed over the semiconductor dies and within a recess of the encapsulant left behind by the leveling film during encapsulation. A redistribution layer and external connectors are formed over the protection layer to form the InFO device and an interposer may be attached to the redistribution layer to form the wafer level package.
Vertically-aligned and conductive dummies in integrated circuit (IC) layers reduce capacitance and bias independence. Dummies are islands of material in areas of metal and semiconductor IC layers without circuit features to avoid non-uniform polishing (“dishing”). Conductive diffusion layer dummies in a diffusion layer and conductive polysilicon dummies in a polysilicon layer above the diffusion layer reduce bias dependence and nonlinear circuit operation in the presence of an applied varying voltage. ICs with metal dummies vertically aligned in at least one metal layer above the polysilicon dummies and diffusion dummies reduce lateral coupling capacitance compared to ICs in which dummies are dispersed in a non-overlapping layout by a foundry layout tool. Avoiding lateral resistance-capacitance (RC) ladder networks created by dispersed dummies improves signal delays and power consumption in radio-frequency (RF) ICs.
A semiconductor device includes a peripheral circuit region on a lower substrate, and including circuit elements, memory cell regions including memory cells on each of a first upper substrate and a second upper substrate, which are on the lower substrate, at least one cutting region between the first upper substrate and the second upper substrate, and at least one semiconductor pattern between the first upper substrate and the second upper substrate, and adjacent to the at least one cutting region.
A method of fabricating a semiconductor device comprises forming first and second align keys in a wafer, the second align key apart from the first align key, forming third and fourth align keys in the wafer, the third align key apart from the second align key, the fourth align key apart from the third align key, forming a fifth align key in the wafer, the fifth align key apart from the fourth align key, forming a first line pattern in the wafer using the second and third align keys, forming a second line pattern in the wafer using the fourth and fifth align keys, forming a first interposer including the first line pattern by cutting a space between the first and second align keys, and forming a second interposer, the second interposer including the second line pattern by cutting a space between the third and fourth align keys.
A multi-chip package structure includes a package substrate, an interconnect bridge device, first and second integrated circuit chips, and a connection structure. The first integrated circuit chip is flip-chip attached to at least the interconnect bridge device. The second integrated circuit chip is flip-chip attached to the interconnect bridge device and to the package substrate. The interconnect bridge device includes (i) wiring that is configured to provide chip-to-chip connections between the first and second integrated circuit chips and (ii) an embedded power distribution network that is configured to distribute at least one of a positive power supply voltage and a negative power supply voltage to at least one of the first and second integrated circuit chips attached to the interconnect bridge device. The connection structure (e.g., wire bond, injection molded solder, etc.) connects the embedded power distribution network to a power supply voltage contact of the package substrate.
A structure includes a bridge die. The bridge die includes a semiconductor substrate; and an interconnect structure over the semiconductor substrate. The interconnect structure includes dielectric layers and conductive lines in the dielectric layers, an encapsulant encapsulating the bridge die therein, and a redistribution structure over the bridge die. The redistribution structure includes redistribution lines therein. A first package component and a second package component are bonded to the redistribution lines. The first package component and the second package component are electrically interconnected through the redistribution lines and the bridge die.
A semiconductor structure and a method of fabricating the same is disclosed. The semiconductor structure includes an interconnect structure that comprises: a plurality of conductive features over a substrate arranged separately adjacent one another; a liner conformally formed over and between the plurality of conductive features and defining a trench having a first depth between adjacent pair of the conducive features, wherein a horizontal coverage of the liner over respective top surfaces of the conductive features has thickness lower than that of a vertical coverage over respective sidewalls of the conductive features; and a dielectric layer on the liner over top surfaces of the conductive features, wherein the dielectric layer seals the respective trench and forms a void between adjacent pair of the conductive features.
An electronic device including: a semiconductor device including plural terminals input with voltages having a same potential; and a wiring board including a mounting region at which the semiconductor device is mounted, wherein the wiring board includes a board wiring line formed on the wiring board from a connection portion at which one terminal of the plural terminals is connected, via an inside of the mounting region, to a connection portion at which another terminal of the plural terminals is connected.
A method of manufacturing semiconductor devices such as integrated circuits comprises: providing one or more semiconductor chips having first and second opposed surfaces, coupling the semiconductor chip or chips with a support substrate with the second surface towards the support substrate, embedding the semiconductor chip or chips coupled with the support substrate in electrically-insulating packaging material by providing in the packaging material electrically-conductive passageways. The electrically-conductive passageways comprise: electrically-conductive chip passageways towards the first surface of the at least one semiconductor chip, and/or electrically-conductive substrate passageways towards the support substrate.
In a processor fastening structure, when a compression spring (23) is compressed by shortening a distance between the other end of a screw (24) and a heat sink base (22), the compression spring (23) provides elastic force for both the screw (24) and the heat sink base (22). In addition, because the screw (24) passes through the compression spring (23) to connect to a fastening assembly (21), the elastic force of the compression spring (23) is converted into pressure from the heat sink base (22) to a CPU.
An electrical connector assembly for connecting the CPU and the printed circuit board, includes an electrical connector and a back plate respectively mounted upon two opposite surfaces of the printed circuit board. A fastening seat partially surrounds the connector for securing a heat sink which is downwardly seated upon the CPU for heat dissipation. The back plate forms a plurality of securing studs extending through the fastening seat. The heat sink further includes a plurality of tubular securing nuts respectively surrounded by the corresponding coil springs and secured to the corresponding securing studs in an adjustable manner so as to impose the downward force upon the heat sink to urge the heat sink to abut downwardly against the CPU for heat dissipation of the CPU.
An integrated circuit package and a method of fabrication of the same are provided. An opening is formed in a substrate. An embedded heat dissipation feature (eHDF) is placed in the opening in the substrate and is attached to the substrate using a high thermal conductivity adhesive. One or more bonded chips are attached to the substrate using a flip-chip method. The eHDF is thermally attached to one or more hot spots of the bonded chips. In some embodiments, the eHDF may comprise multiple physically disconnected portions. In other embodiments, the eHDF may have a perforated structure.
A structure includes a device die, and an encapsulating material encapsulating the device die therein. The encapsulating material has a top surface coplanar with a top surface of the device die, and a cavity in the encapsulating material. The cavity penetrates through the encapsulating material.
Methods of manufacturing a semiconductor structure are provided. One of the methods includes the following operations. A substrate is received, and the substrate includes a first transistor with a first conductive region and a second transistor with a second conductive region, wherein the first transistor and the second transistor have different conductive types. A first laser anneal is performed on the first conductive region to repair lattice damage. An amorphization is performed on the first conductive region and the second conductive region to enhance silicide formation to a desired phase transformation in the subsequent operations. A pre-silicide layer is formed on the substrate after the amorphization. A thermal anneal is performed to the substrate to form a silicide layer from the pre-silicide layer. A second laser anneal is performed on the first conductive region and the second conductive region after the formation of the pre-silicide layer.
A glass substrate is laminated with a substrate containing silicon to thereby form a laminated substrate. The glass substrate has a concave surface and a convex surface and has one or more marks that distinguish between the concave surface and the convex surface.
A method and apparatus for positioning and heating a substrate in a chamber are provided. In one embodiment, the apparatus comprises a substrate support assembly having a support surface adapted to receive the substrate and a plurality of centering fingers for supporting the substrate at a distance parallel to the support surface and for centering the substrate relative to a reference axis substantially perpendicular to the support surface. The plurality of the centering fingers are movably disposed along a periphery of the support surface, and each of the plurality of centering fingers comprises a first end portion for either contacting or supporting a peripheral edge of the substrate.
Apparatus and methods to process one or more substrate are described. A processing chamber comprises a support assembly, a chamber lid, and a controller. The chamber lid has a front surface facing the support assembly, a first sensor on the front surface and a second sensor on the front surface, the first sensor positioned at a first distance from the central rotational axis, and the second sensor positioned at a second distance from the central rotational axis greater than the first distance. The controller is configured to determine if a substrate is within or outside of the substrate support region of the support assembly.
A semiconductor package is provided which addresses problems of mold cap heel cracking. The package may made by using a cavity die and a gate insertion tool. The gate insertion tool, which fits into the cavity die, has an elongated body and includes a nozzle head with an edge which is contoured in relation to a mold cap formed on a substrate. The edge defines a curved border, for the mold cap, from a plane above the substrate to a plane lying on the substrate. The nozzle head includes a slot, for admitting a cull runner tip, centered on an axis of the elongated body.
An initial semiconductor structure includes an underlying substrate, a hard mask stack, an organic planarization layer (OPL), a first complementary material, and a patterned photoresist layer patterned into a plurality of photoresist pillars defining a plurality of photoresist trenches. The first material is partially etched inward of the trenches, to provide trench regions, and the photoresist is removed. The trench regions are filled with a second complementary material, preferentially etchable with respect to the first material. A polymer brush is grafted on the second material but not the first material, to form polymer brush regions with intermediate regions not covered by the brush. The first material is anisotropically etched the at the intermediate regions but not the brush regions. The OPL is etched inward of the intermediate regions, to provide a plurality of OPL pillars defining a plurality of OPL trenches inverted with respect to the photoresist pillars.
A method of etching a substrate includes generating plasma comprising a first concentration of an etchant and a second concentration of an inhibitor and etching the substrate by exposing an exposed interface between a first material and a second material to the plasma. The first material includes a lower reactivity to both the etchant and the inhibitor than the second material. The first concentration is less than the second concentration. Etching the substrate includes etching the first material and the second material at the exposed interface to form an etched indentation including an enriched region of the second material, forming a passivation layer at the enriched region using the inhibitor, and etching the first material at the etched indentation. The passivation layer reduces an etch rate of the second material to a reduced rate that is less than an etch rate of the first material.
According to one embodiment, a method includes performing a plasma etching process on a masked III-V semiconductor, and forming a passivation layer on etched portions of the III-V semiconductor. The passivation layer includes at least one of a group III element and/or a metal from the following: Ni, Cr, W, Mo, Pt, Pd, Mg, Ti, Zr, Hf, Y, Ta, and Sc.
Provided herein are methods and apparatus for filling one or more gaps on a semiconductor substrate. The disclosed embodiments are especially useful for forming seam-free, void-free fill in both narrow and wide features. The methods may be performed without any intervening etching operations to achieve a single step deposition. In various implementations, a first operation is performed using a novel PEALD fill mechanism to fill narrow gaps and line wide gaps. A second operation may be performed using PECVD methods to continue filling the wide gaps.
There are provided a glass tube in which a rare gas under predetermined pressure is sealed, a cathode electrode and an anode electrode disposed in a first end portion and a second end portion of the glass tube, respectively, facing each other, and a trigger electrode including a transparent conductive film formed on an outer peripheral surface of the glass tube. The trigger electrode includes an electrode body disposed on the outer peripheral surface of the glass tube, along a tube axis direction of the glass tube, and an enlarged portion that covers at least any one of the cathode electrode and the anode electrode, and that has a circumferential width wider than a circumferential width of the electrode body. This provides a flash discharge tube capable of reducing variations in optical distribution characteristics during light emission with a small amount of light, and improving life durability during continuous emission of a large amount of light and at short intervals.
A solution-cathode glow discharge mass spectrometry (SCGD-MS) apparatus comprises a SCGD source and a mass spectrometer. The SCGD source may comprise conductive rods, a power source, and a capillary. A method for ionizing an analyte comprises flowing an electrically conductive liquid onto a conductive rod, applying an electric potential to a second conductive rod such that a plasma discharge forms between the first conductive rod and the electrically conductive liquid to produce ions, and separating the ions in a mass spectrometer. The analyte may be a polypeptide that may be contacted with trypsin. The analyte may be a solid, liquid, gas, chemical complex, or ion in solution. The method may comprise sequencing the polypeptide.
Apparatus is disclosed comprising a first ion source (210) arranged and adapted to emit a spray of charged droplets (211) and a detector or sensor (203) arranged and adapted automatically to detect, sense or determine one or more first parameters or properties of the spray of charged droplets (211) as the spray of charged droplets (211) impacts upon a surface of the detector or sensor 203. The apparatus further comprises a control system (204) arranged and adapted to adjust, correct and/or optimise one or more second parameters or properties of the spray of charged droplets (211) based on the one or more first parameters or properties of the spray of charged droplets (211) detected, sensed or determined by the detector or sensor (203).
A plasma polymerization apparatus is provided for forming a polymerization coating on an inner surface of an object. The plasma polymerization apparatus comprises a chamber, a gas supply, a monomer source, a first electrode, a second electrode, a power source, and a metal foil. The gas supply is connected to the chamber for filling the chamber with a working gas. The monomer source is connected to the chamber for providing a vaporized monomer material into the chamber. The first electrode is located at a first side of the chamber. The second electrode is located at a second side of the chamber. The power source is electrically connected to the first electrode and the second electrode for generating plasma. The metal foil is wrapped around an outer surface of the object and placed between the first electrode and the second electrode. A plasma polymerization method is also provided.
Methods and apparatus for inspecting features on a substrate including exposing at least a portion of the substrate to a first electron beam landing energy to obtain a first image; exposing the at least a portion of the substrate to a second electron beam landing energy to obtain a second image, wherein the second electron beam landing energy is different from the first electron beam landing energy; realigning the first image and the second image to a feature on the substrate; and determining from at least one measurement from the first image associated with the feature and at least one measurement from the second image associated with the feature if the feature is leaning or twisting.
A transmission electron microscope includes an electron beam source emitting an electron beam and an illumination optical system for directing the emitted electron beam at a sample. The illumination optical system has a first condenser lens, a second condenser lens, a third condenser lens, a fourth condenser lens, an objective lens, and a condenser aperture disposed at the position of the second condenser lens. The third condenser lens and the fourth condenser lens cooperate to make the position of the condenser aperture and a sample plane conjugate to each other. The first condenser lens and the second condenser lens cooperate to make the electron beam source and a front focal plane of the objective lens conjugate to each other while the conjugate relationship between the position of the condenser aperture and the sample plane is maintained by the third and fourth condenser lenses.
The present invention addresses a problem of providing a specimen holder capable of observing phenomena on the surface and in the inner part of a specimen, the phenomena being generated in different gas spaces, and a charged particle beam device provided with the specimen holder. In order to solve this problem, a specimen holder for a charged particle beam device which observes a specimen using a charged particle beam is configured such that the specimen holder includes a first gas injection nozzle capable of injecting a first gas to a first portion of a specimen, a second gas injection nozzle capable of injecting a second gas to a second portion of the specimen, the second portion being different from the first portion, and a partition part provided between the first gas injection nozzle and the second gas injection nozzle.
The purpose of the present invention is to provide a charged particle ray device which is capable of simply estimating the cross-sectional shape of a pattern. The charged particle ray device according to the present invention acquires a detection signal for each different discrimination condition of an energy discriminator, and estimates the cross-sectional shape of a sample by comparing the detection signal for each discrimination condition with a reference pattern (see FIG. 5).
A relay contactor is provided and includes input and output leads, a shaft assembly, an actuator and first and second bearing assemblies. The shaft assembly includes a shaft, a plate disposed on the shaft and an elastic element. The shaft and the plate are movable between an open position at which the plate is displaced from the input and output leads and a closed position at which the plate contacts the input and output leads. The actuator is coupled to the shaft at a first side of the plate and is configured to selectively move the shaft and the plate into the closed position in opposition to bias applied by the elastic element. The first and second bearing assemblies are disposed to movably support the shaft at the first side and at a second side of the plate, respectively.
The use of a gas as a medium for electrically isolating and/or extinguishing electric arcs, the gas including 1-chloro-2,3,3,3-tetrafluoropropene. Also, an electrical device including a sealed chamber containing electrical components and a gas for electrically isolating and/or extinguishing electric arcs, in which the gas includes 1-chloro-2,3,3,3-tetrafluoropropene. The gas may be only 1-chloro-2,3,3,3-tetrafluoropropene.
A switch includes: a first electrode sheet including a first electrode; a second electrode sheet including a second electrode that faces the first electrode sheet; and an adhesive that includes a first opening through which the first electrode faces the second electrode sheet and that attaches the first electrode sheet to the second electrode sheet. The first electrode sheet includes: a first substrate on which the first electrode is disposed; a first spacer between the first substrate and the second electrode sheet that includes a second opening at a position corresponding to the first electrode; and a first base between the first substrate and the first spacer that overlaps at least a portion of an edge of the first opening of the adhesive. The first spacer is attached to the second electrode sheet by the adhesive.
A coil electronic component includes a body including an internal coil including first and second end portions, and an encapsulant surrounding the internal coil and formed of a magnetic material, and first and second external electrodes disposed on external surfaces of the body. The body includes a first surface and a second surface to which the first and second end portions are led, respectively, and which oppose each other, a third surface connecting the first and second surfaces to each other and perpendicular to a center of a core of the internal coil, and a fourth surface opposing the third surface, and a first corner connecting the first surface and the third surface to each other and a second corner connecting the second surface and the third surface to each other include first and second recess portions, respectively.
A radioactive source removing and introducing tooling includes a first support frame, a shield door disposed on the first support frame, a shield cover located on the shield door, and a first pull rod device. The shield door includes a movable first shield block. The shield cover is able to be separated from the shield door, and the shield cover includes one opening and one accommodation space. The first pull rod device includes a pull rod and a first connection portion disposed on the pull rod, and the pull rod is able to extend into the shield cover and drive the first connection portion to move inside the accommodation space of the shield cover.
A system and method for facilitating remote care management involving a patient having an implantable medical device (IMD). Upon establishing a remote care session between a patient controller device and a clinician programmer, wherein the clinician and the patient are remotely located with respect to each other, input from the patient or the clinician may be received via a user interface control associated with a particular functionality or aspect of the remote care session, including audiovisual (AV) communications, remote therapy programming, and related context. Responsive to the user input, a dialog interface is effectuated at one of the patient controller device and/or the clinician programmer. A user characterization label is received via the dialog interface from the user, wherein the user characterization label is indicative of a subjective assessment of the particular functionality of the remote care session, which may be used in generating user-labeled data pertaining thereto.
The exemplified methods and systems provide a phase space volumetric object in which the dynamics of a complex, quasi-periodic system, such as the electrical conduction patterns of the heart, or other biophysical-acquired signals of other organs, are represented as an image of a three dimensional volume having both a volumetric structure (e.g., a three dimensional structure) and a color map to which features can be extracted that are indicative the presence and/or absence of pathologies, e.g., ischemia relating to significant coronary arterial disease (CAD). In some embodiments, the phase space volumetric object can be assessed to extract topographic and geometric parameters that are used in models that determine indications of presence or non-presence of significant coronary artery disease.
Medical patient monitoring devices that have the capability of detecting the physical proximity of a clinician are disclosed. The medical patient monitoring devices may be configured to perform a first selected action when the presence of a clinician is detected in a first detection area, and to perform a second selected action when the presence of the clinician is detected in a second detection area. The medical patient monitoring devices may be configured to determine whether a clinician is present in a detection area based on the strength of a signal from a clinician token, and based on a signal strength adjustment value associated with the clinician token. When the presence of a clinician is detected in a detection area, the medical patient monitoring devices may be configured to perform a predetermined action that is determined from a remote database communicatively coupled thereto.
Methods and systems are provided for reconstructing images from measurement data using one or more deep neural networks according to a decimation strategy. In one embodiment, a method for reconstructing an image using measurement data comprises, receiving measurement data acquired by an imaging device, selecting a decimation strategy, producing a reconstructed image from the measurement data using the decimation strategy and one or more deep neural networks, and displaying the reconstructed image via a display device. By decimating measurement data to form one or more decimated measurement data arrays, a computational complexity of mapping the measurement data to image data may be reduced from O(N4), where N is the size of the measurement data, to O(M4), where M is the size of an individual decimated measurement data array, wherein M
Systems and methods are disclosed for visualizing medical data. In one implementation, the systems each comprise a database, a memory that stores a set of instructions and at least one processor in communication with the memory configured to execute the set of instructions so the system may receive the medical data in one or more formats from a plurality of sources, the medical data comprising a plurality of events associated with one or more patients, convert the medical data from the one or more formats to a standardized data format, store the standardized data in the database, receive a query comprising at least one patient characteristic, query the database to identify a patient associated with the at least one patient characteristic, generate a graphical user interface to include the standardized data represented as a timeline of events associated with the identified patient and display the generated graphical user interface.
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for creating source-specific, persistent patient identifiers for healthcare service providers. One method includes accessing a record of healthcare data, wherein the record includes patient identifying information (PII) associated with one or more persons to whom the healthcare data pertains. The portions of PII included in the accessed record of healthcare data are extracted from the accessed record and encrypted. Based on one or more business rules, one or more hashed tokens are created by applying one or more hashing functions to the extracted portions of PII. A source-specific identifier is received, the source-specific identifier having been encoded in a manner specific to an organization associated with the computer system and having been encoded with reference to the one or more hashed tokens. An association is stored between the source-specific identifier and the accessed record of healthcare data.
A method, computer program product, and computing system for processing content concerning a plurality of patients using a CAC system to define one or more billing codes concerning a social habit status of one or more patients of the plurality of patients. The one or more billing codes concerning the social habit status of the one or more patients are provided to a user for review. Feedback is received from the user concerning the accuracy of the one or more billing codes. The feedback concerning the one or more billing codes is automatically processed to define one or more confidence scores. The CAC system is trained based, at least in part, upon the one or more confidence scores.
The present technology includes a memory device and a method of operating the same. The memory device in which an interface circuit and a semiconductor memory are packaged together includes a centrally located region in a ball mapping region of a memory device in which data input/output pins for an operation of the interface circuit and the semiconductor memory are disposed, and a test pin region in which test pins for a test operation of the interface circuit are disposed.
A shift register unit includes an input module, a first output module, a first pull-down module, a reset module, and a leakage-proof module. The input module is coupled to a pull-up node, a control signal terminal, and an input signal terminal. The first output module is coupled to the pull-up node, a first output terminal, and a second clock signal terminal. The first pull-down module is coupled to the first output terminal, a first signal terminal, and a first clock signal terminal. The reset module is coupled to a reset signal terminal, the pull-up node, and the first output terminal. The leakage-proof module is coupled to a second signal terminal, the first node, and the pull-up node.
Apparatus and methods are disclosed including a memory device or a memory controller configured to receive, from a host device over a host interface, a request for a device descriptor of a memory device, and to send to the host, over the host interface, the device descriptor, the device descriptor including voltage supply capability fields that are set to indicate supported voltages of the memory device, the supported voltages selected from a plurality of discrete voltages. The host device can utilize the supported voltages to supply an appropriate voltage to the memory device. Methods of operation are disclosed, as well as machine-readable medium, a host computing device, and other embodiments.
Provided herein may be a memory device and a memory system including the same. The memory device may include a logic group configured to generate and output driver control signals based on data received from an external device; and an internal power supply circuit configured to control current corresponding to an internal power supply voltage in response to the driver control signals, wherein the internal power supply circuit increases the current corresponding to the internal power supply voltage as the number of first data in the received data increases.
A nonvolatile memory device includes a nonvolatile memory cell including a first cell transistor and a second cell transistor electrically coupled to a bit line in parallel and configured to respectively have a first physical size and a second physical size, a cell transistor selector coupled between the nonvolatile memory cell and a ground voltage terminal to control electrical connections between the first cell transistor and the ground voltage terminal, and between the second cell transistor and the ground voltage terminal, and a read voltage selection circuit suitable for selectively supplying one of a first read voltage and a second read voltage to the bit line.
A memory controller controlling a memory device including a plurality of memory cells includes a read operation controller performing a soft read operation on the plurality of memory cells by using a plurality of soft read voltages determined based on a default read voltage when a read operation for reading the plurality of memory cells by the default read voltage fails, and reading the plurality of memory cells by using an optimal read voltage determined according to a result of performing the soft read operation, and a read voltage setting circuit determining the optimal read voltage using voltage candidates being soft read voltages corresponding to at least two voltage intervals, among a plurality of voltage intervals determined according to the plurality of soft read voltages, the voltage candidates selected in ascending order of a number of memory cells having threshold voltages belonging to each of the plurality of voltage intervals.
A memory system includes: a memory device including a memory cell array and a page buffer circuit, the memory device performing a data program operation or a data erase operation, suspending the data program operation or the data erase operation in response to a suspend command, performing a data read operation of storing read data from the memory cell array in the page buffer circuit in response to a read command, and performing a data output operation of outputting the read data stored in the page buffer circuit; and a memory controller outputting a pre-resume command to the memory device between a first time at which the data read operation is complete and a second time at which the data output operation starts.
A sense amplifier and a method for accessing a memory device are disclosed. In an embodiment a sense amplifier for a memory device includes a first input node selectively coupled to a first memory cell through a first local bitline and a first main bitline, a second input node selectively coupled through a second local bitline and a second main bitline to a second memory cell or to a reference generator configured to generate a reference current, a first current generator controllable so as to inject a first variable current into the first input node, a second current generator controllable so as to inject a second variable current into the second input node, a first branch coupled to the first input node and comprising a first switch circuit, a first sense transistor and a first forcing transistor and a second branch coupled to the second input node and including a second switch circuit, a second sense transistor and a second forcing transistor.
Exemplary methods and apparatus are provided for implementing a deep learning accelerator (DLA) or other neural network components within the die of a non-volatile memory (NVM) apparatus using, for example, under-the-array circuit components within the die. Some aspects disclosed herein relate to configuring the under-the-array components to implement feedforward DLA operations. Other aspects relate to backpropagation operations. Still other aspects relate to using an NAND-based on-chip copy with update function to facilitate updating synaptic weights of a neural network stored on a die. Other aspects disclosed herein relate to configuring a solid state device (SSD) controller for use with the NVM. In some aspects, the SSD controller includes flash translation layer (FTL) tables configured specifically for use with neural network data stored in the NVM.
A multiterminal non-volatile memory cross-bar array system includes a set of conductive row rails, a set of conductive column rails configured to form a plurality of crosspoints at intersections between the conductive rails and the conductive column rails and a resistive processing unit at each of the crosspoints each representing a neuron in a neural network. At least one given conductive row rail includes first and second row lines is in contact with a given resistive processing unit. At least one given conductive column rail including first and second column lines is in contact with the given resistive processing unit.
An integrated circuit structure includes an SRAM array including a first sub-array having a first plurality of rows and a plurality of columns of SRAM cells, and a second sub-array having a second plurality of rows and the plurality of columns of SRAM cells. A first bit-line and a first complementary bit-line are connected to the first and the second pass-gate MOS devices of SRAM cells in a column in the first sub-array. A second bit-line and a second complementary bit-line are connected to the first and the second pass-gate MOS devices of SRAM cells in the column in the second sub-array. The first bit-line and the first complementary bit-line are disconnected from the second bit-line and the second complementary bit-line. A sense amplifier circuit is electrically coupled to, and configured to sense, the first bit-line, the first complementary bit-line, the second bit-line, and the second complementary bit-line.
An electronic device may include: a column control circuit configured to generate a column control pulse and a mode register enable signal, each with a pulse that is generated based on logic levels of a chip selection signal and a command address; and a control circuit configured to generate a read control signal to perform a read operation and a mode register read operation by delaying the column control pulse based on a logic level of the mode register enable signal and configured to generate a mode register control signal to perform the mode register read operation by delaying the column control pulse based on a logic level of the mode register enable signal.
Techniques, apparatus, and devices for managing power in a memory die are described. A memory die may include an array of memory cells and one or more voltage sensors. Each voltage sensor may be on the same substrate as the array of memory cells and may sense a voltage at a location associated with the array. The voltage sensors may generate one or more analog voltage signals that may be converted to one or more digital signals on the memory die. In some cases, the analog voltage signals may be converted to digital signals using an oscillator and a counter on the memory die. The digital signal may be provided to a power management integrated circuit (PMIC), which may adjust a voltage supplied to the array based on the digital signal.
Methods, systems, and devices for feedback for power management of a memory die using shorting are described. A memory device may short a first rail with a voltage source for communicating feedback regarding a supply voltage to a power management component, such as a power management integrated circuit of a memory system. The memory device may detect a condition of one or more voltage rails for delivering power coupled with the array of memory cells. The memory device may short a first rail of the network of components for delivering power with a voltage source based on detecting the condition. In some cases, the memory device may generate a feedback signal across the first rail of the network of components for delivering power based on shorting the first rail.
A power switch control circuit includes a supply rail configured to supply power to a memory array. A first header switch couples the supply rail to a first power supply that corresponds to a first power domain. A second header switch couples the supply rail to a second power supply that corresponds to a second power domain. A control circuit is configured to receive a select signal and a shutdown signal, and to output control signals to the first and second header switches to selectively couple the first and second header switches to the first and second power supplies, respectively, in response to the select signal and the shutdown signal. The control circuit is configured to output the control signals to the first and second header switches to disconnect both the first and second header switches from the first and second power supplies in response to the shutdown signal and irrespective of the select signal.
A system and method for associating audio feeds to corresponding video feeds, including determining a subject of interest within a video feed based on the video feed and metadata associated with the video feed; analyzing the metadata to determine an optimal audio source for the subject of interest; configuring the optimal audio source to capture an audio feed; and associating the captured audio feed with the video feed.
A playback device reads out and plays contents from a recording medium. The playback device includes a first decoder that decodes a base video stream and an enhanced video stream, a second decoder that decodes encoded graphics data, and a first superimposer that superimposes the enhanced video information and stores enhanced high-luminance video information in a first video plain. The playback device also includes a first processor that converts color of a number of levels into a converted number of levels, a second superimposer that superimposes the decoded graphic data on the enhanced high-luminance video information, a second video plain storing the video information, and a second processor that converts color of a number of levels into a converted number of levels. The playback device further includes a third superimposer that superimposes the decoded graphic data on the high-luminance video information, and an outputter that outputs the superimposed result.
A natural language processing system for analyzing speech includes a computer processing device configured to receive recorded speech of a person. The computer processing device constructs a baseline speech model of the person, the baseline speech model of the person including a property of speech based on a personal attribute of the person, compares current recorded speech of the person to the baseline speech model of the person to determine a deviation of the property of speech therebetween, and determines if the deviation of the property of speech meets a threshold of the property of speech that is defined for a disorder.
A method for speech emotion recognition for enriching speech to text communications between users in speech chat sessions including: implementing a speech emotion recognition model to enable converting observed emotions in speech samples to enrich text with visual emotion content by: generating a data set of speech samples with labels of a plurality of emotion classes; extracting a set of acoustic features from each of the emotion classes; generating a machine learning (ML) model based on the acoustic features and data set; training the ML model from acoustic features from speech samples during speech chat sessions; predicting emotion content based on a trained ML model in the observed speech; generating enriched text based on predicted emotion content of the trained ML model; and presenting the enriched text in speech to text communications between users in the chat session for visual notice of an observed emotion in the speech sample.
This disclosure sets forth a system for detecting and determining the onset times of one or more impulsive acoustic events across multiple channels of audio. Audio is segmented into chunks of predefined length and then processed for detecting acoustic onsets, including cross-validating and refining the estimated acoustic onsets to the level of an audio sample. The output of the system is a list of channel-specific timestamped indices corresponding to the audio samples of the onsets of each impulsive acoustic event in the current segment of audio.
A device or system is provided which is configured to detect one or more sound events and/or scenes associated with a predetermined context, and to provide an assistive output on fulfilment of that context.
Methods and systems encoding a stereo audio signal having a left channel and a right channel are disclosed. The system includes a downmixer for generating a downmix signal and a residual signal from the stereo audio signal in selected frequency bands representing only part of a used audio frequency range of the stereo audio signal, and a decision module for selecting, in a time variant manner, either left/right perceptual encoding or mid/side perceptual encoding. The system also includes a parameter estimator for estimating stereo parameters for reconstructing a stereo image of a portion of the stereo audio signal, and a perceptual encoder for performing either left/right perceptual encoding or mid/side perceptual encoding based on the selecting to generate an encoded output signal. Finally, the system includes a bitstream generator for creating a bitstream signal comprising the encoded output signal.
An attribute identification technology that can reject an attribute identification result if the reliability thereof is low is provided. An attribute identification device includes: a posteriori probability calculation unit 110 that calculates, from input speech, a posteriori probability sequence {q(c, i)} which is a sequence of the posteriori probabilities q(c, i) that a frame i of the input speech is a class c; a reliability calculation unit 120 that calculates, from the posteriori probability sequence {q(c, i)}, reliability r(c) indicating the extent to which the class c is a correct attribute identification result; and an attribute identification result generating unit 130 that generates an attribute identification result L of the input speech from the posteriori probability sequence {q(c, i)} and the reliability r(c). The attribute identification result generating unit 130 obtains a most probable estimated class c{circumflex over ( )}, which is a class that is estimated to be the most probable attribute, from the posteriori probability sequence {q(c, i)} and sets ϕ indicating rejection as the attribute identification result L if the reliability r(c{circumflex over ( )}) of the most probable estimated class c{circumflex over ( )} falls within a predetermined range indicating that the reliability r(c{circumflex over ( )}) is low and sets the most probable estimated class c{circumflex over ( )} as the attribute identification result L otherwise.
Systems and methods are described herein for disambiguating a voice search query that contains a command keyword by determining whether the user spoke a quotation from a content item and whether the user mimicked or approximated the way the quotation is spoken in the content item. The voice search query is transcribed into a string, and an audio signature of the voice search query is identified. Metadata of a quotation matching the string is retrieved from a database that includes audio signature information for the string as spoken within the content item. The audio signature of the voice search query is compared with the audio signature information in the metadata to determine whether the audio signature matches the audio signature information in the quotation metadata. If a match is detected, then a search result comprising an identifier of the content item from which the quotation comes is generated.
Transferring (e.g., automatically) an automated assistant routine between client devices during execution of the automated assistant routine. The automated assistant routine can correspond to a set of actions to be performed by one or more agents and/or one or more devices. While content, corresponding to an action of the routine, is being rendered at a particular device, the user may walk away from the particular device and toward a separate device. The automated assistant routine can be automatically transferred in response, and the separate device can continue to rendering the content for the user.
Embodiments of the present disclosure relate to a method and apparatus for outputting information. The method includes: outputting a to-be-read audio in response to receiving a reading instruction from a user; acquiring an actually read audio obtained by reading the to-be-read audio by the user; performing speech recognition on the actually read audio to obtain a recognition result; calculating a similarity between the actually read audio and the to-be-read audio based on a character string corresponding to the recognition result and a character string corresponding to the to-be-read audio; determining, from a predetermined set of similarity intervals, a similarity interval to which the calculated similarity belongs; and outputting a reading evaluation corresponding to the determined similarity interval. The embodiment may help a reader to improve the learning efficiency and learning interest, thereby improving the rate of a user using a device.
Various embodiments of the invention provide methods, systems, and computer-program products for analyzing an audio to capture semantic and non-semantic characteristics of the audio and corresponding relationships between the semantic and non-semantic characteristics. In particular embodiments, the audio is segmented into a set of utterance segments containing a party speaking on the audio and a set of noise segments containing the party not speaking on the audio. The semantic and non-semantic characteristics are then captured for each of the utterance segments. Specifically, speech analytics is performed on each segment to identify the words spoken by the party in the segment as semantic characteristics. Further, laughter, emotion, and sentence boundary detection is performed on each segment to identify occurrences of such in the segment as non-semantic characteristics. Once identified for each segment, various embodiments of the invention involve constructing a transcript based on the identified semantic and non-semantic characteristics.
Generally discussed herein are devices, systems, and methods for on-device detection of a wake word. A device can include a memory including model parameters that define a custom wake word detection model, the wake word detection model including a recurrent neural network transducer (RNNT) and a lookup table (LUT), the LUT indicating a hidden vector to be provided in response to a phoneme of a user-specified wake word, a microphone to capture audio, and processing circuitry to receive the audio from the microphone, determine, using the wake word detection model, whether the audio includes an utterance of the user-specified wake word, and wake up a personal assistant after determining the audio includes the utterance of the user-specified wake word.
A panel assembly is formed by a plurality of bonds between two sheet materials in a face to face relationship to form a preform. The plurality of bonds define a closed perimeter region between the two sheet materials and an open perimeter region between the two sheet materials. The preform may be formed into a predefined shape. Pressurized fluid is applied through an inlet into the open perimeter region to expand the preform. The pressurized fluid expands the open perimeter region such that the two sheet materials expand in an opposing direction, thereby defining an expanded open perimeter region. The closed perimeter region between the two sheet materials remains vacant of the pressurized fluid such that the closed perimeter region is not expanded. The expanded open perimeter region is filled with a filler material for improving a performance characteristic of the panel assembly, e.g., strength, sound absorption, or stiffness.
An eyewear device includes an image display and an image display driver coupled to the image display to control a presented image and adjust a brightness level setting of the presented image. The eyewear device includes a user input device including an input surface on a frame, a temple, a lateral side, or a combination thereof to receive from the wearer a user input selection. Eyewear device includes a proximity sensor to track a finger distance of a finger of the wearer to the input surface. Eyewear device controls, via the image display driver, the image display to present the image to the wearer. Eyewear device tracks, via the proximity sensor, the finger distance of the finger of the wearer to the input surface. Eyewear device adjusts, via the image display driver, the brightness level setting of the presented image on the image display based on the tracked finger distance.
A voltage supply circuit that supplies a voltage to a liquid-crystal panel (10) including a common electrode (30) common to a plurality of pixels is provided with a common voltage generation circuit (310) that generates a common voltage (VCOM) to be supplied to the common electrode 30, an output terminal (320) from which the common voltage (VCOM) is output to the liquid-crystal panel (10), an input terminal (360) to which a voltage of the common electrode (30) detected in the liquid-crystal panel (10) is input as a detection voltage (VCOM_IN), and a first determination circuit (353) that determines whether or not the detection voltage (VCOM_IN) input to the input terminal (360) is normal.
An electronic device is disclosed. The electronic device comprises an input unit, and a processor for acquiring a current duty of each first dimming block for driving a backlight unit, on the basis of pixel information of an image input through the input unit, identifying at least one second dimming block including at least one first dimming block in the input image on the basis of the pixel information of the input image, acquiring a current value of the second dimming value on the basis of a current duty of the first dimming block included in the identified second dimming block, and acquiring a driving signal for driving the backlight unit, on the basis of the current duty of each first dimming block and the current value of the second dimming block.
A method of stress compensation in a display device includes retrieving, by a decoder, compressed stress data that is quantized by a quantization value, decoding, by the decoder, the compressed stress data to generate decoded data, generating a dither value based on the quantization value, and adding the dither value to the decoded data to compensate for quantization of the compressed stress data.
A display system includes a number (M) of scan line units, a number (N) of channel line units, a number (R) of light emitting arrays connected to the scan line units and the channel line units, and a number (L) of shared driving circuits, where M≥1, N≥1, R≥1, and L is equal to a maximum of M and N when M≠N, and is equal to M otherwise. Each shared driving circuit is operable to generate or not to generate a scan driving output, and is operable to generate or not to generate a channel driving output. Each of a number (M) of the shared driving circuits is for providing the scan driving output to a respective scan line unit. Each of a number (N) of the shared driving circuits is for providing the scan driving output to a respective scan line unit.
The present disclosure relates to a pixel circuit including a light emitting unit, a processing circuit and a driving circuit. The processing circuit is configured to receive a frame display signal, and is configured to calculate the frame display signal to generate a driving duty cycle corresponding to a driving period according to a driving current value. The driving circuit is electrically connected to the processing circuit and the light emitting unit, and is configured to drive the light emitting unit during the driving period according to the driving duty cycle, the driving current value and a driving frequency.
A horizontal line driver providing a scan signal to scan lines, and including: first scan signal output blocks providing the scan signal to scan lines in a first side display area, wherein each of the first scan signal output blocks include a first output buffer; second scan signal output blocks providing the scan signal to scan lines in a first front display area including curved edges, wherein each of the second scan signal output blocks include a second output buffer; and third scan signal output blocks providing the scan signal to scan lines in a second front display area. Each of the third scan signal output blocks include a third output buffer. The width of the first front display area is larger than a width of the first side display area but is smaller than a width of the second front display area, and the width gradually increases.