A motor includes a rotor, a stator, a circuit board attached to the stator, a heat dissipation member disposed on a side of the circuit board opposite to the stator, and a resin portion covering the stator, the circuit board, and at least a part of the heat dissipation member.
The present invention relates to a layout and a drive method of an in-wheel motor used for driving a vehicle. In a vehicle using a direct drive in-wheel motor, there is a problem that mechanical loss is caused by a load on an axle due to a weight of a vehicle body, a direction change during traveling, and the like. A stator of the direct drive in-wheel motor is eccentrically disposed in a half peripheral part on the front side of the vehicle body. A terminal of a stator that generates a rotational torque reaction conflicting with a load applied to an axle during traveling is preferentially activated. A mechanical loss of a direct drive in-wheel motor due to a load on an axle during traveling of a vehicle is reduced.
In order to provide a transport device having a planar motor, which gives greater flexibility in the movement of the transport units, at least one multiple-action transport unit is provided on the transport device. On the multiple-action transport unit, at least first drive magnets for electromagnetic interaction with the drive coils of a first planar motor and at least second drive magnets for electromagnetic interaction with the drive coils of a second planar motor are provided. The multiple-action transport unit can be moved two-dimensionally on the transport plane of one of the planar motors, or can be moved simultaneously, unidimensionally on neighboring transport planes of the first and second planar motor.
A stator and a method for producing a stator are provided. For this purpose, a connection element is used which includes multiple busbars and a star bar. The connection element has multiple contact points for the busbars and multiple contact points of the star bar. The connection element surrounds the winding ends of the winding head. The winding ends are bent relative to the contact points of the connection element and contact the contact points electrically, by a bending ridge which is positioned on the connection element.
Disclosed is a method for monitoring the operation of a drive component. In order to minimize additional hardware complexity, the monitoring method is cared out by a coil that is integrated in a mobile terminal by acquiring an electromagnetic variable of the drive component outside a housing of the drive component by the integrated coil, determining at least one first frequency based on the acquired electromagnetic variable, and determining a first status variable of the drive component from the at least one first frequency.
A rotary electric machine according to the present disclosure provides a rotary electric machine including: a rotor; and a concentrated winding stator arranged coaxially to the rotor, in which the number of teeth of the concentrated winding stator is set to be a value where an integer which is multiple of 3 between adjacent prime numbers in a prime number sequence is multiplied by 2 and the number of poles of the rotor is set to be a value where any prime number between the adjacent prime numbers is multiplied by 2.
A rotating electric machine includes a field system and an armature. The field system includes a magnet section having a plurality of magnetic poles whose polarities alternate in a circumferential direction. The armature includes a multi-phase armature coil. Either of the field system and the armature is configured as a rotor. The magnet section is configured to have an easy axis of magnetization oriented such that the closer the position to a d-axis in the circumferential direction, the more the direction of the easy axis of magnetization becomes parallel to the d-axis.
An electric motor includes: a permanent magnet; a rotor including a first rotor core having a first electrical steel sheet and a second rotor core having a second electrical steel sheet; and a stator including a stator core. The first electrical steel sheet is located outside the stator core. A relationship among a minimum width BL1 of a first left bridge, a thickness tL1 of the first left bridge, a minimum width BR1 of a first right bridge, a thickness tR1 of the first right bridge, a minimum width BL2 of a second left bridge, a thickness tL2 of the second left bridge, a minimum width BR2 of a second right bridge, and a thickness tR2 of the second right bridge satisfies (BL1×tL1+BR1×tR1)>(BL2×tL2+BR2×tR2).
A rotor includes a rotor core, a first permanent magnet that is W1 mm long in a longitudinal direction, and a second permanent magnet that is W1 mm long in a longitudinal direction. The rotor core includes a first magnet insertion hole, a second magnet insertion hole, and a center lib. The first magnet insertion hole includes a first outside opening part having a radius of curvature of R1 mm, and a first inside opening part having a radius of curvature of R2 mm. The second magnet insertion hole includes a second outside opening part having a radius of curvature of R1 mm, and a second inside opening part having a radius of curvature of R2 mm. The rotor satisfies R1>R2 and 0<(R1+R2)/W1<0.082.
A rotary electric machine arranged as a brushless electric ring motor is described and includes a rotor that is disposed within a stator and arranged to rotate on a guide element. The rotor has a plurality of ferritic elements arranged on an outer surface, and the stator is an annular device having a plurality of electro-magnetic elements arranged on an inner portion between first and second flanges. The first and second flanges both include an annular ring that is fabricated from a non-magnetic material and has a plurality of ferromagnetic elements. The ferromagnetic elements are magnetically coupled to corresponding ones of the electro-magnetic elements to exert magnetic force on the ferritic elements of the rotor when the electro-magnetic elements are activated. The rotary electric machine may operate as a first thrust generating system that is upstream of a second thrust generating system for a turbojet engine.
An inverter and power transmission coils are connected such that currents flow in opposite directions to each other when selection switches of respective power transmission coils adjacent to each other, out of a plurality of power transmission coils disposed in the movement direction of a mobile body, are caused to be conductive. The difference in currents flowing in the opposite directions is measured, and compared with a threshold, whereby whether or not a power reception coil mounted to the mobile body is present above the power transmission coil can be determined.
An accessory device is disclosed. The accessory device may include multiple pockets, or sleeves, designed to carry items, such as an electronic device and a user's personal items (e.g., credits cards, cash, etc.). The accessory device also includes a magnet embedded in a back section, with the magnet designed to align an inductive charging mechanism that can charge the electronic device's battery when the electronic device is positioned within the accessory device. To improve charging efficiency, the back section also includes a structural layer designed to keep the back section flat when the electronic device is positioned within the accessory device. The structural layer can hide/obscure the magnet and other structures. Also, the accessory device includes a wireless communication circuit that can communicate with a corresponding wireless communication circuit in the electronic device, and provide information (e.g., openings and dimensional information of the accessory device) to the electronic device.
A generator control system capable of realizing series-parallel connection comprises a first generator, a second generator, a first inverter and a second inverter, wherein a power output terminal of the first generator is connected to a power input terminal of the first inverter, and a power output terminal of the second generator is connected to a power input terminal of the second inverter. The generator control system further comprises a series-parallel connection box, and the first inverter and the second inverter are connected to the series-parallel connection box. Various voltages and power can be provided through the change-over switch.
A system for controlling power supply to a load from a power supply line including a first circuit, at least a second circuit, a control module, and a monitoring module. The first circuit includes a first path for supplying power to the load, and a first switching mechanism for controlling the supply of power through the first path. The second circuit includes a second path for supplying power to the load and a second switching mechanism for controlling the supply of power through the second path. The control module is configured to output control signals to control operations of the circuits to independently switch on or off each of the respective paths. The monitoring module is configured to monitor physical quantity parameters of the paths, to detect deviations of the physical quantity parameter values from respective reference values to check the consistency between the first and second path.
A method for protecting a power system having inverter-interfaced renewable energy sources is provided. The power system includes an inverter and a control system. The control system includes a current controller including a saturation limiter and a proportional and integral (PI) controller, a phase-locked system, and a low-voltage ride-through (LVRT)control unit. The method includes: by using a Park transformation matrix, determining an output voltage of the inverter; determining a modulated voltage of the output voltage; upon detecting a grid fault, obtaining current references by the LVRT control unit; determining a fault current in a first stage of a transient phase of the grid fault; determining a fault current in a second stage of the transient phase; determining a fault current in a third stage of the transient phase; and switching the control system to a fault control mode by tracking the fault currents in the first, second and third stages, to the current references.
Systems and methods for configuring, with an external device, a power distribution box having priority disconnects. The power distribution box includes a housing portion and a base portion elevating the housing portion. The power distribution box receives power from an external power source and distributes the power to a plurality of alternating current (AC) output receptacles. The power distribution box further includes an antenna and a power disconnect controller coupled to the antenna to communicate with and be configured by an external device, such as a smart phone, tablet, or laptop computer. Using the external device, a user can configure the priority level and mode of the AC output receptacles. In the case of high current, the power distribution box will disconnect receptacles in accordance with the priority level and mode configuration provided by the external device.
The present disclosure includes: a power generator; and a power line through which power generated by the power generator is transmitted to a load. The power line between the power generator and the load is provided with: a current limitation device configured to, when detecting occurrence of a fault current, limit the fault current; and a current interruption device configured to interrupt current heading for the load, in conjunction with the limitation of the fault current performed by the current limitation device.
An electrical junction box mount apparatus including a base for mounting to a mounting surface and a lid sized to seal against the base. The base includes a mounting portion having a penetration area. A periphery of the penetration area is circumscribed via a groove formed into a bottom surface of the base such that upon placing the base on a mounting surface, the groove encloses empty space within the groove against the mounting surface.
A multifunctional single-interface electronic expansion device, comprising an external electronic expansion device and a power transmitting cable. The external electronic expansion device comprises a device body, an electrical connecting module, a data signal processing module, a power transmitting module, and a first assembling member. The device body comprises a first wall surface and a second wall surface. The electrical connecting module is disposed at the device body and is exposed from the first wall surface to be electrically connected with or detached from an interface of a first electronic device. The data signal processing module is electrically connected with the electrical connecting module. The power transmitting module is electrically connected with the electrical connecting module. The power transmitting module comprises a power transmitting interface exposed from the second wall surface. The first assembling member which may be formed as an annular magnetic attracting body is disposed at the power transmitting interface.
A connector assembly of a cartridge of an electronic vaping device may be formed by metal in-molding. The connector assembly may include a connector body that is integrally formed. The connector body may include a base portion that is generally cylindrical, a nose portion extending from a first end of the base portion, and at least two slots extending longitudinally through the base portion and on opposing sides of the nose portion. An electrical lead extends through each of the at least two slots.
An assembly includes a plug at least partially disposed in a cavity of a connector at a front end of the connector. The plug ultrasonically welded to the connector in a configuration. The plug includes an inset portion and a recess formed within the inset portion. The inset portion extends axially into a body of the plug. The recess has a first closed surface forming an outer surface and configured to engage with a tool for aligning the plug with the cavity. The plug encloses the cavity with a second closed surface, such that the cavity is free from receiving a terminal or an electrical wire in the configuration.
A method, apparatus and computer program product are provided to select a plurality of antenna elements of an antenna array, such as to match the angular spread of the antenna array to a deployment scenario, thereby increasing the effective beamforming gain. In the context of a method, a plurality of antenna elements of an active antenna array are selected by separately selecting first, second and third pluralities of antenna elements and obtaining measures of first, second and third signals based upon transmission or reception of signals by the first, second and third pluralities of antenna elements, respectively The method additionally includes processing the measures of the first, second and third signals and determining a sub-army of antenna elements of the active antenna array to be utilized based on the processing of the measures of the first, second and third signals.
An electronic device is provided. The electronic device includes a housing, a first antenna and a second antenna which are disposed near at least one edge of the housing inside the housing and a first distance away from each other, wherein the first antenna and second antenna are positioned different distances away from an edge vertical to the one edge, a communication circuit operatively connected to the first antenna and second antenna, at least one sensor, a processor, and a memory. The memory can store instructions which, when executed, enable the processor to identify the posture of the electronic device by means of at least one sensor, if the identified posture of the electronic device is a landscape state, determine the position of at least one external electronic device on the basis of at least one signal received from the at least one external electronic device, and, if the identified posture of the electronic device is a portrait state, determine the position of an external electronic device on the basis of a signal received from the external electronic device positioned in a direction which is determined on the basis of the placements of the first antenna and second antenna among the at least one external electronic device.
This document describes a single-layer air waveguide antenna integrated on a circuit board. The waveguide guides electromagnetic energy through channels filled with air. It is formed from a single layer of material, such as a sheet of metal, metal-coated plastic, or other material with conductive surfaces that is attached to a circuit board. A portion of a surface of the circuit board is configured as a floor of the channels filled with air. This floor is an electrical interface between the circuit board and the channels filled with air. The single layer of material is positioned atop this electrical interface to define walls and a ceiling of the channels filled with air. The single layer of material can be secured to the circuit board in various ways. The cost of integrating an air waveguide antenna on to a circuit board this way may be less expensive than other waveguide-manufacturing techniques.
A flexible antenna is provided. The flexible antenna includes a cable comprising at least one conductor, and an antenna body comprising a protective layer and a flexible circuit layer. The flexible circuit layer including a non-conductive sheet, at least one conductive feed pad and at least one antenna element. The at least one antenna element is formed of a conductive particle based material comprising conductive particles dispersed in a binder so that at least a majority of the conductive particles are adjacent to, but do not touch, one another. The at least one antenna element is disposed between the protective layer and the flexible circuit layer. The at least one conductor of the cable is electrically connected to the at least one feed pad.
A radome and a method for manufacturing same. A radome apparatus has a radome body having an aperture, a film covering the aperture, and a support installed into the aperture. The film and the support have a low loss at a desired operating frequency. The support provides backing, support, and rigidity for the film so that distortion of the film by weather conditions, such as wind, is reduced. Thus, the integrity of the RF transmission characteristics of the radome are preserved. The aperture, film, and support are in the boresight of an antenna and are large enough to accommodate a desired beam steering range. The radome body may be manufactured with the aperture and the film included therein by using an in-mold labeling process. The support may be installed in the aperture by a subsequent molding process.
The disclosed mobile electronic device may include a display, an enclosure supporting the display and comprising a conductive portion including at least one inward protrusion, and a ground plane positioned within the enclosure and comprising at least one channel, wherein the at least one inward protrusion extends within the at least one channel of the ground plane and a gap defined between the conductive portion of the enclosure and the ground plane forms a slot antenna that is configured to radiate electromagnetic signals through a portion of the display. Various other related methods and systems are also disclosed.
An antenna structure is arranged at an edge region of a shell of a mobile terminal. The antenna structure includes at least one segment of antenna body and includes a first surface and a second surface opposite to each other, in which a first surface of the antenna body includes an attachment region attached to the edge region in a conformal manner. The antenna structure further includes a connecting portion connected to the antenna body, at least one of a first surface of the connecting portion and a second surface of the connecting portion being used for electrical connection with a feed unit of the mobile terminal or grounding.
An electronic device is provided. The electronic device includes a first housing structure, a second housing structure, and a foldable housing structure for connecting the first housing structure and the second housing structure. The first housing structure and the second housing structure may include a front plate for interconnecting front surfaces with a flexible display, a rear plate which is an opposite surface to the front plate, a side member which surrounds a space between the front plate and the rear plate, and includes at least in part a conductive portion and an insulating portion, a communication circuit and at least one switch electrically connected to the communication circuit.
An electronic device comprises: a front housing including a display on a front surface; a rear housing located on a rear surface of the front housing; an antenna clip coupled to the rear housing, wherein the antenna clip may comprise: a coupling body coupled to one end of the rear housing; a first contact portion extending from the coupling body and electrically connected to an external radiator, and a second contact portion electrically connected to a circuit board between the front housing and the rear housing. Other various embodiments may be possible.
A terminal device includes a metal frame. At least two slots are provided on one side of the metal frame; at least two antenna feed points are provided on an inner side wall of the metal frame, and different antenna feed points in the at least two antenna feed points are located on sides of different slots. The terminal device is further provided therein with a signal reflecting wall, and there is a gap between the signal reflecting wall and the at least two slots. The signal reflecting wall is formed by a metal wall of a battery compartment of the terminal device, and the signal reflecting wall is a reflective curved surface that is convex. The metal frame and the signal reflecting wall are electrically connected with a ground plate in the terminal device.
An RFID tag includes an IC chip on which identification information is recorded, a loop-like conductor that is connected to the IC chip, and an antenna unit that includes two lattice-shaped antenna patterns connected to the loop-like conductor and extending away from each other from the loop-like conductor.
An antenna structure with multiple frequency capabilities applied to an electronic device includes frame body, first feed point, a first switch point, and second switch point. The frame body has at least one portion made of metal material and defines two gaps. The frame body between gaps form a first radiation portion. The first feed point from a source feeds current and signal to the first radiation portion. The first switch point and the second switch point are located at two ends of the frame body adjacent to the first gap. The first switch point and the second switch point are grounded through a switch circuit.
Method of operating a power combiner network (1), the power combiner network (1) comprising a power combiner device (10) having N secondary ports (11(1, 2, N)) combining into one primary port (12), wherein respective N secondary port (11(1, 2, . . . , N)) is provided with a phase shifter arrangement (13) and a load control arrangement (14). Respective phase shifter arrangement (13) is configured to set a phase of a signal fed through respective N secondary port (11(1, 2, . . . , N)). Respective load control arrangement (14) is configured to set the N secondary ports (11(1, 2, . . . , N)) in an active or in an inactive operation mode. For I inactive secondary ports (11(1)) the load control arrangement (14) is further configured to set a phase of the signal reflected from the I inactive secondary ports (11(1)). The method comprises the method steps of; step A (100), selecting which of the N secondary ports (11(1, 2, . . . , N)) that should be set in an inactive operation mode and which of the N secondary ports (11(1, 2, . . . , N)) that should be set in an active operation mode, step B (110), setting selected I inactive secondary ports (11(1)) in an inactive operation mode by means of the load control arrangement (14), step C (120), retrieving a phase required for respective I inactive secondary port (11(1)) and retrieving a phase required for respective A active secondary port (11(2)) in order for respective A active secondary port (11(2)) to minimize the reflected signal from the power combiner device (10) and provide desired power to the primary port (12), step D (130), setting respective load control arrangement (14) for respective I inactive secondary port (11(1)) according to respective retrieved phase, and step E (140), setting respective phase shifter arrangement (13) for respective A active secondary port (11(2)) according to respective retrieved phase.
A contactless datalink for transmission of data between a rotatable part and a stationary part, including a dielectric waveguide split into two sections. A first dielectric waveguide section is at the rotatable part and a second dielectric waveguide section is at the stationary part. The first dielectric waveguide section is coupled to a transmitter and the second dielectric waveguide section is coupled to a receiver.
A fuel cell system includes a fuel cell stack and a control device that controls operation of the fuel cell system based on a measured voltage value measured by a voltage sensor. When the fuel cell system is started and a value measured by a temperature sensor is equal to or less than a temperature determined in advance, the control device raises the voltage of the fuel cell stack until a voltage condition determined in advance is met, by supplying a cathode with an oxidant gas before current sweep is started. The control device sets a voltage command value and a current command value such that an operation point of the fuel cell stack is on an equal power line of the fuel cell stack when the operation point is caused to transition in at least a part of a transition period.
A separator including: a porous polymer substrate having a plurality of pores; and a porous coating layer on at least one surface of the porous polymer substrate. The porous coating layer comprises inorganic particles, core-shell type polymer particles having a core portion and a shell portion surrounding the core portion, and a binder polymer positioned on the whole or a part of the surface of the inorganic particles and core-shell type polymer particles to connect and fix the inorganic particles and core-shell type polymer particles with one another. The core portion has a glass transition temperature, Tg, higher than the shell portion in the core-shell type polymer particles. The ratio of the average diameter of the core-shell type polymer particles to the average diameter of the inorganic particles is 80% to 200%.
An electrochemical oxygen reduction catalyst comprising platinum-containing nanoparticles and at least one member selected from the group consisting of a melamine compound, a thiocyanuric acid compound, and a polymer containing the melamine compound or the thiocyanuric acid compound as a monomer is an electrochemical oxygen reduction catalyst having a high oxygen reduction activity (small overvoltage).
A film and a manufacturing process thereof, including a base layer, where each of front and back sides of the base layer is provided with a bonding layer, a functional layer, and a protective layer in sequence; the functional layer is composed of a first composite copper layer and/or a second composite copper layer; the first composite copper layer is formed by repeating copper coating on a surface of the bonding layer 2 to 500 times; and the second composite copper layer is formed by repeating copper coating on a surface of the bonding layer 2 to 500 times. The film has low cost, simple process, and prominent appearance performance, and the present disclosure belongs to the technical field of energy storage unit materials.
An acidified metal oxide (“AMO”) material, preferably in monodisperse nanoparticulate form 20 nm or less in size, having a pH<7 when suspended in a 5 wt % aqueous solution and a Hammett function H0>−12, at least on its surface. The AMO material is useful in applications such as a battery electrode, catalyst, or photovoltaic component.
Provided are: a negative electrode material for nonaqueous secondary batteries, which can yield a high-capacity nonaqueous secondary battery having excellent discharge rate characteristics; and a negative electrode for nonaqueous secondary batteries and a nonaqueous secondary battery. Also provided is a nonaqueous secondary battery having excellent charge-discharge efficiency. The negative electrode material for nonaqueous secondary batteries includes carbonaceous particles (A) and silicon oxide particles (B), and satisfies the followings: a) the average particle size (50% cumulative particle size from the smaller particle side; d50) is 3 μm to 30 μm, and the 10% cumulative particle size from the smaller particle side (d10) is 0.1 μm to 10 μm; b) the ratio (R1=d90/d10) between the 90% cumulative particle size from the smaller particle side (d90) and the d10 is 3 to 20; and c) the ratio (R2=d50/d10) between the d50 and the d10 is 1.7 to 5.
A lithium metal composite oxide powder, which comprises primary particles and secondary particles that are aggregates of the primary particles, and has an α-NaFeO2 type crystal structure, wherein a half width (A) of a diffraction peak in a range of 2θ=18.7±1° in a powder X-ray diffraction measurement for the lithium metal composite oxide powder using CuKα ray is 0.135° or more and 0.165° or less, and a c-axis lattice constant of the α-NaFeO2 type crystal structure is 14.178 Å or more and 14.235 Å or less.
A control method for a fuel cell system, the fuel cell system including a hydrogen storage part and a fuel cell stack that generates electric power using hydrogen supplied from the hydrogen storage part, the fuel cell system being mounted on a towed portion of a moving body that includes the towed portion and a towing portion, the fuel cell system being electrically connected to the towing portion, the towing portion including a battery and a drive device performing driving in response to supply of electric power, the towed portion being towed by the towing portion, the control method includes: acquiring remaining amount information indicating a remaining amount of the battery, and starting supply of electric power to the towing portion when it is determined that the remaining amount of the battery is equal to or less than a threshold based on the remaining amount information.
A semiconductor-based battery system comprising a primary battery that spontaneously provides power that in embodiments trickle-charges a secondary battery. The battery obtains power as heat from the surrounding environment. The primary battery is powered through internal blackbody radiation, which cools a micro-platform and provides thermoelectric power at all temperatures above absolute zero with available power increasing with temperature. Lifetime of the primary battery is not limited by electrochemical degradation over time. In embodiments, the primary battery powers an application device directly without a secondary battery.
Provided are a pouch case and a secondary battery using the same. The pouch case includes a first receiving part and a second receiving part which are concavely formed; a sealing part formed along an outer portion of the pouch case so as to surround the first receiving part and the second receiving part; and a partitioning part formed between the first receiving part and the second receiving part and protruding from a bottom surface of each receiving part to partition the first receiving part and the second receiving part. As one side surface of the secondary battery in which an electrode assembly is received and packaged in the pouch case is formed in a plane form, a flat side surface is in close contact with a cooling plate, thereby maximizing cooling efficiency of the secondary battery.
The present disclosure is generally related to separators for use in lithium metal batteries, and associated systems and products. Certain embodiments are related to separators that form or are repaired when an electrode is held at a voltage. In some embodiments, an electrochemical cell may comprise an electrolyte that comprises a precursor for the separator.
A battery cell capable of self-priming with molten metal produced within the battery cell includes a cathode compartment configured to contain a catholyte that releases metal ions, an anode compartment at least partially containing an anode current collector that receives electrons from an external power supply, an ion-selective membrane positioned between the cathode compartment and the anode compartment and configured to selectively transport the metal ions from the cathode compartment to the anode compartment when self-priming the battery cell, and an electron transport structure extending between the anode current collector and the ion-selective membrane within the anode compartment and configured to transport the electrons from the anode current collector to the ion-selective membrane when self-priming the battery cell. Self-priming includes combining the electrons with the metal ions arriving at an interface between the electron transport structure and the ion-selective membrane to produce the molten metal within the anode compartment.
Provided is a non-aqueous electrolyte, comprising a solvent, a lithium salt, an additive A and an additive B, the additive A is selected from compound represented by structural formula 1, and the additive B is selected from one or more of compounds represented by structural formula 2 and structural formula 3:
R1 is an alkenyl with 2-5 carbon atoms or an alkynyl with 2-5 carbon atoms, R2 is a fluoroalkyl with 1-5 carbon atoms, R3 is an alkyl with 1-4 carbon atoms, an aryl with 6-10 carbon atoms, an alkenyl with 2-5 carbon atoms, an alkynyl with 2-5 carbon atoms or a fluoroalkyl with 1-5 carbon atoms. Meanwhile, the invention also discloses a lithium ion battery comprising the non-aqueous electrolyte. The non-aqueous electrolyte provided by the invention can effectively give consideration to both high and low temperature performances of the battery.
A method of producing a lithium-ion secondary battery includes the following (α) and (β): (α) preparing a lithium-ion secondary battery, the lithium-ion secondary battery including at least a positive electrode, a negative electrode, and an electrolyte solution; and (β) adding a zwitterionic compound to the electrolyte solution. The negative electrode includes at least a negative electrode active material and a film. The film is formed on a surface of the negative electrode active material. The film contains a lithium compound. The zwitterionic compound contains a phosphonium cation or an ammonium cation and a carboxylate anion in one molecule.
A solid ion conductor compound including Li, Ho, and a halogen element, wherein the compound has diffraction peaks at 30°2θ to 33°2θ, 33°2θ to 36°2θ, 40°2θ to 44°2θ, and 48°2θ to 52°28θ, when analyzed using CuKα radiation, and wherein a full width at half maximum of at least one peak at 40°2θ to 44°2θ is 0.3°2θ or greater.
A cylindrical secondary battery module includes: a plurality of cylindrical secondary battery cells respectively having a battery case in which an electrode assembly and an electrolyte are accommodated; a cell frame at which the plurality of cylindrical secondary battery cells are disposed; and a lid coupled to the cell frame and having a flame outlet. The cell frame includes: a plurality of plate members bent and coupled to intersect each other; and a space formed between the plurality of plate members so that the cylindrical secondary battery cells are disposed therein.
A display device comprises a substrate, a semiconductor layer thereon, a first insulating layer on the semiconductor layer, a first conductive layer on the first insulating layer and including a first electrode pattern, a second insulating layer on the first insulating layer and including first and second conductive patterns, a third insulating layer on the second conductive layer, and a display element layer on the third insulating layer and including a first pixel electrode connected to the first conductive pattern through a first via hole, a second pixel electrode connected to the second conductive pattern through a second via hole, and a micro light-emitting element between the pixel electrodes, the first conductive pattern contacting the semiconductor layer through a first contact hole and the first electrode pattern through a second contact hole, and the second conductive pattern overlapping the first electrode pattern to form a first capacitor therewith.
An optical semiconductor device includes: a mesa that is provided on a surface in a <011> direction of a semiconductor substrate having a (100) plane orientation and being of a first conductivity type, and includes a first cladding layer of the first conductivity type, an active layer, and a second cladding layer of a second conductivity type; a semi-insulating buried layer that buries both sides of the mesa, is provided on the semiconductor substrate, and includes a first region and a second region farther from the mesa than the first region; an insulation film provided on the first and second regions of the buried layer; and an electrode provided on the mesa and the insulation film on the first region; wherein a surface of the first region is at a height equal to or lower than a surface of the mesa, and lowers at farther distances from the mesa.
A semiconductor device including a semiconductor structure including a first semiconductor layer, a second semiconductor layer, and an active layer; a first electrode provided on a first surface of the first semiconductor layer; a second electrode provided on a first surface of the second semiconductor layer, the active layer being provided between the first surface of the first semiconductor layer and a second surface of the second semiconductor layer that is opposite to the first surface of the second semiconductor layer; a first insulation layer provided on the first surface of the first semiconductor layer, the first surface of the second semiconductor layer, and a side surface of the active layer; a first cover electrode provided on the first electrode; a second cover electrode provided on the second electrode, a second insulation layer provided on the first cover electrode, the second cover electrode, and the first insulation layer, wherein: the second insulation layer includes a first opening over the first cover electrode and a second opening over the second cover electrode, and a plan view of the semiconductor includes a light emitting region that includes a surface of the second cover electrode in the second opening of the second insulation layer, and a non-light emitting region that includes a surface of the first cover electrode in the second opening of the first insulation layer, and a first area of the non-light emitting region is smaller than a second area of the light emitting region.
The semiconductor light-emitting element includes an n-type semiconductor layer; an active layer on the n-type semiconductor layer; a p-type semiconductor layer on the active layer; a p-side contact electrode in contact with the p-type semiconductor layer; a p-side current diffusion layer on the p-side contact electrode; an n-side contact electrode in contact with the n-type semiconductor layer; and an n-side current diffusion layer that includes a first current diffusion layer on the n-side contact electrode, and a second current diffusion layer on the first current diffusion layer, and including a TiN layer. A height difference between upper surfaces of the p-side contact electrode and the first current diffusion layer is 100 nm or smaller; and a height difference between upper surfaces of the p-side current diffusion layer and the second current diffusion layer is 100 nm or smaller.
In the field of photoelectric devices, a visible light detector is provided with high-photoresponse based on a TiO2/MoS2 heterojunction and a preparation method thereof. The detector, based on a back-gated field-effect transistor based on MoS2, includes a MoS2 channel, a TiO2 modification layer, a SiO2 dielectric layer, Au source/drain electrodes and a Si gate electrode, The TiO2 modification layer is modified on the surface of the MoS2 channel. By employing micromechanical exfoliation and site-specific transfer of electrodes, the method is intended to prepare a detector by constructing a back-gated few-layer field-effect transistor based on MoS2, depositing Ti on the channel surface, and natural oxidation.
A ferroelectric capacitor or a ferroelectric transistor may include a first metal layer having a first metal having a first work function, and a second metal layer having a second metal having a second work function. The capacitor may also include a a vertical electrode and a ferroelectric material that surrounds the vertical electrode and forms a plurality of switching regions in the ferroelectric material. The transistor may include a vertical channel, a vertical buffer layer that surround the vertical channel, and a ferroelectric material that surrounds the vertical buffer layer and forms a plurality of gate regions in the ferroelectric material.
Semiconductor device includes a well region formed in an active region of a semiconductor substrate, a gate electrode formed on the well region via a gate dielectric film, and a source region and a drain region formed in the well region. At the vicinity of both end portions of the active region in the first direction, a first region and a second region having the same conductivity type as the well region and having impurity concentration higher than that of the well region are formed in the well region. The first region and the second region are spaced from each other in a second direction perpendicular to the first direction, and at least a portion of each of them is located under the gate electrode. The first region and the second region are not formed at the center portion of the active region in the first direction.
A transistor includes a trench formed in a semiconductor substrate. A conductive spacer is formed in the trench and offset from a first sidewall of the trench. A dielectric material is formed in the trench and surrounds the conductive spacer. A drift region is formed in the semiconductor substrate adjacent to the first sidewall and a first portion of a second sidewall of the trench. A drain region is formed in the drift region adjacent to a second portion of the second sidewall. A first gate region overlaps a portion of the drift region and is formed separate from the conductive spacer.
The present disclosure provides a semiconductor structure. The semiconductor structure includes device fins formed on a substrate; fill fins formed on the substrate and disposed among the device fins; and gate stacks formed on the device fins and the fill fins. The fill fins include a first dielectric material layer and a second dielectric material layer deposited on the first dielectric material layer. The first and second dielectric material layers are different from each other in composition.
A first fin structure is disposed over a substrate. The first fin structure contains a semiconductor material. A gate dielectric layer is disposed over upper and side surfaces of the first fin structure. A gate electrode layer is formed over the gate dielectric layer. A second fin structure is disposed over the substrate. The second fin structure is physically separated from the first fin structure and contains a ferroelectric material. The second fin structure is electrically coupled to the gate electrode layer.
A semiconductor device includes a semiconductor layer and a gate structure on the semiconductor layer. The gate structure includes a multi-stepped gate dielectric on the semiconductor layer and a gate electrode on the multi-stepped gate dielectric. The multi-stepped gate dielectric includes a first gate dielectric segment having a first thickness and a second gate dielectric segment having a second thickness that is less than the first thickness.
A semiconductor device structure is provided. The device includes a plurality of semiconductor layers and a gate electrode layer surrounding each semiconductor layer of the plurality of semiconductor layers. The gate electrode layer includes a first part, and a second part below the first part, the second part comprises a first portion, wherein an exterior surface of the first portion has a first radius of curvature, and a second portion below the first portion, and a third portion below the second portion, wherein an exterior surface of the third portion having a second radius of curvature different than the first radius of curvature.
A method for forming a semiconductor structure includes providing a semiconductor substrate, which at least includes discrete conducting layers in the semiconductor substrate; forming discretely arranged supporting structures on the semiconductor substrate, capacitor openings being included between the supporting structures; forming lower electrodes on sidewalls of the supporting structures, the lower electrodes being electrically connected with the conducting layers; forming a capacitor dielectric layer covering tops of the supporting structures, sidewalls of the lower electrodes, and bottoms of the capacitor openings; and forming an upper electrode covering the capacitor dielectric layer, to form capacitor structures.
A display apparatus includes a display substrate, and light emitting devices arranged on an upper surface of the display substrate. At least one of the light emitting devices includes a first LED unit including a first light emitting stack, a second LED unit including a second light emitting stack, and a third LED unit including a third light emitting stack. Each of the first to third light emitting stacks includes a first conductivity type semiconductor layer and a second conductivity type semiconductor layer. the first conductivity type semiconductor layer and the second conductivity type semiconductor layer in each of the first to third light emitting stacks are stacked in a horizontal direction with respect to the upper surface of the display substrate. At least one of the second conductivity type semiconductor layers in the first to third light emitting stacks is divided into two regions.
An imaging element including: a photoelectric conversion layer including a compound semiconductor material; a contact layer disposed to be stacked on the photoelectric conversion layer and including a diffusion region of first electrically-conductive type impurities in a selective region; a first insulating layer provided to be opposed to the photoelectric conversion layer with the contact layer interposed therebetween and having a first opening at a position facing the diffusion region; and a second insulating layer provided to be opposed to the contact layer with the first insulating layer interposed therebetween and having a second opening that communicates with the first opening and is smaller than the first opening.
Provided are a structural body including: a light detection layer 10, a color separation layer 20 provided on a light incident side of the light detection layer 10, and an optical waveguide layer 30 provided on the light incident side of the light detection layer 10 and provided on at least one selected from a light incident side of the color separation layer 20 or a light transmitting side of the color separation layer 20, in which the optical waveguide layer 30 is a layer which transmits light incident at an angle of 0° to 40° with respect to a normal line of a light receiving surface 10a of the light detection layer 10 by changing a traveling angle of the incident light to an angle of 0° to 1° with respect to the normal line of the light receiving surface 10a of the light detection layer 10; and a solid-state imaging element and an image display device including the structural body.
Implementations of semiconductor packages may include: a digital signal processor having a first side and a second side and an image sensor array, having a first side and a second side. The first side of the image sensor array may be coupled to the second side of the digital signal processor through a plurality of hybrid bond interconnect (HBI) bond pads and an edge seal. One or more openings may extend from the second side of the image sensor array into the second side of the digital signal processor to an etch stop layer in the second side of the digital signal processor. The one or more openings may form a second edge seal between the plurality of HBI bond pads and the edge of the digital signal processor.
An image sensing device includes a first subpixel block, a second subpixel block, a first conversion gain transistor, and a second conversion gain transistor. The first subpixel block includes a first floating diffusion region and a plurality of unit pixels sharing the first floating diffusion region. The second subpixel block includes a second floating diffusion region coupled to the first floating diffusion region and a plurality of unit pixels sharing the second floating diffusion region. The first conversion gain transistor includes a first impurity region coupled to the first and second floating diffusion regions and a second impurity region coupled to a first conversion gain capacitor. The second conversion gain transistor includes a third impurity region coupled to the second impurity region of the first conversion gain transistor and a fourth impurity region coupled to a second conversion gain capacitor.
A semiconductor device, including a dielectric layer and a semiconductor substrate, is provided. The dielectric layer has a convexity or a concavity. The semiconductor substrate includes a first type semiconductor layer and a second type semiconductor layer sequentially stacked on the dielectric layer. The first type semiconductor layer is disposed on the convexity or the concavity. A top surface and a bottom surface of the first type semiconductor layer are protruded according to the convexity or recessed according to the concavity. A bottom surface of the second type semiconductor layer is protruded according to the convexity or recessed according to the concavity.
Disclosed are a display substrate and a manufacturing method therefor, and a display device. The display substrate comprises: a substrate base, and an active layer, a gate insulating layer, a first metal film layer, an interlayer insulating layer, a second metal film layer, and a passivation layer stacked in sequence on the substrate base. The first metal film layer comprises a pattern of a gate and a gate line. The second metal film layer comprises a pattern of a source/drain and a data line. The gate line and the data line are partially arranged opposite to each other. An oxide metal layer is provided on the surface of the side of the region of the gate line opposite to the data line facing the data line.
In certain examples, methods and semiconductor structures are directed to an integrated circuit (IC) having a diamond layer section and a GaN-based substrate being monolithically integrated or bonded as part of the same IC. In a specific example, the GaN-based substrate includes GaN, AlxGayN (0
A module includes: a board having a first surface; a first component and a second component mounted on the first surface; and a wire disposed to extend across the first component and having one end and the other end. The one end is connected to the second component. The wire is grounded.
Bonded wafer device structures, such as a wafer-on-wafer (WoW) structures, and methods of fabricating bonded wafer device structures, including an array of contact pads formed in an interconnect level of at least one wafer of the bonded wafer device structure. The array of contact pads formed in an interconnect level of at least one wafer may have an array pattern that corresponds to an array pattern of contact pads that is subsequently formed over a surface of the bonded wafer structure. The array of contact pads formed in an interconnect level of at least one wafer of the bonded wafer device structure may enable improved testing of individual wafers, including circuit probe testing, prior to the wafer being stacked and bonded to one or more additional wafers to form a bonded wafer structure.
Examples described herein generally relate to forming and/or configuring a die stack in a multi-chip device. An example is a method of forming a multi-chip device. Dies are formed. At least two or more of the dies are interchangeable. Characteristics of the at least two or more of the dies that are interchangeable are determined. A die stack comprising the at least two or more of the dies that are interchangeable is formed. Respective placements within the die stack of the at least two or more of the dies that are interchangeable are based on the characteristics.
A method for producing a connection between component parts and a component made of component parts are disclosed. In an embodiment, a includes providing a first component part having a first exposed insulation layer and a second component part having a second exposed insulation layer, wherein each of the insulation layers has at least one opening, joining together the first and second component parts such that the opening of the first insulation layer and the opening of the second insulation layer overlap in top view, wherein an Au layer and a Sn layer are arranged one above the other in at least one of the openings and melting the Au layer and the Sn layer to form an AuSn alloy, wherein the AuSn alloy forms a through-via after cooling electrically conductively connecting the first component part to the second component part.
A semiconductor device may include a substrate including a first region and a second region and a first active pattern on the first region. The first active pattern may include a pair of first source/drain patterns and a first channel pattern therebetween, and the first channel pattern may include a plurality of first semiconductor patterns stacked on the substrate. The semiconductor device may further include a first gate electrode, which is provided on the first channel patterns, and a supporting pattern, which is provided on side surfaces of the plurality of first semiconductor patterns to connect the side surfaces of the plurality of first semiconductor patterns to each other.
A packaged radio-frequency device is disclosed, including a packaging substrate configured to receive one or more components, the packaging substrate including a first side and a second side. A shielded package may be implemented on the first side of the packaging substrate, the shielded package including a first circuit and a first overmold structure, the shielded package configured to provide radio-frequency shielding for at least a portion of the first circuit. A set of through-mold connections may be implemented on the second side of the packaging substrate, the set of through-mold connections defining a mounting volume on the second side of the packaging substrate. The device may include a component implemented within the mounting volume and a second overmold structure substantially encapsulating one or more of the component or the set of through-mold connections.
Integrated circuitry comprises two three-dimensional (3D) array regions individually comprising tiers of electronic components. A stair-step region is between the two 3D-array regions. First stair-step structures alternate with second stair-step structures along a first direction within the stair-step region. The first stair-step structures individually comprise two opposing first flights of stairs in a first vertical cross-section along the first direction. The stairs in the first flights each have multiple different-depth treads in a second vertical cross-section that is along a second direction that is orthogonal to the first direction. The second stair-step structures individually comprise two opposing second flights of stairs in the first vertical cross-section. The stairs in the second flights each have only a single one tread along the second direction. Other embodiments, including method, are disclosed.
In a general aspect, an electronic device assembly can include a semiconductor device assembly including a ceramic substrate; a patterned metal layer disposed on a first surface of the ceramic substrate; and a semiconductor die disposed on the patterned metal layer. The electronic device assembly can also include a thermal dissipation appliance. Ceramic material of a second surface of the ceramic substrate can be direct-bonded to a surface of the thermal dissipation appliance. The second surface of the ceramic substrate can be opposite the first surface of the ceramic substrate.
A package includes a substrate having a conductive layer, and the conductive layer comprises an exposed portion. A die stack is disposed over the substrate and electrically connected to the conductive layer. A high thermal conductivity material is disposed over the substrate and contacting the exposed portion of the conductive layer. The package further includes a contour ring over and contacting the high thermal conductivity material.
A method of etching into a one or more epitaxial layers of respective semiconductor material(s) in a vertical cavity surface emitting laser (VCSEL) semiconductor structure, wherein the or each semiconductor material is a III-V semiconductor material, a III-N semiconductor material, or a II-VI semiconductor material is disclosed. The method comprises placing a substrate having the semiconductor structure thereon onto a support table in a plasma processing chamber, the semiconductor structure carrying a patterned mask on the surface of the semiconductor structure distal from the support table. The method also includes process steps of establishing a flow of an etch gas mixture through the plasma processing chamber and generating a plasma within the plasma processing chamber and simultaneously applying a radio frequency (RF) bias voltage to the support table; whereby the portion(s) of the semiconductor structure not covered by the patterned mask are exposed to the etch gas mixture plasma and are thereby etched to form at least one feature in the semiconductor structure; wherein more than 90% of the etch gas mixture consists of a mixture of silicon tetrachloride (SiCl4) and nitrogen (N2).
The present application relates to the field of semiconductor manufacturing technologies, and in particular to a method and an apparatus for automatically processing wafers. The method for automatically processing the wafers includes the following steps: providing several wafers, wherein the wafers operate on a primary path, and the primary path is a path for forming semiconductor structures on the surfaces of the wafers; determining whether there is a need for detecting defects of the wafers, and if yes, automatically switching an operating path of the wafers to a secondary path; detecting the defects of the wafers in the secondary path; and determining whether the defect detection on the wafers is finished, and if yes, automatically switching the operating path of the wafers to the primary path. The application makes it possible to automatically detect the defects of the wafers with different SWR conditions, thereby improving the automation degree of machines.
There is provided a laminated sheet with which the electrical inspection of a redistribution layer formed later can be efficiently performed, while the laminated sheet is in the form of a sheet useful for the formation of a redistribution layer. This laminated sheet includes a carrier with a release function; a first electrically conductive film provided on the carrier with the release function; an insulating film provided on the first electrically conductive film; and a second electrically conductive film provided on the insulating film. The second electrically conductive film is used for formation of a redistribution layer, and the first electrically conductive film, the insulating film, and the second electrically conductive film function as a capacitor for performing electrical inspection of the redistribution layer.
An apparatus for transferring a substrate to a substrate processing chamber includes: a substrate transfer chamber including a floor surface portion having a traveling surface-side magnet provided therein and a sidewall portion having an opening for transferring the substrate therethrough; a substrate transfer module including a substrate holder and a floating body-side magnet acting a repulsive force with the traveling surface-side magnet, and configured to be movable on a traveling surface formed in a region provided with the traveling surface-side magnet by magnetic floating using the repulsive force; the substrate processing chamber connected to the substrate transfer chamber via a gate valve constituting a non-traveling region in which the substrate transfer module is not movable by the magnetic floating; and a transfer assist mechanism for assisting the transfer of the substrate by the substrate transfer module between the substrate transfer chamber and the substrate processing chamber via the non-traveling region.
A device for detecting whether a wafer is present on a clamping jaw and detecting whether the wafer is parallel to a bottom of the clamping jaw. The device for detecting a wafer comprises: a wafer parallel measuring unit arranged in a CMP cleaning and drying device, and used for emitting a parallel measuring laser beam parallel to the bottom of the clamping jaw and receiving the parallel measuring laser beam; a wafer detection unit used for emitting a wafer detecting laser beam to the wafer and receiving the wafer detecting laser beam; and a detection processing unit electrically connected to the wafer parallel measuring unit and the wafer detection unit, and used for determining whether the wafer is present on the clamping jaw and whether the wafer is parallel to the bottom of the clamping jaw according to the received wafer detecting laser beam and parallel measuring laser beam.
A substrate processing apparatus comprises a chamber member that defines an interior volume that has an aspect ratio. The chamber member comprises a pair of laterally opposing inlet walls and a loading port. Each of the pair of laterally opposing inlet walls has an inlet port configured to receive output from a remote plasma source. The loading port is arranged between the pair of inlet walls, configured to allow passage of a substrate into the interior volume.
Position shifts caused by charging phenomena can be corrected with high accuracy. A charged particle beam writing apparatus includes an exposure-amount distribution calculator calculating an exposure amount distribution of a charged particle beam using a pattern density distribution and a dose distribution, a fogging charged particle amount distribution calculator calculating a plurality of fogging charged particle amount distributions by convoluting each of a plurality of distribution functions for fogging charged particles with the exposure amount distribution, a charge-amount distribution calculator calculating a charge amount distribution due to direct charge using the pattern density distribution, the dose distribution, and the exposure amount distribution, and calculating a plurality of charge amount distributions due to fogging charge using the plurality of fogging charged particle amount distributions, a position shift amount calculator calculating a position shift amount of a writing position based on the charge amount distribution due to direct charge and the plurality of charge amount distributions due to fogging charge, a corrector correcting an exposure position using the position shift amount, and a writer exposing the corrected exposure position to a charged particle beam.
A keycap includes a keycap body with a top surface and a top periphery region extending around the top surface. A recessed area extends across the top surface inward of the top periphery region, with the top periphery region being elevated relative to the recessed area. The keycap also includes a set of grooves extending from the recessed area and across at least a portion of the top periphery region.
A multilayer capacitor includes a capacitor body including dielectric layers and internal electrodes alternately disposed with the dielectric layers interposed therebetween; and an external electrode disposed on the capacitor body to be connected to one or more of the internal electrodes. Porosity of ends of the internal electrodes is less than 50% on an interfacial surface between a margin of the capacitor body in a width direction the capacitor body and the internal electrodes.
A film capacitor device includes a film stack with metal strips including adjacent metal strips in 180° opposite orientations in a direction in which the metal strips continuously extend, metal-sprayed electrodes on a pair of end faces of the film stack, and conductors extending continuously in a stacking direction on a pair of end faces (cut surfaces) different from the pair of end faces on which the metal-sprayed electrodes are located.
A multilayer ceramic capacitor includes: a multilayer structure in which dielectric layers and internal electrode layers are alternately stacked; wherein a main component of the dielectric layers is a ceramic material having a main phase having a perovskite structure (ABO3) wherein a B site includes an element solid-solved in the B site and acting as a donor; wherein an A site and the B site of the ceramic material includes a rare earth element, wherein (an amount of the rare earth element substitutionally solid-solved in the A site)/(an amount of the rare earth element substitutionally solid-solved in the B site) is 0.75 or more and 1.25 or less. The amount of the element acting as the donor in the B site is 0.05 to 0.3 atm % relative to a main component element of the B site.
A multilayer ceramic electronic component includes a ceramic body comprising dielectric layers and first and second internal electrodes laminatedly disposed in a third direction with respective dielectric layers interposed therebetween, and first electrode and second external electrodes disposed on both surfaces of the ceramic body in the first direction and electrically connected to the first and second internal electrodes. When an absolute value of a horizontal angle in the second direction of the first internal electrode with respect to the first surface of the ceramic body is referred to a first angle of the internal electrode, a total sum of the first angles is less than 10°.
A coil component is capable of suppressing permeation of liquid or gas into a magnetic portion and increasing mechanical strength of the magnetic portion. A coil component includes a magnetic portion including soft magnetic metal particles having an insulating oxide layer on a surface thereof, with the soft magnetic metal particles being bonded to each other with the insulating oxide layer interposed therebetween; and a coil portion provided inside or on the surface of the magnetic portion. A mixture containing a resin and inorganic particles is disposed between the soft magnetic metal particles.
This disclosure relates to a stretchable composite electrode and a fabricating method thereof, and particularly relates to a stretchable composite electrode including a silver nanowire layer and a flexible polymer film and a fabricating method thereof.
A fiber optic based particle manipulation system employs one or more optical fibers for emanating a refracted optical manipulation signal directed at a target particle for fixing or manipulating the particle for examination, research and manufacturing. A target particle may be a living cell or inanimate sample or compound of matter. An alignment linkage controls optical fibers carrying the manipulation signal for focusing one or more manipulation signals on the target particle. Manipulated particles occupy a fluid medium of either liquid or gas, and are responsive to the manipulation signal based on both photon bombardment and temperature differential from photon contact. The temperature differential is based on surface properties of the target particle, as smooth particles tend to exhibit a greater thermal differential for stronger displacement forces driving or affecting the target particle.
A nuclear reactor protection system includes a plurality of functionally independent modules, each of the modules configured to receive a plurality of inputs from a nuclear reactor safety system, and logically determine a safety action based at least in part on the plurality of inputs, each of the functionally independent modules comprising a digital module or a combination digital and analog module, an analog module electrically coupled to one or more of the functionally independent modules, and one or more nuclear reactor safety actuators communicably coupled to the plurality of functionally independent modules to receive the safety action determination based at least in part on the plurality of inputs.
The invention integrates emerging applications, tools and techniques for machine learning in medicine with videoconference networking technology in novel business methods that support rapid adaptive learning for medical minds and machines. These methods can leverage domain knowledge and clinical expertise with networked cognitive collaboration, augmented clinical intelligence and cybernetic workflow streams for learning health care systems. The invention enables multimodal clinical communications, collaboration, consultation and instruction between and among heterogeneous networked teams of persons, machines, devices, neural networks, robots and algorithms. It provides for both synchronous and asynchronous cognitive collaboration with multichannel, multiplexed imagery data streams during various stages of medical disease and injury management—detection, diagnosis, prognosis, treatment, measurement, monitoring and reporting, as well as workflow optimization with operational analytics for outcomes, performance, results, resource utilization, resource consumption and costs. The invention enables cognitively-enriched, annotation and tagging, as well as encapsulation, saving and sharing of collaborated imagery data streams as packetized clinical intelligence.
The present invention provides a task interaction network which can jointly perform, based on multi parametric-magnetic resonance imaging scan images, a segmentation task to locate prostate cancer areas and a classification task to access aggressiveness of lesions. The task interaction network comprises a backbone network, an auxiliary segmentation branch, a classification branch having a lesion awareness module, and a main segmentation branch having a category allocation module. The auxiliary segmentation branch is utilized to predict an initial lesion mask as location guidance information for the classification branch to perform the classification task. The lesion awareness module is configured to refine the initial lesion mask to make it more accurate. Moreover, weights used in classification branch can serve as the category prototypes for generating category guidance features via the category allocation module to assist the main segmentation branch to perform the segmentation task.
An inventory system includes one or more shelving units and an inventory computing system. The shelving units each include shelves for storing medical supplies, a control system, and a communications interface. The shelves include shelf locations that each include one or more weight sensors for measuring weight thereon. The control system is in communication with the weight sensors for receiving measurement signals therefrom and causing the communications interface to send weight measurements for each of the shelf locations of each of the shelves determined according to the measurement signals. The inventory computing system is in communication with each of the shelving units via a network to receive the weight measurements for the shelf locations. The inventory computing system determines quantities of the medical supplies stored on each of the shelf locations according to the one or more weight measurements.
A digital communication module for transmission of data from a medical device is disclosed. In an example, a digital communication apparatus includes an input interface configured for communicative coupling to a medical device and an output interface configured for communicative coupling to a medical network. A processor of the digital communication apparatus receives a configuration file that specifies one input port of the input interface and at least one output port of the output interface, a first data format, and a second data format. The processor installs drivers for the input and output ports specified by the configuration file, provisions the input interface with the specified input port to receive medical data from the medical device in the first data format, and provisions the output interface with the at least one specified output port to transmit the received medical data using the first data format and the second data format.
Systems and methods for a digital image transfer system for guaranteed high speed and failsafe transfer and deep learning analysis of complicated digital images. In particular, the transfer methods and systems are suited for medical images, such as CT and MR scans, especially when a large number of images needs to be transferred and looked at immediately, such as when a patient is acute danger of life.
A computer-implemented system includes one or more processing devices configured to receive attribute data associated with a user, generate, based on at least one of a first bariatric procedure to be performed on the user and a second bariatric procedure already performed on the user, a selected set of the attribute data, determine, based on the selected set of the attribute data, at least one of a first probability of being eligible for the first bariatric procedure to be performed on the user and a second probability of improving a bariatric condition of the user subsequent to the second bariatric procedure being performed on the user, and generate, based on the at least one of the first probability and the second probability, a treatment plan that includes one or more exercises directed to modifying the at least one of the first probability and the second probability, and a treatment apparatus configured for implementation of the treatment plan.
A supplementary device configured to be releasably attached to an injection device includes at least one wireless communication unit and at least one sensor, wherein the supplementary device is configured to activate the at least one sensor in response to receipt via the at least one wireless communication unit of a wireless communication from an external device, following activation, to use the at least one sensor to detect the start of an injection by the injection device, and to communicate, via the at least one wireless communication unit, the start of the injection to the external device.
One variation of a method for accessing medication parameters for prescription medications includes: reading a unique identifier from a medication cartridge installed in a medication dispenser; based on the unique identifier and a dispenser identifier assigned to the medication dispenser, confirming assignment of the medication cartridge to the medication dispenser; based on the dispenser identifier, retrieving medication parameters for a medication contained in the medication cartridge; and at the medication dispenser, outputting a dynamic visual queue to consume a dose of the medication from the medication cartridge during a medication window, the medication window of a duration based on the medication parameters.
Technologies and techniques for optimizing a patient overview in a user interface (UI), utilizing at least one processor. An optimize request is received including an optimization level from a user via the UI, selecting predetermined patient information associated with the received optimization level, and displaying an optimized patient overview containing the selected certain patient information to the user.
A semiconductor device according to an embodiment includes: a logic control circuit to which a signal is input; a timing information storage circuit configured to store timing information related to a start timing of correction processing that corrects a duty cycle of the signal; and a sequencer configured to start execution of the correction processing based on the timing information when a command related to the execution of the correction processing is received.
In one embodiment, a semiconductor storage device includes a plurality of memory chips, at least one of the memory chips including a first controller configured to be shifted to a wait state of generating a peak current, before generating the peak current in accordance with a command. The device further includes a control chip including a second controller configured to search a state of the first controller and control, based on a result of searching the state of the first controller, whether or not to issue a cancel instruction for the wait state to the first controller that has been shifted to the wait state.
A memory device includes a data array, a parity array and an ECC circuit. The ECC circuit is coupled to the data array and the parity array. In a first test mode, the ECC function of the ECC circuit is disabled, and in a second test mode, the ECC circuit directly accesses the parity array to read or write parity information through the parity array.
A memory apparatus and method of operation are provided. The apparatus includes memory cells connected to word lines including at least one edge word line and other data word lines. The memory cells are arranged in strings and are configured to retain a threshold voltage corresponding to data states. The strings are organized in rows and a control means is coupled to the word lines and the strings and identifies the at least one edge word line. The control means programs the memory cells of the strings in particular ones of the rows and associated with the at least one edge word line to have an altered distribution of the threshold voltage for one or more of the data states compared to the memory cells of the strings not in particular ones of the rows and not associated with the at least one edge word line during a program operation.
In one aspect, a method for NOR flash cell-array programming in a neural circuit includes the step of erasing a cell array. The method includes the step of programming a set of reference cells of a reference cell array to a target reference threshold voltage (Vt_ref). The method includes the step of generating, with the reference cells, a current or voltage, reference signal. The method includes the step of using the reference signal to bias the neural cells during verification of program state of the neural cells to achieve their respective target threshold voltages (Vt_cell). The method includes the step of programming a set of neural cells of a neural cell array to their respective target threshold voltages.
Methods, systems, and devices supporting a socket design for a memory device are described. A die may include one or more memory arrays, which each may include any number of word lines and any number of bit lines. The word lines and the bit lines may be oriented in different directions, and memory cells may be located at the intersections of word lines and bit lines. Sockets may couple the word lines and bit lines to associated drivers, and the sockets may be located such that memory cells farther from a corresponding word line socket are nearer a corresponding bit line socket, and vice versa. For example, sockets may be disposed in rows or regions that are parallel to one another, and which may be non-orthogonal to the corresponding word lines and bit lines.
A memory device includes a plurality of bit lines extending in a first direction and arranged in a second direction; and a cell region including a plane which is coupled to the plurality of bit lines, wherein the plane is divided into a plurality of memory groups each including a plurality of partial pages to be disposed in a plurality of rows in the first direction.
A data storage device may include a storage including a plurality of storage regions each composed of a plurality of pages; and a controller. The controller is configured to select a plurality of target open regions from open regions among the storage regions on the basis of health information of the open regions, in each of which a programmed page and an unprogrammed page coexist, and perform control so that refresh operations for the respective target open regions are performed in a time-distributed manner.
Methods, systems, and devices for techniques for memory system refresh are described. In some cases, a memory system may prioritize refreshing blocks of memory cells containing control information for the file system of the memory system. For example, the memory system may identify a block of memory cells containing control information and adjust an error threshold for refreshing the blocks of memory cells to be lower than an error threshold for refreshing the blocks of memory cells containing data other than control information. Additionally or alternatively, the memory system may perform a refresh control operation for the block of memory cells with a higher frequency (e.g., more frequently) than for other blocks of memory cells.
The present disclosure relates to electronic devices that include a composition that actively generates a gaseous oxidizing agent component within the interior gas space of the electronic device. The present disclosure also relates to electronic devices that include a container that includes a gaseous oxidizing agent component in a manner that the gaseous oxidizing component can transfer from the container to the interior gas space of the electronic device. The present disclosure also involves related methods.
An apparatus for decoding data segments representing a time-domain data stream, a data segment being encoded in the time domain or in the frequency domain, a data segment being encoded in the frequency domain having successive blocks of data representing successive and overlapping blocks of time-domain data samples. The apparatus includes a time-domain decoder for decoding a data segment being encoded in the time domain and a processor for processing the data segment being encoded in the frequency domain and output data of the time-domain decoder to obtain overlapping time-domain data blocks. The apparatus further includes an overlap/add-combiner for combining the overlapping time-domain data blocks to obtain a decoded data segment of the time-domain data stream.
A method for computer control of online social interactions based on conversation processing. A portion of a conversation with a given user is recorded, stored in memory, and processed so as to influence subsequent interactions. These may include audio or other contextualized annunciations of subsequent telephone calls. Other modes addressing conversational processing for social purposes can result in interwoven conversation guided among threads of interest, advertising and incented participation of conversational content and placement. The invention is capable of implementation in telecommunications systems such as cellular, local exchange, and VOIP, and in combination with other forms of internet-based telecommunication, including smart phones and adaptive forums chat rooms.
Methods and systems are disclosed for improving dialog management for task-oriented dialog systems. The disclosed dialog builder leverages machine teaching processing to improve development of dialog managers. In this way, the dialog builder combines the strengths of both rule-based and machine-learned approaches to allow dialog authors to: (1) import a dialog graph developed using popular dialog composers, (2) convert the dialog graph to text-based training dialogs, (3) continuously improve the trained dialogs based on log dialogs, and (4) generate a corrected dialog for retraining the machine learning.
An electronic device and method are disclosed. The electronic device includes a microphone, a speaker and a processor. The processor implements the method, including: receiving a first voice input through the microphone, outputting a response related to a function through the speaker, based on the first voice input, when a second voice input is received through the microphone during output of the response, interrupting the output of the response and continue to receive the second voice input, and executing the function based on content of the received second voice input and content of the response output up to one of: a first time point when the second voice input was initially received, and a second time point when the output of the response was interrupted.
A transcription of a query for content discovery is generated, and a context of the query is identified, as well as a first plurality of candidate entities to which the query refers. A search is performed based on the context of the query and the first plurality of candidate entities, and results are generated for output. A transcription of a second voice query is then generated, and it is determined whether the second transcription includes a trigger term indicating a corrective query. If so, the context of the first query is retrieved. A second term of the second query similar to a term of the first query is identified, and a second plurality of candidate entities to which the second term refers is determined. A second search is performed based on the second plurality of candidates and the context, and new search results are generated for output.
Methods and systems are provided for an automatic noise control system. Automatic noise control includes evaluating an amplitude of an acceleration acting on an acceleration sensor and generating a reference signal representative of the amplitude of the acceleration, the acceleration being representative of unwanted noise sound generated by a noise source, filtering the reference signal with a noise control transfer function to generate an anti-noise signal, and converting with a loudspeaker the anti-noise signal into anti-noise sound.
A display driving device configured to control a display panel including pixel units to display, includes: an over driver compensation module configured to, when a first polarity frame image is displayed, perform line over driver compensation on the pixel units based on line over driver compensation data corresponding to the first polarity frame image, to determine a target over driver grayscale of the pixel units; and to, when a second polarity frame image is displayed, perform line over driver compensation on the pixel units based on line over driver compensation data corresponding to the second polarity frame image, to determine a target over driver grayscale of the pixel units. The first and second polarity are opposite to each other, and the line over driver compensation data corresponding to the first polarity frame image is different from the line over driver compensation data corresponding to the second polarity frame image.
The present disclosure relates to an integrated circuit, a pixel driving device and a pixel defect detecting method and provides a device and method to sense a voltage of a light emitting diode of a pixel through a data line and to compare the sensed voltage with a reference range, thereby determining a pixel defect.
A pixel drive circuit and a drive method thereof, a display panel, and a terminal device, which are applied to the field of terminal technologies. The pixel drive circuit includes a first reset module, a light-emitting control module, and a drive module, and both the first reset module and the light-emitting control module are connected to a light-emitting control signal terminal, where one of the first reset module and the light-emitting control module is turned on when the light-emitting control signal is at a high level, and the other of the first reset module and the light-emitting control module is turned on when the light-emitting control signal is at a low level. Therefore, by increasing the frequency of the light-emitting control signal to greater than 120 Hz, a problem of a phenomenon of frequent flickering on an image during low-brightness display may be improved.
A display device and a display driving method are disclosed. The display device includes a display panel including gate lines, data lines, and a plurality of subpixels including a plurality of driving transistors, a gate driving circuit configured to apply scan signals to the gate lines, a data driving circuit configured to convert image data into data voltages and apply the data voltages to the data lines, and a timing controller configured to compensate the data voltages applied to the plurality of driving transistors based on a real-time sensing process of characteristic values of the plurality of driving transistors, and control an application of a recovery voltage to at least one driving transistor of the plurality of driving transistors a plurality of times within a blank period of a frame period based on a reference period to reset the at least one driving transistor during the blank period.
A display device includes a display panel including pixels, and a display panel driver configured to drive the display panel. The display panel driver is configured to determine a predicted on-pixel ratio of a current frame based on an artificial neural network model and input image data of a previous frame, determine a first adjustment value based on the predicted on-pixel ratio, and adjust a luminance of the current frame based on the first adjustment value.
A display panel, a driving method and a display device are disclosed. The display panel is divided into a first area and a second area arranged along a data line direction. Multiple sub-pixels corresponding to a same row of scan line are connected to data lines in one-to-one correspondence. In the first area and second area, each column of sub-pixels is arranged between two adjacent data lines, where the same column of sub-pixels includes multiple sub-pixel groups, each of which includes at least one sub-pixel. Among two adjacent data lines, one data line is connected with the sub-pixels in the odd groups, and the other is connected with the sub-pixels in the even groups. The sub-pixel groups in the first area and the corresponding sub-pixel groups in the second area are axially symmetrical with respect to a boundary line between the first area and the second area.
A display device for a vehicle includes a moving speed calculation unit that calculates a moving speed of a pupil based on a position of the pupil detected by a pupil detection unit. In a case in which the moving speed of the pupil is equal to or lower than a threshold, a pupil diameter calculation unit calculates a pupil diameter at a present time based on the pupil at the present time, and outputs the calculated pupil diameter at the present time to a brightness adjustment unit. On the other hand, in a case in which the moving speed of the pupil exceeds the threshold, the pupil diameter calculation unit outputs a pupil diameter calculated at a previous time to the brightness adjustment unit as the pupil diameter at the present time.
A head-up display includes a display panel, a reflective optical element, a controller, and an obtainer. The display panel displays a first image. The reflective optical element reflects image light from the first image displayed by the display panel. The controller controls a position at which the first image is displayed on the display panel. The obtainer obtains, as positional information, a position of an eye of a user. The controller changes the position at which the first image is displayed on the display panel in accordance with the positional information.
A display device may include a first pixel, a second pixel, a first data line electrically connected to the first pixel, a second data line electrically connected to the second pixel and electrically insulated from the first data line, a first signal wire electrically connected to the first data line, a second signal wire electrically connected to the second data line, and a connecting wire electrically connecting the second data line to the second signal wire. The connecting wire may include a first section and a second section. The second section may be directly connected to the first section, may overlap the first pixel, may overlap the first data line, and may be oblique relative to each of the first data line and the second data line in a plan view of the display device.
An electronic shelf label positioning system, an electronic shelf label and a guide rail. The electronic shelf label positioning system includes the electronic shelf label, the guide rail, a PDA and a background server. The electronic shelf label includes a main control SoC, a card reader IC, a screen and a power supply device. The main control SoC is configured to control the screen display and to communicate with an AP. The power supply device is configured to supply power to the electronic shelf label. The guide rail includes a guide rail identification area and a label area. The label area is installed with a plurality of wireless labels each having a unique non-repeated ID number. The guide rail identification area is installed with an identity recognition device, which includes a guide rail ID consisting of the ID numbers of the wireless labels sequentially arranged and summarized.
A display medium with a substrate provided with a plurality of virtual cells C, and, on the cell C, a partition P having a plurality of surfaces respectively formed on a plane that intersects with the substrate and exposed when the display medium is viewed from a plurality of directions. A portion exposed when the display medium is viewed from a predetermined direction among the plurality of directions is given the color of a content corresponding to the predetermined direction. The display medium displays different contents in the plurality of directions, respectively.
Aspects of the present disclosure describe a method and a system to support execution of the method to perform a cryptographic operation involving identifying an N-word number, X=XN−1 . . . X1Xo, to be squared, performing a first loop comprising M first loop iterations, wherein M is a largest integer not exceeding (N+1)/2, each of the M first loop iterations comprising a second loop that comprises a plurality of second loop iterations, wherein an iteration m of the second loop that is within an iteration j of the first loop comprises computing a product Xa*Xb of a word Xa and a word Xb, wherein a+b=2j+m, j≥0 and m≥0, and wherein all second loops have an equal number of second loop iterations.
Aspects of the disclosure relate to a dynamic virtual reality (VR) coaching computing platform. The dynamic VR coaching computing platform may configure a VR coaching model based on model training data. The dynamic VR coaching computing platform may use the VR coaching model and a user profile to select a plurality of VR modules. The dynamic VR coaching computing platform may configure a first VR module of the plurality of VR modules based on one or more user selections. The dynamic VR coaching computing platform may receive real-time feedback during execution of the first VR module. The dynamic VR coaching computing platform may select a second plurality of VR modules based on the first real-time feedback. The dynamic VR coaching computing platform may configure a second VR module of the second plurality of VR modules based on user selections.
An example weld training system includes a display device; an input device; a processor; and machine readable instructions cause the processor to demonstrate to a user an effect of a combination of welding-related variables by: enabling the user to design a weld procedure using the input device by selecting weld parameters including weld current and weld voltage; simulating a welding operation on a simulated workpiece using the selected weld parameters in a welding model and a simulated physical welding environment to determine a modeled result of the welding operation; displaying a simulation animation of the welding operation on the display device according to the simulation; displaying the modeled result of the weld on the display device using at least one of an image of a surface of a weld bead or a cross-section of the weld bead and the simulated workpiece; and displaying information about an anomaly present in the weld determined based on the simulation, the information about the anomaly comprising at least one of a cause of the anomaly, a suggested change in one or more of the welding-related variables to avoid the anomaly, or a location of the anomaly in the image of the weld bead or in the cross-section of the weld bead.
Disclosed herein are systems and methods for providing feeding reinforcement in real-time or near real-time based on physiological sensor data acquired during feeding. In some examples, music reinforcement is rendered when one or more feeding features indicative of one or more feeding behaviors are detected using the physiological sensor data. When at least one feature is not detected, the music reinforcement is stopped. In this way, contingent reinforcement is provided in real-time or near real-time based on detection of the one or more feeding behaviors to encourage and improve independent feeding behavior.
Systems and methods to measure and affect focus, engagement, and presence of users may include measuring a variety of aspects of users engaged in particular activities. Individual user characteristics or preferences and attributes of activities may be taken into account to determine levels of focus for particular users and activities. A variety of sensors may detect aspects of users engaged in activities to measure levels of focus. In addition, a variety of output devices may initiate actions to affect levels of focus of users engaged in activities. Further, a variety of processing algorithms, including machine learning models, may be trained to identify desired levels of focus, to calculate current levels of focus, and to select actions to change or boost levels of focus. In this manner, activities undertaken by users, as well as interactions between multiple users, may be made more engaging, efficient, and productive.
An Unmanned Aerial Vehicle (UAV) air traffic control method utilizing wireless networks and concurrently supporting delivery application authorization and management communicating with a plurality of UAVs via a plurality of cell towers associated with the wireless networks, wherein the plurality of UAVs each include hardware and antennas adapted to communicate to the plurality of cell towers; maintaining data associated with flight of each of the plurality of UAVs based on the communicating; processing the maintained data to perform a plurality of functions associated with air traffic control of the plurality of UAVs; and processing the maintained data to perform a plurality of functions for the delivery application authorization and management for each of the plurality of UAVs.
A method and device for transmitting flight information. The method comprises: generating switching request related signaling, the switching request related signaling carrying flight path information of an unmanned aerial vehicle; and sending the switching request related signaling to a target base station. The method may also be a method applied to an MME side, and comprises: receiving switching demand signaling sent by a source base station, the switching demand signaling carrying flight path information of an unmanned aerial vehicle; and sending second switching request signaling to a target base station, the second switching request signaling carrying flight path information of an unmanned aerial vehicle.
A method is disclosed. A data set including: (a) identifiers of a set of incidents occurring within a defined geographic region to which at least one service provider responded during a first time period and (b) address data identifying a location within the geographic region of each said incident of the set is retrieved over a network. An instruction to generate a heat map of the incidents occurring within the geographic region during the first time period is received from a user via a user interface generated to a display device. In response to the instruction to generate the heat map, the address data is converted to GPS data. A heat map of an aerial view of the geographic region based on the GPS data is generated. The heat map is displayed to the display device in a user interface.
A method for guiding a user operating a requesting device includes identifying requesting parameters of the requesting device, where the requesting parameters include a location of a requesting device, a trajectory of a requesting device, or a combination thereof. The method includes generating one or more safety scores associated with one or more roadways based on vehicle behavior information associated with one or more vehicles, pedestrian behavior information associated with one or more roadside unit devices, or a combination thereof. The method includes determining a route of the requesting device based on the one or more safety scores and the requesting parameters and broadcasting the route to the requesting device.
A vehicle alarm system configured to avoid false alarms while maintaining the vehicle alarm system armed. The vehicle alarm system includes: at least a first sensor configured to detect at least a first living object; a processing circuitry operatively connected to the least a first sensor configured to cause the vehicle alarm system to: detect at least a first living object inside of a vehicle by the at least first sensor; and reduce, or unarm, at least a first alarm function of the vehicle alarm system in response to detecting the at least first living object, while at least a second alarm function of the vehicle alarm system is configured to be armed.
An apparatus for detecting the activity of persons or the state of infrastructures or objects influenced by persons by means of acceleration measurement. The device has an acceleration sensor which is arranged to react to a preset threshold value of a measured acceleration and, when the threshold value is exceeded, to trigger at least one of the actions of data storage, modification of a counter or transmission of a data telegram by radio. The apparatus further comprises an energy converter for converting a primary energy into electrical energy for operating the apparatus or the acceleration sensor. The energy converter is arranged to obtain the primary energy independently of an energy resulting from a measured acceleration.
Example implementations include a method, apparatus, and computer-readable medium comprising monitoring, by a control panel, an ambient noise via one or more microphones in the control panel. The implementations further include determining, by the control panel, whether the ambient noise includes an acoustic signature associated with a security event. In some implementations, the security event may comprise a glass break event. In some implementations, the acoustic signature may comprise a first sound followed by subsequent sounds. The first sound may comprise a thump sound, and the subsequent sounds may comprise crashing sounds.
At least a method and an apparatus are provided for efficiently generating non-redundant machine-generated quick pick lottery game entries. A computer file is created that includes every possible combination of number groups eligible for being selected for a particular lottery game. The every possible combination within the file is randomly shuffled to create a randomized list of non-redundant entries. A file index with a file index pointer is assigned to the randomized list of non-redundant entries. The file index pointer is set to an initial position in the randomized list of non-redundant entries. Each non-redundant machine-generated lottery game entry is generated by only sequentially incrementing or only sequentially decrementing the file index pointer in the randomized list, and outputting the each non-redundant entry indicated by the file index pointer to a ticket request device.
A gaming machine includes an electronic display device configured to display an array of symbol positions and registers. The registers are associated with respective subsets of the symbol positions of the array. Game-logic circuitry directs the display device to animate a plurality of spins of symbol-bearing reels wherein, in each spin, the reels are spun and stopped to land symbols in the array. For each landed value-bearing symbol, the symbol value is added to the applicable register, and the landing position is tagged. In response to tagging all the symbol positions in a subset, that subset's register value is awarded and that subset's tags are cleared. In response to no value-bearing symbols landing in a subset during a reel spin, that subset's register and tags are cleared.
A fraud detection system which detects fraud in a game of performing collection and redemption of chips in accordance with a win or lose result includes a camera which captures an image of chips contained in a chip tray of a dealer, an image analyzing apparatus which analyses the image captured by the camera to detect an amount of the chips contained in the chip tray, a card distribution device which determines a win or lose result of a game, and a control device which compares the win or lose result of the game and the amount of the chips contained in the chip tray before and after collection and redemption of the chips to detect fraud.
Embodiments provide systems, apparatus, and methods for rendering supplemental information on an electronic gaming device, where the supplemental information does not relate to game play on the machine. The supplemental information can include safety warnings, maintenance information, or other information. The electronic gaming device can detect user interactions with the electronic gaming device, such as using sensors or a player interface that includes a touchscreen. The user interactions can be compared with a condition associated with the supplemental information. Feedback, such as visual, audio, or haptic feedback, or a combination thereof, can be provided to indicate to the user whether the condition is satisfied. Numerous additional aspects are disclosed.
In one embodiment, a system includes: a robotic arm assembly; a plurality of components arranged around the robotic arm assembly and positioned within reach of the robotic arm assembly; and a controller configured to control operation of the robotic arm assembly within the system. Each of the plurality of components is configured to either: store ingredients under predetermined environmental conditions; store food preparation tools; dispense ingredients; blend, cook, or assemble ingredients into a completed food item; provide cleaning functionality to the system and/or components thereof; provide user access to completed food items; or display information relevant to a food item or preparation thereof to users. Methods of using such systems to prepare and dispense food items are also disclosed, and generally include translating recipes into instructions executable by the robotic arm assembly and/or components of the system, communicating such instructions to the robotic arm assembly, and executing such instructions.
A method implemented by a security sensor device is provided. The security sensor device receives a user input, performs a biometric authentication of a user associated with the user input, modifies a state of the security sensor device based at least in part on the biometric authentication and the user input, detects a sensor trigger when the security sensor device is in the modified state, determines a sensor indication based at least in part on the sensor trigger, the state of the security sensor device subsequent to being modified, and the user input, and transmits the sensor indication to a premises security control device. The sensor indication is configured to cause the premises security control device to perform at least one premises security action.
A method for seamless access control according to one embodiment includes determining whether a user is authorized to access a passageway controlled by an access control device based on credential data received from a mobile device of the user, determining, by a RADAR system, a location of the user relative to the passageway, determining whether the user intends to access the passageway based on the determined location of the user relative to the passageway, and controlling, by the access control device, a lock mechanism to allow the user access to the passageway in response to determining that the user is authorized to access the passageway and the user intends to access the passageway.
Aspects of the disclosed technology encompass solutions for automatically requesting a backup vehicle for passengers of an autonomous vehicle provisioned ride-hailing service. In some aspects, a process of the disclosed technology includes steps for collecting diagnostic data relating to at least one AV operation, and analyzing the diagnostic data to determine if the AV needs maintenance. Moreover, in response to a determination that the AV needs maintenance, the process can include steps for automatically requesting a backup service for a passenger of the AV. Systems and machine-readable media are also provided.
Methods and systems are described for maintaining hygienic conditions in automatic teller machines by detecting whether or not a user is not in compliance with a hygienic standard. If a user is not in compliance, then the automatic teller machine may execute a hygienic action to cleanse the automatic teller machine. For example, the hygienic action may comprise automatically cleansing the automatic teller machine, disabling the automatic teller machine from service, transmitting a sanitation service request to an automatic teller machine provide, and/or initiating an alternative control scheme (e.g., voice controls, gesture-based controls, etc.) for the automatic teller machine.
An image processing method and apparatus, a computer-readable medium, and an electronic device are provided. The image processing method includes: respectively projecting, according to a plurality of view angle parameters corresponding to a plurality of view angles, a face model of a target object onto a plurality of face images of the target object acquired from the plurality of view angles, to determine correspondences between regions on the face model and regions on the face image; respectively extracting, based on the correspondences and a target region in the face model that need to generate a texture image, images corresponding to the target region from the plurality of face images; and fusing the images that correspond to the target region and that are respectively extracted from the plurality of face images, to generate the texture image.
The invention relates to a method for training a machine learning model to identify a subject having at least one machine readable identifier providing a subject ID, said method comprising:
providing a computer vision system with an image capturing system comprising at least one image capturing device, and a reader system comprising at least one reader for reading said at least one machine readable identifier;
defining said machine learning model in said computer vision system;
capturing a first image using said image capturing system, said first image showing said subject;
reading said subject ID using said reader system when capturing said first image, and linking said subject ID with said first image, said linking providing said first image with a linked subject ID, providing a first annotated image;
capturing at least one further image showing said subject, linking said linked subject ID to said at least one further image providing at least one further annotated image, and
subjecting said first annotated image and said at least one further annotated image to said machine learning model for training said machine learning model.
An information processing device includes a processor configured to acquire a document image illustrating a document, acquire a related character string associated with a target character string included in the document image, and extract target information corresponding to the target character string from a region set with reference to a position of the related character string in the document image.
Aspects of the present disclosure are directed to extracting textual information from image documents. In one embodiment, a system, upon receiving a request to extract textual information from an image document, a digital processing system performs character recognition based on content of the image document using multiple approaches to generate corresponding texts. The texts are then combined to determine a result text representing the textual information contained in the image document. The result is then provided as a response to the request.
A profile is automatically generated for an occupant of a vehicle. In one approach, data is collected from an interior of a vehicle to determine whether an occupant is present. If an occupant is present, a local profile is automatically generated. The local profile is sent to a remote computing device. The remote computing device links the local profile to a remote profile stored by the remote computing device. Configuration data is generated by the remote computing device based on linking the local and remote profiles. The configuration data is sent to the vehicle and used by the vehicle to control the operation of one or more components of the vehicle.
This on-vehicle system is to be mounted in a vehicle and is provided with an electronic control device and an externality recognition sensor. The externality recognition sensor is equipped with a sensing unit for acquiring pre-processing externality information through sensing operations. The on-vehicle system is further equipped with: a condition calculation unit that, on the basis of a vehicle position, a vehicle traveling direction, and map information, calculates a processing condition in which information specifying an area on a map is associated with processing priority of the pre-processing externality information acquired by the externality recognition sensor; and a processing object determination unit that, on the basis of the pre-processing externality information and the processing condition, creates externality information having a smaller amount of information compared with the pre-processing externality information.
Examples are provided for traffic sign detection systems. In one example, a traffic detection system in a vehicle includes an image sensor, a communication system, a processor, and a storage device storing instructions executable by the processor to capture an image of an environment of the vehicle via the image sensor, process the image to detect visual information regarding a traffic sign in the image, the visual information indicating a recognized sign, receive cryptographic data via the communication system from a transmitter associated with the traffic sign, the cryptographic data including a cryptographic representation of a traffic sign signal for controlling the traffic sign, and selectively control one or more vehicle systems of the vehicle based on a cryptographic verification of the recognized sign using the cryptographic data.
Described is a multiple-camera system and process for detecting, tracking, and re-verifying agents within a materials handling facility. In one implementation, a plurality of feature vectors may be generated for an agent and maintained as an agent model representative of the agent. When the object being tracked as the agent is to be re-verified, feature vectors representative of the object are generated and stored as a probe agent model. Feature vectors of the probe agent model are compared with corresponding feature vectors of candidate agent models for agents located in the materials handling facility. Based on the similarity scores, the agent may be re-verified, it may be determined that identifiers used for objects tracked as representative of the agents have been flipped, and/or to determine that tracking of the object representing the agent has been dropped.
Systems, methods and techniques for automatically recognizing two or 3-dimensional real world objects with an augmented reality display device (smartphone or glasses etc.), and augmenting or enhancing the display of such real world objects by superimposing virtual images such as a still or video advertisement, an opportunity to buy, a story or other virtual image presentation. In non-limiting embodiments, the real world object includes visible features including visible security features and a recognition process takes the visible security features into account when recognizing the object and/or displaying superimposed virtual images.
A system and related methods for identifying characteristics of handbags is described. One method includes receiving one or more images of a handbag, eliminating all but select images from the one or more images of the handbag to obtain a grouping of one or more select images, the select images being those embodying a complete periphery and frontal view of the handbag. For each of the one or more select images, aligning feature-corresponding pixels with an image axis, comparing at least a portion of the one or more select images with a plurality of stored images, and determining characteristics of the handbag based on said comparing.
The subject technology provides visual search systems and methods that can be used to efficiently perform visual searches on an electronic device. The subject technology provides systems and methods for presenting one or more visual indicators corresponding to the searchable portions of digital content. A visual search may include identifying, at an electronic device, an element of interest in an image. A visual indicator for the element of interest may be overlaid on the image at a location corresponding to the element of interest. The visual indicator may be selectable to cause a display of information associated with the element of interest responsive to the selection.
In one implementation, a method of remedying a medical impairment of a user is performed by a device including a processor, non-transitory memory, one or more biometric sensors, an image sensor, and a display. The method includes detecting, based on data from at least one of the image sensor and the one or more biometric sensors, a medical impairment of a user of the head-mounted device from a plurality of potential medical impairments associated with a plurality of remedies. The method includes selecting, from the plurality of remedies, a remedy of the medical impairment of the user. The method includes controlling the display to effect the remedy of the medical impairment of the user.
A system for detecting synthetic videos may include a server, a plurality of weak classifiers, and a strong classifier. The server may be configured to receive a prediction result from each of a plurality of weak classifiers; and send the prediction results from each of the plurality of weak classifiers to a strong classifier. The weak classifiers may be trained on real videos and known synthetic videos to analyze a distinct characteristic of a video file; detect irregularities of the distinct characteristic; generate a prediction result associated with the distinct characteristic, the prediction result being a prediction on whether the video file is synthetic; and output the prediction result to the server. The strong classifier may be trained to receive the prediction results of the plurality of weak classifiers from the server; analyze the prediction results; and determine if the video file is synthetic based on the prediction results.
A method for detecting image information includes: acquiring at least one sample of image pair to be processed; calculating a reconstruction loss function of the second feature extraction model based on the first image samples and the first reconstructed image feature information; calculating an adversarial loss function of the third feature extraction model based on the second reconstructed image feature information and the first image samples; optimizing the first model parameters in the first feature extraction model based on the reconstruction and the adversarial loss function to generate the optimized first feature extraction model; inputting the acquired image pair to be processed into the optimized first feature extraction model to generate the difference information. The method reduces the first feature extraction model's dependence on the labeled data and improves the model's recognition efficiency and accuracy by using the samples without the labeled difference information.
Provided are a linear structure extraction device, a method, a program, and a learned model which can detect a linear structure in an image. A linear structure extraction device according to an embodiment of the present disclosure includes a learning model that is learned to receive an input of the image and output, as a prediction result, one or more element points which constitute the linear structure from the image, in which the learning model includes a first processing module that receives the image and generates a feature map representing a feature amount of the image by convolution processing, and a second processing module that calculates a shift amount from a unit center point to the element point of the linear structure closest to the unit center point, for each unit obtained by dividing the feature map into a plurality of the units including regions having a predetermined size in a grid pattern.
The point cloud encoding method includes obtaining subgroup information of N frames of point clouds, where the subgroup information includes a quantity M of subgroups into which the N frames of point clouds are divided or a quantity of frames of point clouds included in each of one or more subgroups among the M subgroups, and writing the subgroup information of the N frames of point clouds into a bitstream. The point cloud decoding method includes receiving a bitstream, parsing the bitstream to obtain subgroup information, where the subgroup information includes a quantity M of subgroups into which N frames of point clouds are divided or a quantity of frames of point clouds included in each of one or more subgroups among the M subgroups, and decoding the N frames of point clouds based on the subgroup information.
A hardware camera may include a camera sensor configured to determine input image data. The hardware camera may also include an image signal processor configured to perform one or more image signal processing operations on the input image data. The hardware camera may also include a neural processing unit configured to determine encoded image data by encoding the input image data with an image data encoder portion of a camera autoencoder. The camera autoencoder may be trained based on training image data collected from the camera sensor and a fingerprint specific to the hardware camera. The hardware camera may also include a camera communication interface configured to transmit the encoded image data to a remote computing system, which may determine decoded image data by decoding the encoded image data via an image data decoder portion of the camera autoencoder.
A method includes identifying an image captured by an image capture device set at a first angle about an axis, the image corresponding to a time at which the image was captured, identifying within the image, a region of interest including an object to be used for calibration, determining, an image coordinate at which the object is displayed within the image, determining a camera angle corresponding to a position of the image capture system relative to the axis when the image was captured, identifying a bearing of the object relative to the reference direction, the bearing of the object determined using a geolocation of the image capture system and the time at which the image was captured, and determining, using the image coordinate, the camera angle, and the bearing of the object, an angular offset between the first angle and the reference direction to determine a second angle.
A controller may receive information identifying an area of interest from a plurality of candidate areas of interest including locations on the machine and external to the machine. The controller may obtain, using the one or more first sensor devices, data identifying material located at the area of interest; and generate a graphical representation based on the data. The controller may determine, using the one or more second sensor devices, at least one of a position or an orientation of one or more portions of the machine; and identify a portion of the graphical representation based on the at least one of the position or the orientation of the one or more portions. The portion may correspond to the material located at the area of interest. The controller may determine, using one or more computational models, a volume of the material based on the portion of the graphical representation.
Provided are a depth image processing method, a depth image processing apparatus, an electronic device and a readable storage medium. The method includes: (101) obtaining consecutive n depth image frames; (102) determining a trusted pixel and determining a smoothing factor corresponding to the trusted pixel; (103) determining a time similarity weight; (104) determining a content similarity; (105) determining a content similarity weight based on the content similarity and the smoothing factor; and (106) performing filtering processing on a depth value of the trusted pixel based on all time similarity weights and all content similarity weights.
A method and a system for medical image interpretation are provided. A medical image is provided to a convolutional neural network model. The convolutional neural network model includes a feature extraction part, a first classifier, and N second classifiers. N feature maps are generated by using the last layer of the feature extraction part of the convolutional neural network model. N symptom interpretation results of N symptoms of a disease are obtained based on the N feature maps through the N second classifiers. A disease interpretation result of the disease is obtained based on the N feature maps through the first classifier.
In this invention, a control unit in an ophthalmic image processing device acquires an ophthalmic image captured by an ophthalmic image capture device (S11). The control unit, by inputting the ophthalmic image into a mathematical model that has been trained by a machine-learning algorithm, acquires a probability distribution in which the random variables are the coordinates at which a specific site and/or a specific boundary of a tissue is present within a region of the ophthalmic image (S14). On the basis of the acquired probability distribution, the control unit detects the specific boundary and/or the specific site (S16, S24).
A method for processing images is described, wherein a scenery is recorded as at least one raw image by at least one optical capture means mounted on a vehicle, and wherein image data of the scenery are mapped incompletely and/or erroneously in the subsequently rendered render image in at least one area. In order to provide a user of one or more cameras on a motor vehicle, that have visibility restrictions with a more agreeable visual experience, the method includes identifying the area(s) of incomplete and/or erroneous mapping in the render image on the basis of existing visibility restrictions, generating masks that enclose the area(s) of incomplete and/or erroneous mapping as masked areas, reconstructing image data in unmasked areas of the render image by means of digital inpainting and synthesizing together with the masked areas to produce a correction image, and displaying the completed and/or debugged correction image.
Systems, devices, media, and methods are presented for segmenting an image of a video stream with a client device, identifying an area of interest, generating a modified area of interest within one or more image, identifying a first set of pixels and a second set of pixels, and modifying a color value for the first set of pixels.
A display device according to an embodiment may include a controller and a display unit. The controller may perform tone mapping for adjusting luminance of input image data, and the display unit may display an image according to output image data whose luminance is adjusted by the tone mapping. The controller may generate a base mapping curve for an entire region from the input image data, extract information for each local region of the entire region, and generate a local mapping curve reflecting the information for each local region with respect to each local region to perform tone mapping.
A system and method for training a neural network to denoise images. One noise realization is paired to an ensemble of training-ready noise realizations, and fed into a neural network for training. Training datasets can also be retrospectively generated based on existing patient studies to increase the number of training datasets.
Provided is an image processing apparatus including a memory storing one or more instructions and a processor configured to execute the one or more instructions stored in the memory, wherein the processor is further configured to execute the one or more instructions to generate a second image by performing a deconvolution operation on a first image and a kernel comprising one or more weights, set values of the one or more weights based on the second image, and adjust the values of the one or more weights based on positions of the one or more weights in the kernel.
A method includes obtaining a Bayer input image. The method also includes generating, using at least one processing device of an electronic device, multiple YUV image frames based on the Bayer input image using non-linear scaling, where the YUV image frames are associated with different exposure settings. The method further includes generating, using the at least one processing device of the electronic device, a fused image based on the YUV image frames. In addition, the method includes applying, using the at least one processing device of the electronic device, global tone-mapping to the fused image in order to generate a tone-mapped fused image, where the global tone-mapping is based on a first cubic spline curve.
Disclosed is an editing system for postprocessing three-dimensional (“3D”) image data to realistically recreate the effects associated with viewing or imaging a represented scene with different camera settings or lenses. The system receives an original image and an edit command with a camera setting or a camera lens. The system associates the selection to multiple image adjustments. The system performs a first of the multiple image adjustments on a first set of 3D image data from the original image in response to the first set of 3D image data satisfying specific positional or non-positional values defined for the first image adjustment, and performs a second of the multiple image adjustments on a second set of 3D image data from the original image in response to the second set of 3D image data satisfying the specific positional or non-positional values defined for the second image adjustment.
In one embodiment, a method includes accessing multiple 3D photos to be concurrently displayed through multiple frames positioned in a virtual space, each of the of 3D photos having an optimal viewing point in the virtual space and determining a reference point based on a head pose of a viewer within the virtual space. The method may further include adjusting each 3D photo by rotating the 3D photo so that the optimal viewing point of the 3D photo points at the reference point, translating the rotated 3D photo toward the reference point, and non-uniformly scaling the rotated and translated 3D photo based on a scaling factor determined using the reference point and a position of the frame through which the 3D photo is to be viewed. The method may further include rendering an image comprising the adjusted multiple 3D photos as seen through the multiple frames.
The present invention relates to a method of producing a 3D centerline of an organ vessel from a plurality of 2D x-ray images. The method comprises the steps of producing a point-cloud of 3D points which represent intersecting and non-intersecting points between projection lines from the 2D images to their respective x-ray sources; fitting a compound curve to the points in the point-cloud of 3D points; removing outliers from the point-cloud; fitting a new compound curve to the remaining points in the point-cloud of 3D points; and repeating certain steps, wherein the resultant compound curve represents the 3D centerline of the organ vessel. The method minimizes reconstruction errors and produces an optimally-reconstructed 3D vessel skeleton.
Visually seamless grafting of volumetric data. In some implementations, a method includes obtaining volumetric data that represents a first volume including one or more three-dimensional objects. Planar slices of the first volume are determined and for each planar slice, a result region and an outer region are determined, the outer region located between the result region and an edge of the planar slice. A target region is determined within the result region and adjacent to an edge of the result region. The result region is modified by updating source voxels in the target region based on corresponding continuity voxels in the outer region, and the updating is weighted based on a distance of each source voxel from an associated edge of the result region. The modified result regions are grafted to a second volume at the edge of the result regions to provide a grafted volume.
A method for generating a more accurate mesh that represents a 3D printed part based on a model includes slicing the model into layers and identifying an infill-wall boundary and an exterior-interior boundary of each layer of the model. Layers of the model may be identified as critical by iterative comparison with adjacent layers. An interior voxel mesh may be constructed based on common two-dimensional reference grids imposed on the critical layers. The interior voxel mesh may be augmented to an augmented mesh and then extended to a protomesh. The protomesh may be extruded to construct the final mesh, which may be analyzed by finite element analysis. The part may be 3D printed based on the layers output by the slicing operation.
A system may provide for searching terrain data of real-world locations based on input representing a terrain for a game world. The system may receive terrain inquiry data including height data for terrain of a game world, generate an inquiry descriptor based on the terrain inquiry data at least in part by applying a plurality of filters to the terrain inquiry data, the inquiry descriptor including a plurality of inquiry descriptor values corresponding to the plurality of filter and determine, based on the inquiry descriptor and respective sample descriptors of one or more terrain samples corresponding to terrain of real-world locations, one or more matching terrain samples.
A three-dimensional image transformation, executing on one or more computer systems, can mathematically transform a first two-dimensional image space onto a second two-dimensional image space using a three-dimensional image space. The three-dimensional image transformation can project the three-dimensional image space onto the first two-dimensional image space to map the first two-dimensional image space to the three-dimensional image space. Thereafter, the three-dimensional image transformation can project the second two-dimensional image space onto the three-dimensional image space to map the three-dimensional image space to the second two-dimensional image space.
One embodiment provides for a graphics processing unit comprising a processing cluster to perform multi-rate shading via coarse pixel shading and output shaded coarse pixels for processing by a post-shader pixel processing pipeline.
A digital makeup artist system includes a mobile device, a database system storing cosmetic routine information, common makeup looks, cosmetic products for skin types and ethnicity, and user look preferences of a user. The mobile device includes a user interface for interacting with a digital makeup artist. The digital makeup artist performs an interactive dialog with the user in order to capture needs of the user, including types of makeup look, indoor or outdoor look, skin condition, facial problem areas, favorite facial features. The computation circuitry analyzes the user's face image to identify face parts, analyzes the face image to determine facial characteristics, and generates image frames to be displayed in synchronization with the interaction with the digital makeup artist based on the analyzed face image, needs of the user, the stored cosmetic routine information, common makeup looks, cosmetic products for skin types and ethnicity, and the user look preferences.
The present invention provides a system for retailers to monitor and track customer interaction with a product in a retail environment. The system of the present invention utilizes RFID tagged products and communicating with near field communication in an Internet of Things environment for a more comprehensive relationship between customers and the products of interest. Where the products are not so connected, the system of the present invention alerts the need for same.
A method for monitoring disease across agricultural areas of interest is provided comprising displaying at least one virtual zone corresponding to an agricultural geographic area of interest on a map in an application on a first device, and receiving an alert message when the first device is in proximity to a virtual zone. The at least one virtual zone is defined by at least one geofence. Each virtual zone is associated with a level of risk that indicates a likelihood of an outbreak of a disease detrimental to agriculture. Each virtual zone is configured to receive access notification information from each geofence when tracked devices enter an area defined by that geofence. The access information includes the level of risk associated with other virtual zones from which the tracked devices came. The alert message indicates if the first device should enter that virtual zone.
Embodiments of the present methods and systems are directed to a system and method for managing and editing accounting periods. Particularly, the embodiments are directed to a financial management system that allows for the recordation of financial transactions without first requiring the creation of a user-defined accounting period, and that further allows for the creation, modification, and closure of defined accounting periods.
A method for predicting a financial product price based on an accumulation distribution indicator includes the following steps: step S1: inputting, by a user, a ticker symbol; step S2: calculating, by a system, an accumulation distribution indicator value based on daily trade data; step S3: calculating an accumulation distribution interval and an average candlestick; step S4: determining whether the accumulation distribution indicator breaks through the accumulation distribution interval upward or downward; if the accumulation distribution indicator breaks through the accumulation distribution interval upward or downward, going to step S6, otherwise, going to step S5; step S5: displaying a chart with the average candlestick; and step S6: displaying a breakout mark, where the breakout mark is a rising mark if an upward breakout occurs or is a falling mark if a downward breakout occurs, and displaying the chart with the average candlestick.
A user terminal for communicating with a computer server is operated on behalf of a first user (a second user terminal is operated on behalf of a second user). The user terminal transmits to the computer server pre-trade information including an order and receives first offset information that indicates a first price offset value, which is different from a second price offset value sent to the second user terminal. The terminals receive a single message from the server that indicates a market price but does not include the first price offset value or the second price offset value. The user terminal modifies the market price using the first price offset value to obtain a first actual price different from a second actual price corresponding to a modification of the market price based on the second price offset value.
The disclosed computer-implemented method for pooling and transferring digital assets may include detecting a transaction event for a blockchain ledger. The blockchain ledger may include transaction records for a pool of digital assets and accounts collectively owning the digital assets. Each account may own a proportional portion of the digital assets corresponding to an account asset balance. The method may also include calculating an exchange rate based on a cash balance of the pool, a liabilities balance of the pool, and an ownership distribution value. The ownership distribution value may be based on a distribution of the account asset balances. The method may also include updating the cash balance based on the exchange rate and the transaction event, and adding a transaction record for the transaction event to the plurality of transaction records. Various other methods, systems, and computer-readable media are also disclosed.
A method of a pricing scheme and a bidding process for waste collection services comprising: providing a waste management service, determining a price for the waste collection services, providing a bidding process for a hauler to participate in the waste collection services, and selecting a hauler based on the bidding process.
In the proposal system, sales performance information that is related to a device is acquired and information that is related to a usage situation of a device is accepted from a customer. A device to be a purchase target is inferred by a learned model based on the information that is related to the usage situation of the device and the sales performance information, and then a proposal information is outputted as a result of that inference.
A method of generating a user-interface to be displayed at a remote location may include receiving a search request for an item listing and retrieving a first listing and a second listing based on the search request, determining a similarity score between the first and second listings that is based on multiple properties common to the first and second listings, and generating instructions to be transmitted to a remote location to generate a user interface to be displayed at the remote location, the user interface including the first listing, the instructions excluding the second listing from a list of results displayed on the user interface based on the similarity score exceeding a threshold and the first listing including superior values in at least one of the plurality of properties common to the first and second listings. The method may also include transmitting the instructions to the remote location for display.
Systems and methods disclosed herein provide a geo-targeted online reservation system that ensures authenticity of customer devices requesting reservations by generating reservations only if threshold authentication conditions are satisfied. For example, a computing device registered with a server system receives inputs for requesting a reservation of a limited release product and for configuring the product. To authenticate the computing device, the server device transmits an electronic message to the computing device requesting the computing device to respond. A response to the message is one threshold authentication condition for generating the reservation. Upon determining that one or more threshold authentication conditions are satisfied, the server device generates a reservation for the product.
A system for managing advertisements in an in-flight entertainment (“IFE”) system operating on an airplane can include an inventory processing device and a non-transitory computer readable medium. The non-transitory computer readable medium can be communicatively coupled to the inventory processing device to cause the inventory processing device to perform operations. The operations can include determining an inventory of targeted advertisements for future flights. The operations can further include receiving a request to use a portion of the inventory for advertisements associated with an advertiser. The operations can further include transmitting instructions to an IFE controller on-board the airplane to cause the IFE controller to provide the advertisements during targeted advertisement opportunities during a flight.
Various embodiments of an apparatus, method(s), system(s) and a computer program product(s) described herein are directed to a Offer Engine. The Offer Engine extracts one or more features from data associated with a first user requesting access to a portion of content of a content corpus. The Offer Engine feeds at least one of the features of the first user into a decision tree. The decision tree has multiple levels, wherein at least one level comprises a plurality of leaves and each respective leaf implements at least one machine learning model. The Offer Engine determines whether to provide the first user with a subscription fee offer first option or a non-subscription fee offer second option based at least in part on output of the decision tree.
The present disclosure provides for management of impressions in advertisement campaigns. Impressions may be moved between different impression media based on performance metrics and historical data. Impression budgets may be modified in an active campaign based on forecasts determined using current performance data. Impression budgets may be reallocated between simultaneously active advertisement campaigns.
The present disclosure provides for management of impressions in advertisement campaigns. Impressions may be moved between different impression media based on performance metrics and historical data. Impression budgets may be modified in an active campaign based on forecasts determined using current performance data. Impression budgets may be reallocated between simultaneously active advertisement campaigns.
Disclosed are systems and methods for improving interactions with and between computers in content providing, searching and/or hosting systems supported by or configured with devices, servers and/or platforms. The disclosed systems and methods provide a novel framework for analyzing messages associated with an inbox of a user, and providing functionality to the inbox for alerting the user to specific forms of content included within each message. Such functionality can include displaying messages and/or the content contained therein in a novel, dedicated and modified and/or embedded portion of a message inbox. The messages can also be modified upon display within in the inbox to indicate that the message includes content of a specific type. Also, messages that include specific content types can also trigger the disclosed framework to generate and provide alerts to the user indicating the inbox has received or includes specific forms of such content.
An upsell purchase flow in an e-commerce system is provided. After a customer has purchased a product from a vendor, an upsell opportunity is provided to the customer through an upsell pitch page. The upsell pitch page advertises an additional upsell product in order to maximize the purchase transaction with the customer. Responsive to the customer accepting the upsell opportunity, rather than adding the upsell product to an electronic shopping cart, a marketplace server that facilitates transactions between the customer and the vendor charges the customer for the upsell product at that time. Multiple upsell opportunities may be provided to the customer after the initial sale is completed.
A method of optimizing an offer value to be offered to a selected group of consumers includes selecting a series of products, wherein each are serialized unique code marked; selecting a target group of consumers from a consumer database, each consumer with a registered consumer profile in the consumer database, the selecting based on a set of criteria; selecting a first subgroup of consumers from the target group of consumers; determining an initial offer value of the uniquely code marked product to be presented to the initial first subgroup of consumers; distributing (offering) the initial offer value to the selected initial first subgroup of consumers; a number of the selected initial first subgroup of consumers accepting the offer; associating the code of the uniquely code marked product to the acceptance of offer to the consumer profile of each the accepting consumer in the first subgroup of consumers; summing the number of accepted uniquely code marked products to a first uptake value as a function of the initial offer value; registering the initial offer value and the first uptake value in order to calculate a first initial profit value; repeating, for a number of second, third, . . . time, the following steps: selecting a second, third, . . . subgroup of consumers from the target group of consumers; determining a second (third, . . . ) offer value of the uniquely code marked product to be presented to the second, third, . . . subgroup of consumers, being different from the first offer value; distributing (offering) the second (third, . . . ) offer value to the selected second, third, . . . subgroup of consumers; a number of the selected second group of consumers accepting the second, third, . . . offer; associating the code of the uniquely code marked product to the accepted second (third, . . . ) offer value to the consumer profile of each the accepting consumer; summing the second (third, . . . ) number of accepted uniquely code marked products to a second (third, . . . ) uptake value as a function of the second (third, . . . ) offer value; registering the second (third, . . . ) offer value and the second (third, . . . ) uptake value in order to calculate a second, (third, . . . ) initial profit value; thus establishing a set of uptake values as a function of offer values, and their calculated or estimated corresponding profit values; based on these data points, establishing a relationship of profit as a function of offer value; selecting from the relationship a near-optimal offer value giving a near-optimal profit; distributing (offering) the optimal offer value to a large part of or all of the selected target group of consumers.
Systems and methods generate a risk score for an account event. The systems and methods automatically generate a causal model corresponding to a user, wherein the model estimates components of the causal model using event parameters of a previous event undertaken by the user in an account of the user. The systems and methods predict expected behavior of the user during a next event in the account using the causal model. Predicting the expected behavior of the user includes generating expected event parameters of the next event. The systems and methods use a predictive fraud model to generate fraud event parameters. Generation of the fraud event parameters assumes a fraudster is conducting the next event, wherein the fraudster is any person other than the user. The systems and methods generate a risk score of the next event to indicate the relative likelihood the future event is performed by the user.
A computer-implemented method for automatically analyzing handwritten text to determine a mismatch between a purported writer and an actual writer is disclosed. The method comprises receiving two samples of digitized handwriting each allegedly created by one individual and received and entered into a digital system by another. The method further comprises performing a series of feature extractions to convert the samples into two vectors of extracted features; automatically clustering a set of vectors such that the first vector and the second vector are assigned to the same cluster among multiple clusters, based on vector similarity; and automatically determining that a same individual being associated with both the first and second samples indicates a heightened probability that the individual fraudulently created both samples. Finally, the method comprises automatically transmitting a message to flag additional samples of digitized handwriting entered into a digital system as possibly fraudulent.
A method for regulating an unmanned aerial vehicle (UAV) includes receiving a UAV identifier and one or more types of contextual information broadcasted by the UAV. The UAV identifier uniquely identifies the UAV from other UAVs. The one or more types of contextual information includes at least geographical information of the UAV. The method further includes authenticating, via an authentication device, an identity of the UAV based on the UAV identifier to determine whether the UAV is authorized for operation, and transmitting a signal to a remote device in response to determining whether the UAV is authorized for operation.
A fraud detection platform may receive transaction data relating to a transaction conducted by a user with a transaction card. The fraud detection platform may receive, from a biometric sensor of the transaction card, biometric data relating to one or more biometric characteristics of the user during the transaction. The fraud detection platform may receive, from an accelerometer of the transaction card, card movement data relating to a measure of shaking of the transaction card by the user during the transaction. The fraud detection platform may process the transaction data, the biometric data, and the card movement data, with a fraud detection model, to determine a fraud score associated with the transaction. The fraud detection platform may perform one or more actions based on the fraud score.
Machine learning models for fraud detection. The method includes receiving a schedule of weights, the schedule comprising a plurality of entries, each entry comprising a transaction value weight, a transaction volume weight, and a range of intervention rates; testing the at least one machine learning model using a holdout data set, resulting in a ranked transactions data set; and evaluating the performance of the at least one machine learning model by computing the weighted harmonic mean of the ranked transactions data set using the schedule of weights.
A method includes receiving a request to open an account associated with a customer, information regarding the account, and a mobile device identifier. The mobile device identifier is received from a third-party computing system based on a first wireless communication between the mobile device and the third-party computing system. The method includes validating the mobile device as belonging to the customer based on the received mobile device identifier and binding the mobile device identifier to the customer based on the validation. The method includes establishing the account for the customer based on the received information regarding the account and generating a token for the account. In response to establishing the account and generating the token, the token is provided to the third-party computing system and provisioned to the validated mobile device via a second wireless communication between the mobile device and the third-party computing system.
A computer-implemented method for managing cryptocurrency is disclosed. A plurality of users are provided with an in-marketplace wallet suitable for storing linked digital tokens that are linked in value to cryptocurrency tokens and are required to transact on a digital marketplace platform. A cryptocurrency reserve is provided for storing cryptocurrency tokens. Responsive to a user purchasing linked digital tokens from a marketplace store, linked digital tokens are transferred to the in-marketplace wallet an equivalent value of cryptocurrency tokens are transferred to the cryptocurrency reserve. Responsive to a user withdrawing a number of linked digital tokens from the in-marketplace wallet, the desired number of linked digital tokens are removed from the user's in-marketplace wallet and an equivalent value of cryptocurrency tokens are transferred from the cryptocurrency reserve to an out-of-marketplace wallet of the user for storing cryptocurrency tokens outside of the marketplace platform.
A payment instrument comprising a bottom layer; one or more intermediate layers, wherein at least one of the one or more intermediate layers comprises: a chip comprising a processor and memory; an antenna coupled with the chip; an absorbent medium; and one or more reservoirs comprising beads, each of the beads comprising dyes of one or more colors, the beads configured to release the dyes onto the absorption medium. The dyes cure on the absorption medium at a rate based on a curing agent applied to the absorbent medium or included in beads of the reservoirs. The payment instrument may also comprise a top layer having at least a partially translucent portion above the absorption medium, wherein the absorption medium is at least partially visible through the at least one partially translucent portion.
An information display method, a storage medium, and an electronic device are provided. The method includes: obtaining, by a terminal, resource transfer information used for transferring a resource; splitting, by the terminal, the resource transfer information into multiple pieces of resource transfer sub information; and displaying, by the terminal, a dynamic screen for indicating the resource transfer sub information. A quantity of pieces of the resource transfer sub information indicated on the dynamic screen at one moment is less than a total quantity of the multiple pieces of resource transfer sub information.
A waste management system includes a waste management device, a monitoring unit, and a communication unit. The waste management device includes a collection unit, a classification unit, a segregation unit, a plurality of sensors, a power unit, and a plurality of waste bins. The collection unit collects one or more waste articles. The classification unit utilizes a machine-learning model and identifies a waste category of the one or more waste articles. The segregation unit transports the one or more waste articles to a particular waste bin corresponding to the identified waste category. The power unit supplies power to the waste management device. The monitoring unit monitors the waste management device and controls a resultant action. The communication unit communicates one or more data between a control station and the waste management device using a plurality of IoT devices.
An embodiment provides a method, including: obtaining, via a server, a set of event data corresponding to a milestone; automatically determining, using a central service implemented in the server processor and without additional user input, an overlap between said set of event data and a predetermined scheduling milestone indicating an event overlap; identifying, using the central service a processor, one or more display elements impacted by the event overlap; and automatically updating, using the central service and in real-time during the patient procedure, the one or more display elements according to the overlap. Other embodiments are described and claimed.
Methods, apparatus, systems, and computer-readable media are provided for increasing dimensionality of data structures associated with filling positions. In some implementations, a prediction of desired experience for a given position to be filled may be incorporated into a searchable field of the data structure. Among other things, increasing the dimensionality of the data structure may facilitate more granular searching of positions and guided creation of new positions to be filled. In some implementations, a predicted desired experience may be used to notify a user posting a new position whether a specified desired experience corresponds to a predicted desired experience.
The electronic shipping label device may display a shipping label image or shipment information using an electronic paper display, and may be attached to an item for shipment of the item from an origin to a destination. A host device, such as an electronic device of a user, may configure the electronic shipping label device to display the shipping label image. The host device may be configured to communicate with a system server of a shipping management system to provide shipping parameters corresponding to the shipment and receive the shipping label image (e.g., from a third-party system, such as a system associated with a shipping carrier). The host device may transmit the shipping label image to the electronic shipping label device for display.
Systems, methods and devices are provided for real-time tracking a location an asset (e.g., package) that is in transit (rail, air, truck, etc.) and real-time monitoring of environmental conditions that the asset is subjected to during transit such as temperature, light exposure, barometric pressure, and other conditions.
A shipping management system comprising a memory configured with shipping records representing shipments from a plurality of carriers and scheduling rules that specify a plurality of update frequencies. The shipping management system comprises a processor coupled to the memory. The shipping management system comprises a non-transitory computer readable medium comprising a set of computer executable instructions, the computer executable instructions executable by the processor to dynamically schedule, according to the scheduling rules, updates to update the shipping records; based on the dynamic scheduling, issue update application programming interface (API) calls according to APIs of carrier systems of respective carriers to request shipment data for the shipments; and update the shipping records based on the shipment data returned in response to the API calls.
A computer based system for taking the physical inventory of liquids dispensed in full and partially full containers. A database stores images of containers and their associated volumes. The containers to be inventoried are identified by a user and input to a computer at a graphical user interface (GUI) input/output. A computer causes the display of an image of the container and a sliding level indicator at the GUI. The level indicator is slidable along the image. The computer calculates a volume of liquid remaining in the container as a function of the position of the level indicator along the image of the container.
The disclosed computer-implemented method may include identifying and notifying requestors that may be candidates for a particular autonomous vehicle in order to find those candidates that may be willing or able to relax their travel constraints to match the autonomous vehicle. A request flow may involve surfacing the potential option of matching to an autonomous vehicle before setting a specific destination. For example, the request flow may involve determining that an autonomous vehicle is sufficiently near an in-session potential requestor. Before the potential requestor enters a specific destination, the request flow may present the possibility of the potential requestor being matched with the autonomous vehicle. In some examples, the request flow may then provide available drop-off locations that are compatible with the autonomous vehicle for selection by the potential requestor. Various other methods, systems, and computer-readable media are also disclosed.
A method for accelerating machine learning on a computing device is described. The method includes hosting a neural network in a first inference accelerator and a second inference accelerator. The neural network split between the first inference accelerator and the second inference accelerator. The method also includes routing intermediate inference request results directly between the first inference accelerator and the second inference accelerator. The method further includes generating a final inference request result from the intermediate inference request results.
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for predicted brain data of a patient. One of the methods includes receiving montage configuration data for a specified montage; receiving raw EEG data captured using the specified montage from a brain of a particular subject; generating, using the montage configuration data and the raw EEG data, EEG connectivity data for the specified montage; using a generative neural network to map the EEG connectivity data to predicted fMRI connectivity data, the generative neural network having been trained using training EEG-fMRI connectivity data pairs, each pair comprising EEG connectivity data of a subject and fMRI connectivity data of the same subject; and taking an action based on the predicted fMRI connectivity data.
A neural network apparatus configured to perform a deconvolution operation includes a memory configured to store a first kernel; and a processor configured to: obtain, from the memory, the first kernel; calculate a second kernel by adjusting an arrangement of matrix elements comprised in the first kernel; generate sub-kernels by dividing the second kernel; perform a convolution operation between an input feature map and the sub-kernels using a convolution operator; and generate an output feature map, as a deconvolution of the input feature map, by merging results of the convolution operation.
Various embodiments herein each include at least one of systems, methods, software, and data structures for context-aided machine vision. For example, one method embodiment includes identifying a customer in a shopping area and maintaining an item bin in a computing system of data identifying items the customer has picked up for purchase. This method further includes receiving an image of the customer holding an item and performing item identification processing on the image to identify the item the customer is holding. The item identification processing may be performed based in part on a stored shopping history of the customer indicating items the customer is more likely to purchase. The identified item is then added to the item bin of the customer.
An operating method of a computing apparatus is provided. The operating method of the computing apparatus includes obtaining a reference image; obtaining a distorted image generated from a reference image; obtaining an objective quality assessment score of a distorted image that is indicative of a quality of a distorted image as assessed by an algorithm, by using a reference image and a distorted image; obtaining a subjective quality assessment score corresponding to a objective quality assessment score; and training a neural network, by using a distorted image and a subjective quality assessment score as a training data set.
Systems and methods for pre-fetching results from large language models (LLMs) are provided. The method includes acquiring a context of an interaction between a user and an Artificial Intelligence (AI) character; predicting, based on the context, one or more anticipated words to be uttered by the user; generating, based on the one or more anticipated words, at least one query to an LLM; providing the at least one query to the LLM; generating, based on at least one response obtained from the LLM, an anticipated reply of the AI character model to the one or more anticipated words to be pronounced by the user; receiving one or more words uttered by the user; determining that a level of a discrepancy between the one or more words and the one or more anticipated words is below a predetermined threshold; and providing the anticipated reply to the user.
Systems and methods for model evaluation. A model is evaluated by performing a decomposition process for a model output, relative to a baseline input data set.
In a general aspect, input data for a computer process are preprocessed by a preprocessor unit that includes a quantum processor. In some aspects, a preprocessor unit obtains input data for a computer process that is configured to run on a computer processing unit. Randomized parameter values are computed for variable parameters of a quantum logic circuit based on the input data. A classical processor in the preprocessor unit computes the randomized parameter values from the input data and a set of random numbers. A quantum processor in the preprocessor unit produces quantum processor output data by executing the quantum logic circuit having the randomized parameter values assigned to the variable parameters. Preprocessed data generated based on the quantum processor output data are then provided as the input for the computer process configured to run on the computer processing unit.
Aspects and implementations provide for mechanisms of detection and decoding of barcodes in images. The disclosed techniques include estimating dimensions of a module of a barcode based on geometric characteristics of a barcode image, forming hypotheses that group modules into barcode symbols, and assessing viability of formed hypotheses. Various operations of the techniques may involve the use of neural networks, including estimation of module dimensions and assessment of groupings of modules into lines and lines into barcode symbols. The techniques may be used for decoding of barcodes captured in images of unfavorable conditions, including blur, perspective, sub-optimal lighting, barcode deformation, and the like. The techniques may be applied to decoding linear one-dimensional barcodes, two-dimensional barcodes, and stacked linear barcodes.
Color Holographic Quick Response CHQR labels are scanned at identified locations by scanners that add their time, location, identification and process coded in the labels. The scanners scan and send that information and the scan data to a database having identification of all labels. The database verifies the scanner information to avoid counterfeiting. The information is hashed in the database, scanner and labels. Multiple labels of different types have distributed parts of the coded information and a decoding key. Color Holographic Quick Response labels have integrated radio frequency labels.
A system and methods for providing aiming guidance for an imaging system. The system includes an illumination field source configured to provide illumination along a illumination optical axis to (i) illuminate a target and (ii) indicate a near field of view of the imaging system and a far field aiming source configured to provide a radiation pattern along an aiming optical axis to indicate a far field of view of the imaging system. Near field optics are configured to receive the first illumination from the near field illumination source and to form the first illumination to provide illumination to, and indicate to a user or machine vision system, the near field of view of the imaging system, and far field optics are configured to receive radiation from the aiming source and provide the radiation pattern to the far field to indicate the far field of view of the imaging system.
Imaging devices, systems, and methods for identifying an operation mode of an imaging device and processing imaging data based on the operation mode are described herein. An example device includes: a first imager operable to receive light from a first field of view (FOV) and configured to capture a first imager stream, a second imager operable to receive light from a second FOV and configured to capture a second imager stream, and a vision application processor that: processes at least a portion of the first imager stream and at least a portion of the second imager stream based on at least one of a commencement of a read session, a trigger event, or a decode event; and processes the second imager stream without regard to any of the read session, the trigger event, or the decode event, and process the first imager stream based on the second imager stream.
The invention relates to a method and to an assembly for writing software and/or firmware onto at least one programmable integrated circuit. According to the invention, the software and/or firmware is written wirelessly by means of RFID data transmission, the at least one programmable integrated circuit being coupled to an RFID front end by means of a wired near-field interface, the RFID front end having an RFID antenna device, and the software and/or firmware to be written being sent wirelessly from an external RFID unit to the RFID antenna device and being written onto the programmable integrated circuit by means of the RFID front end and the near-field interface.
A system and method for configuring an RF network based on machine learning. In some embodiments, the method includes: receiving, by a first neural network, a first state and a first state transition, the first state including: one or more identifiers for available active ports, and a set of available connections between two or more circuit elements, each of the circuit elements being one of: (1) a first circuit type, (2) a second circuit type that operatively connects a circuit element of the first circuit type to one of the available active ports, and (3) the available active ports; and generating, by the first neural network, a first estimated quality value, for the first state transition.
In some implementations, a transaction card may include a card body having a first surface and a second surface opposite the first surface. The transaction card may include an integrated circuit (IC) chip embedded in the card body, and a plurality of first electrical contact sets electrically accessible from the first surface of the card body, where the plurality of first electrical contact sets have electrical connections to the IC chip. The transaction card may include a plurality of first magnetic stripe areas readable from the first surface of the card body. The transaction card may include a plurality of second electrical contact sets electrically accessible from the second surface of the card body, where the plurality of second electrical contact sets have electrical connections to the IC chip. The transaction card may include a plurality of second magnetic stripe areas readable from the second surface of the card body.
Variable data printing operations use static and variable content to create many different documents. An estimation system for printing operations implements accelerated consumable use estimation for variable data printing operations by tagging reused objects having static content. The static content is rendered within the estimation system once and then stored for use in later estimation operations, as needed. Variable content is rendered for each record. Using this process, the estimation system does not need to render reused content repeatedly in providing consumable use estimates.
A message based processor system (1) with a plurality of message based processor system cores (100) is proposed. Cores therein comprise a processor element controller that is configured to receive a message with an indication of a subset processor elements in the core to which it is directed as well as an indication of a target pattern, and to update the state value of the processor elements (Ei) in the subset in accordance with a specification of the target pattern. The processor element controller (PEC) is configurable in an address computation mode selected from a cyclic set of address computation modes, and configured to maintain its computation mode or assume a next address computation mode selected from the cyclic set dependent on a control value of a currently applied pattern element. Therewith a target pattern can efficiently specified.
A method, computer program product, and computing system for receiving a plurality of lock sequences associated with a plurality of objects of the computing device. A plurality of matrices may be generated for each lock sequence of the plurality of lock sequences, thus defining a plurality of lock sequence matrix towers. The plurality of lock sequence matrix towers may be combined, thus defining a combined lock sequence matrix tower. One or more lock sequence conflicts may be identified within the plurality of lock sequences based upon, at least in part, the combined lock sequence matrix tower.
A virtual machine's (VM's) usage of a resource over a first time period may be monitored to determine a load pattern for the VM. A time series analysis of the load pattern may be performed to generate a predictive resource usage model, the predictive resource usage model indicating one or more predicted variations in the usage of the resource by the VM over a second time period. A predicted resource usage of the VM at a future time that is within the second time period may be determined based, at least in part, on the predictive resource usage model. An amount of the resource to allocate to the VM at a current time may be determined based, at least in part, on the predicted resource usage of the VM at the future time and the actual resource usage of the VM at the current time.
A FaaS system comprises a plurality of execution nodes. A software package is received in the system, the software package comprising a function that is to be executed in the FaaS system. Data location information related to data that the function is going to access during execution is obtained. Based on the data location information, a determination is then made of an execution node in which the function is to be executed. The function is loaded into the determined execution node and executing in the determined execution node.
A management computer manages a data processing infrastructure including a server that executes a job and a storage device that is coupled to the server via a network and stores data used for processing in accordance with the job. The management computer includes a disc and a CPU. The disc stores maximum resource amount information, path information, and load information. The CPU computes a free resource amount of components forming a path to data related to execution of a predetermined job, based on the maximum resource amount information, the path information, and the load information and determines a parallelizable number in a parallel executable processing unit when the predetermined job is executing in the server, based on the free resource amount.
A method includes receiving, by a producer thread of a plurality of producer threads, an offer request associated with an item. The producer thread increases a sequence and determines (i) a chunk identifier of a memory chunk from a pool of memory chunks and (ii) a first slot position in the memory chunk to offer the item. The producer thread also writes the item into the memory chunk at the first slot position. Then, a first consumer thread of a plurality of consumer threads determines the first slot position of the item and consumes the item at the first slot position. A second consumer thread consumes another item at a second slot position in the memory chunk and recycles the memory chunk.
Systems and methods for media production and broadcasting are provided. A method for a video production system according to the present disclosure includes receiving a request for media production assets from different categories from a connected computing device of an end user; determining a plurality of available production assets for each of the categories of production assets; receiving a selection of production assets from the categories of production assets from the connected computing device.
A program generating device comprising circuitry configured to: display a schedule screen, in which, for each of a plurality of processes executed in a system including a plurality of industrial devices, at least a name of a process is associated with a variable that is at least either referenced or changed in a process program representing an operation of one or more of the plurality of industrial devices and executed in the process, a plurality of names of the plurality of processes obtained from a process database that is stored as process information are included, and an execution order of the plurality of processes can be specified; receive a specification of the execution order on the schedule screen; and generate a system program based on the execution order and the variable of each process included in the execution order.
A Multi-site Integrated Session-oriented Transaction (MIST) computing system includes a MIST mapper configured to process a compiled distributed compute session request to determine, for each of at least one remote sets of data, whether to process the remote set of data with one of one or more field nodes or with a cloud node based on a cost of transporting the remote set of data from the proximate field node to the cloud node. In response to determining to process the remote set of data with the cloud node, the MIST mapper is configured to output a data retrieval request to the proximate field node. In response to determining to process the remote set of data with the field node, the MIST mapper is configured to output the computation request to the proximate field node.
The present disclosure is directed toward systems, methods, and non-transitory computer readable media for generating content clusters from topic data and focus data, generating content collections from content clusters, storing and restoring desktop scene layouts, and storing and arranging video call scenes. In some embodiments, the disclosed systems generate content clusters based on topic data and focus data associated with content items within a content management system and/or accessed via the internet. The disclosed systems can also generate content collections for a user account of the content management system from the content clusters. In some embodiments, the content scene system can further store and restore desktop scene layouts for arranging application windows presenting content items. Further, the disclosed systems can store and arrange particular desktop scene layouts for video call scenes.
Methods and systems are provided for declaratively configuring a process and a page for a particular service provider. User interface(s) can be displayed at a user system and include options for declaratively configuring different log in processes and log in pages for the particular service provider. After receiving a selection of one of the options to configure the log in process and the log in page, inputs can be received that specify a type of identifiers associated with a user to be verified as part of the log in process, and an identity verification process to define how the user will be verified as part of the log in process for the service provider.
A method and system of providing users with session-specific layouts during access of an application based on contextual data. The system identifies contextual data for each application access session and associates the contextual data with a particular in-app activity. The in-app activity corresponds to a task that is typically performed by the first user when the specific contextual data is detected. The contextual data can include location data, time and date data, and device type data.
An autonomous driving controller includes a plurality of parallel processors operating on common input data. Each of the plurality of parallel processors includes a general processor, a security processor subsystem (SCS), and a safety subsystem (SMS). The general processors, the SCSs, and the SMSs of the plurality of parallel processors are configured to first, boot the plurality of SCSs from ROM second, boot the plurality of SMSs of the plurality of parallel processors from RAM or ROM, and, third, boot the plurality of general processors of the plurality of parallel processors from RAM. Between booting of the SCSs and the SMSs, at least one of the plurality of SCSs may load SMS boot code into the RAM that is dedicated to the plurality of SMSs.
A method, programming product, and/or system for prefetching instructions includes an instruction prefetch table that has a plurality of entries, each entry for storing a first portion of an indirect branch instruction address and a target address, wherein the indirect branch instruction has multiple target addresses and the instruction prefetch table is accessed by an index obtained by hashing a second portion of bits of the indirect branch instruction address with an information vector of the indirect branch instruction. A further embodiment includes a first prefetch table for uni-target branch instructions and a second prefetch table for multi-target branch instructions. In operation it is determined whether a branch instruction hits in one of the multiple prefetch tables; a target address for the branch instruction is read from the respective prefetch table in which the branch instruction hit; and the branch instruction is prefetched to an instruction cache.
An integrated circuit including a plurality of processing components to process image data of a plurality of image frames, wherein each image frame includes a plurality of stages. Each processing component includes a plurality of execution pipelines, wherein each pipeline includes a plurality of multiplier-accumulator circuits configurable to perform multiply and accumulate operations using image data and filter weights, wherein: (i) a first processing component is configurable to process all of the data associated with a first plurality of stages of each image frame, and (ii) a second processing component of the plurality of processing components is configurable to process all of the data associated with a second plurality of stages of each image frame. The first and second processing component processes data associated with the first and second plurality of stages, respectively, of a first image frame concurrently.
Methods and systems related to parallel computing using heterogeneous networks of computational nodes are disclosed herein. A method for executing a complex computation on a heterogeneous set of computational nodes linked together by a set of links in a network is disclosed. The method includes compiling, using a table of bandwidth values for the set of links in the network, a set of instructions for routing data for the execution of the complex computation. The method also includes configuring a set of programmable controllers on the heterogeneous set of computational nodes with the set of instructions. The method also includes executing the set of instructions using the set of programmable controllers. The method also includes routing data through the network to facilitate the execution of the complex computation by the heterogeneous set of computational nodes and in response to the execution of the instructions.
A system and method for simplifying the creation of documentation, and especially software documentation. A software application, referred to as a source metadata tagger and document compiler is used to add metadata to a final output document. This metadata contains identifiers that are associated with various source files. In this way, the system can easily determine which source file is being reviewed and/or flagged by the reviewer. This information can be used by the ticketing/notification system to create a work item for the appropriate developer or development group. This is vastly simpler than the current system, where human intervention is required to determine which source file is being flagged.
A control system comprises a mobile object control unit for controlling a mobile object; an update control unit for controlling reception of an update program of the mobile object control unit from a server and controlling update of the mobile object control unit by the program; an acquisition unit for acquiring reception information indicating a communication manner for receiving from the server for each program; and a communication control unit for controlling receiving the program from the server, based on the reception information, wherein the acquisition unit is for, when both a first update program and a second update program received after update by the first update program is executed have not been received, acquiring information about change of reception information of the first update program, and the communication control unit is for controlling receiving the first update program based on the information about change acquired by the acquisition unit.
An Android penetration method and device for implementing silent installation based on accessibility services. The method includes: acquiring a second target application by adding a load program to a first target application and adding penetration permissions using an Android decompilation technology; and implementing silent installation of the second target application using an accessibility service technology.
A method and system are provided to construct, from a TensorFlow graph, a common intermediate representation that can be converted to a plurality of compiler intermediate representations (IRs), which enables compiler optimization to be applied efficiently.
A mixed mode programming method permitting users to program with graphical coding blocks and textual code within the same programming tool. The mixed mode preserves the advantages of graphical block programming while introducing textual coding as needed for instructional reasons and/or for functional reasons. Converting a graphical code block or group of blocks to a textual block lets the user see a portion of the textual code in the context of a larger program. Within one programming tool the mixed mode method allows users to learn programming and build purely graphical blocks; then transition into mixed graphical and textual code and ultimately lead to their ability to program in purely textual code. The mixed mode further allows users to program using any combination of drag-and-drop graphical blocks and typed textual code in various forms.
A direct speech-to-speech translation (S2ST) model includes an encoder configured to receive an input speech representation that to an utterance spoken by a source speaker in a first language and encode the input speech representation into a hidden feature representation. The S2ST model also includes an attention module configured to generate a context vector that attends to the hidden representation encoded by the encoder. The S2ST model also includes a decoder configured to receive the context vector generated by the attention module and predict a phoneme representation that corresponds to a translation of the utterance in a second different language. The S2ST model also includes a synthesizer configured to receive the context vector and the phoneme representation and generate a translated synthesized speech representation that corresponds to a translation of the utterance spoken in the different second language.
The present disclosure is directed to systems and methods that include and/or leverage one or more machine-learned language models that generate intermediate textual analysis (e.g., including usage of structural tools such as APIs) in service of contextual text generation. For example, a computing system can obtain a contextual text string that includes one or more contextual text tokens. The computing system can process the contextual text string with the machine-learned language model to generate one or more intermediate text strings that include one or more intermediate text tokens. The computing system can process the one or more intermediate text strings with the machine-learned language model to generate an output text string comprising one or more output text tokens. The one or more intermediate text strings can include textual analysis of the contextual text string that supports the output text string.
Embodiments relate to decoding communications with token sky maps. At least one electronic communication including emoticons having a non-original meaning is received. A candidate meaning is determined for the emoticons having the non-original meaning in the at least one electronic communication based at least in part on token neighborhood distribution structures. The candidate meaning for the emoticons having the non-original meaning is caused to be displayed on at least one device.
An index value assignment device comprises: a selection unit that prompts a user to select, from a sentence, one or more words that the user feels to have a same degree of a predetermined index value with respect to one or more first words for which the index value is known; a validation unit that validates the selection result by the user on a basis of the index value of a second word for which the index value is known from among the one or more words included in the selection result; and a determination unit that determines the index value with respect to a third word for which the index value is unknown from among the one or more words selected by the user, on a basis of the index value of the first word according to the selection result for which the selection result is determined to be valid. Consequently, the efficiency of assigning word familiarity is increased.
A missing glyph replacement system is described. In an example, a Unicode identifier of a missing glyph is obtained and glyph metadata describing a glyph cluster that includes the Unicode identifier is obtained from a cache maintained in the storage device, e.g., as part of preprocessing. From this, the system obtains glyphs from the font using Unicode identifiers included in the glyph cluster. The system uses a representative glyph from these glyphs to verify the glyph cluster, and if verified obtains glyphs based on the cluster. For these obtained glyphs, an amount of similarity is determined for the missing glyph with respect to the plurality of obtained glyphs, e.g., to control output of representations of the obtained glyphs in the user interface. The representations are user selectable via the user interface to replace the missing glyph.
A computer-implemented process is programmed to programmatically receive at a first computer a digital electronic object including a source text that is directed to a target audience and that was composed at a second computer, determine a style value specifying a particular communication style from among different communication styles based on a communication profile of the target audience, evaluate the source text using a trained machine-learning model, receive a classification output from the machine-learning model, generate an output set of suggested edits to the source text based on comparing the classification output to the source text, and transmit the output set of suggested edits to the second computer. The classification output from the machine-learning model includes a modified text based on the source text. The modified text has been classified using the particular communication style specified in the style value.
Various examples are provided related to automated chip design, such as a pareto-optimization framework for automated network-on-chip design. In one example, a method for network-on-chip (NoC) design includes determining network performance for a defined NoC configuration comprising a plurality of n routers interconnected through a plurality of intermediate links; comparing the network performance of the defined NoC configuration to at least one performance objective; and determining, in response to the comparison, a revised NoC configuration based upon iterative optimization of the at least one performance objective through adjustment of link allocation between the plurality of n routers. In another example, a method comprises determining a revised NoC configuration based upon iterative optimization of at least one performance objective through adjustment of a first number of routers to obtain a second number of routers and through adjustment of link allocation between the second number of routers.
A system and method for automatically generating placement of vias within redistribution layers of a semiconductor package are described. In various implementations, a user defines attributes to use for automatic via generation in redistribution layers of a semiconductor package. The circuitry of a processor of a computing device used by the user executes instructions of an automatic redistribution layer (RDL) via generator. The automatic via generator uses the attributes, data indicative of the RDL netlist of signal routes within the RDL, and RDL mask layout data representing the signal masks of the metal layers within the RDL. The processor generates placement of vias for in the RDL based on the attributes and an identification of overlapping regions between metal layers.
A computer-implemented method for designing intervention into the behavior of a real complex system of technical or biochemical nature. The real complex system is modeled by a network of objects and relations between the objects. The objects of the system are represented by network points and the relations are represented by edges between the network points. The states of the objects are described by a parameter set and the relations associated with the edges are described by functions of time.
Disclosed is a method for calculating a pressure loss of a parallel R-type automobile vibration damper. The automobile vibration damper includes a frame, a spring, an axle, a hydraulic cylinder, an upper oil tank, a piston, a lower oil tank, and a resistance adjustment section. The resistance adjustment section is composed of 4 capillaries connected in parallel and solenoid valves. The four capillaries are all coiled into an M shape. The 4 capillaries are R8, R4, R2, and R1 and are connected in series with solenoid valves VR8, VR4, VR2, VR1, respectively. Due to the viscous effect of oily liquid in the cylinder, when the oily liquid flows through the resistance adjustment section, damping can be adjusted by adjusting the configurations SRn of the solenoid valves VR8, VR4, VR2, and VR1.
A region of a CAD model is obtained via user drawing of a boundary for the region in a GUI. The boundary entirely encloses one or more entities and intersects one or more entities. For each intersecting entity, a reference point on the intersecting entity and a reference direction at the reference point are determined. Based on the reference points and reference directions, a candidate set of candidate entities which are spatially compatible with the intersecting entities is searched. A spatial transformation which maps each reference point and reference direction onto a candidate entity of the candidate set is computed. The one or more entirely enclosed entities are replicated according to the spatial transformation, or replication is suggested via a visualization means. In an embodiment, the CAD model is two-dimensional, the intersecting entities are curves, and the reference direction of an intersecting curve is tangent to the intersecting curve.
A device may include a processor, a receiver, and a transmitter. The transmitter may be configured to transmit an audible signal, an inaudible signal, or both. The inaudible signal may be associated with a content identifier of the audible signal. The transmitter may be configured to transmit the audible signal, the inaudible signal, or both, to a first electronic device, a second electronic device, or both. The receiver may be configured to receive a first message that includes a first input and a second message that includes a second input. The processor may be configured to determine whether the first input matches the second input. The transmitter may be further configured to transmit the first message to the first service on a condition that the first input and the second input are determined to match.
A vehicle and control method of the vehicle are provided. The vehicle includes a camera provided on the vehicle and configured to capture an image of an object outside the vehicle, a controller configured to determine a photographing position required for facial recognition from the captured image, a guide configured to guide the photographing position, and a display configured to display a result of the facial recognition.
A communication device may receive a specific signal from a first external device; after the specific signal has been received from the first external device, cause an output unit of the communication device to output specific information obtained by using a public key; after the specific information has been outputted, receive an authentication request in which the public key is used from the first external device; in a case where the authentication request is received from the first external device, send an authentication response to the first external device; after the authentication response has been sent to the first external device, receive connection information from the first external device; and in a case where the connection information is received from the first external device, establish, by using the connection information, a wireless connection between the communication device and a second external device.
The capability to print to a portable document format (PDF) file is provided in a virtualized computing environment that supports a virtual desktop infrastructure (VDI). Printing-related properties, of local printers coupled to a client device, are provided to a host, so that virtual printers at the host can be configured with the printing-related properties. A simulator may be provided at the host to receive the printing-related properties from the client device and to receive a query from a virtualized computing instance for the printing-related properties, instead of the query being directly sent to the client device.
Some memory dice in a stack can be connected externally to the stack and other memory dice in the stack can be connected internally to the stack. The memory dice that are connected externally can act as interface dice for other memory dice that are connected internally thereto. Data protection and recovery schemes provided for the stacks of memory dice can be based on data that are transferred in a single data stream without a discontinuity between those data transfers from the memory dice of the stacks.
Example implementations relate to virtual persistent volumes. In an example, a storage virtualization system receives performance metrics related to usage of a virtual persistent volume by a containerized application. The performance metrics are identified in an application data store profile, and the application data store profile is identified based on an application manifest of the containerized application. The virtual persistent volume is modified based on an analysis of the performance metrics.
A method for managing a memory buffer, a memory control circuit unit, and a memory storage apparatus are provided. The method includes the following steps. Multiple consecutive first commands are received from a host system. A command ratio of read command among the first commands is calculated. The memory storage apparatus is being configured in a first mode or a second mode according to the command ratio and a ratio threshold. A first buffer is configured in a buffer memory to temporarily store a logical-to-physical address mapping table in response to the memory storage device being configured in the first mode, in which the first buffer has a first capacity. A second buffer is configured in the buffer memory in response to the memory storage device being configured in the second mode, in which the second buffer has a second capacity, which is greater than the first capacity.
Systems and methods for scheduling the execution of disk access commands in a split-actuator hard disk drive are provided. In some embodiments, while a first actuator of the split actuator is in the process of performing a first disk access command (a victim operation), a second disk access command (an aggressor operation) is selected for and executed by a second actuator of the split actuator. The aggressor operation is selected from a queue of disk access commands for the second actuator, and is selected based on being the disk access command in the queue that can be initiated sooner than any other disk access command in the queue without disturbing the victim operation.
A data search method for a memory device is provided. The data search method includes: based on a recorded compression mode, vectoring a search data to generate a search data vector, and based on the recorded compression mode, compressing the search data and a plurality of objects in a database; setting a search condition; searching the objects of the database by the search data vector to determine whether the search data is matched with the objects of the database; and recording and outputting at least one matched object of the database, the at least one matched object matched with the search data.
Rather than use one long folding operation to fold data from single-level cell (SLC) blocks into a multi-level cell (MLC) block, a storage system uses a multi-stage folding operation. By breaking up the folding process into stages, SLC blocks involved in an earlier stage can be released prior to a subsequent stage being performed. This can increase performance of the storage system by releasing SLC source blocks sooner and reducing an SLC block budget requirement.
A semiconductor device includes a memory partition. The semiconductor device further includes a plurality of registers. A first register of the plurality of registers, when in operation, controls an operation associated with the memory partition. The semiconductor device additionally includes a memory controller. When in operation, the memory controller accesses a first location of the memory partition concurrently with accessing the first register.
The present disclosure generally relates to writing data to streams. A host device can instruct a data storage device to operate in implied streams mode such that the host device does not need to tell the data storage device the specific stream in which to write data. The data storage device would maintain a list of open append points of specific streams. Upon receiving a write command, the data storage device determines whether the write command is for an already open stream, and if so, write to the specific stream. If not, then the data storage device opens a new stream or write the data to an overflow stream.
The present disclosure is directed to a reference voltage calibration. An apparatus includes a memory and a memory controller including a calibration circuit configured to perform a reference voltage calibration to determine a reference voltage used to distinguish between logic values read from the memory. The reference voltage calibration comprises performing horizontal calibrations at different reference voltage values to determine a range of delay values applied to a data strobe signal at which valid data is read from the memory. The calibration includes determining scores corresponding to ones of the plurality of horizontal calibrations in which a score for a particular one of the plurality of horizontal calibrations is based on a corresponding range of delay values and a reference voltage margin. Thereafter, the calibration circuit selects a calibrated reference voltage based on the scores corresponding to ones of the plurality of horizontal calibrations.
A method includes updating a first metadata log in an NVRAM of a host device corresponding to one or more recent input/output (I/O) operations received by the host device, periodically checking whether the size of the updated first metadata log is greater than a flush limit maintained in the host device, triggering a meta flush thread when the updated first metadata log size exceeds the flush limit maintained in the host device, sending, by a non-volatile memory express (NVMe) driver, a first command for synchronizing the updated first metadata log to one or more solid state drives (SSDs) for updating a second metadata log in the one or SSDs, and discarding, by the host device, metadata of the first metadata log updated in the host device after receiving a second command for acknowledging synchronization completion from the one or more SSDs.
An interface circuit of a memory device including a plurality of memory dies including a plurality of registers corresponding to the plurality of memory dies, respectively, the plurality of registers each configured to store command information related to a data operation command, a demultiplexer circuit configured to provide input command information to a selected register from among the plurality of registers according to at least one of a first address or a first chip selection signal, the input command information being received from outside the interface circuit, and a multiplexer circuit configured to receive output command information from the selected register from among the plurality of registers and output the output command information according to at least one of a second address or a second chip selection signal may be provided.
A media management system including an application layer, a system layer, and a solid state drive (SSD) storage layer. The application layer includes a media data analytics application configured to assign a classification code to a data file. The system layer is in communication with the application layer. The system layer includes a file system configured to issue a write command to a SSD controller. The write command includes the classification code of the data file. The SSD storage layer includes the SSD controller and erasable blocks. The SSD controller is configured to write the data file to one of the erasable blocks based on the classification code of the data file in the write command. In an embodiment, the SSD controller is configured to write the data file to one of the erasable blocks storing other data files also having the classification code.
A memory device includes an array of memory cells and a controller configured to access the array of memory cells. The controller is further configured to program a first number of bits to a first memory cell of the array of memory cells and program a second number of bits to a second memory cell of the array of memory cells. The controller is further configured to following a period after programming the second number of bits to the second memory cell, merge at least a subset of the first number of bits stored in the first memory cell to the second number of bits stored in the second memory cell without erasing the second memory cell such that the second number of bits plus at least the subset of the first number of bits are stored in the second memory cell.
Techniques and devices for managing power consumption of a memory system using loopback are described. When a memory system is in a first state (e.g., a deactivated state), a host device may send a signal to change one or more components of the memory system to a second state (e.g., an activated state). The signal may be received by one or more memory devices, which may activate one or more components based on the signal. The one or more memory devices may send a second signal to a power management component, such as a power management integrated circuit (PMIC), using one or more techniques. The second signal may be received by the PMIC using a conductive path running between the memory devices and the PMIC. Based on receiving the second signal or some third signal that is based on the second signal, the PMIC may enter an activated state.
An electronic device provides, to a display, data to present a user interface that includes a plurality of user interface objects, and a current focus on a first user interface object. While the display is presenting the user interface, the electronic device receives an input that corresponds to a movement of a contact across on a touch-sensitive surface. The electronic device, in response to receiving the input and in accordance with a determination that a first axis is a dominant axis, moves the current focus along the first axis by a first amount and along the second axis by a second amount. The amount of movement of the current focus along the second axis is reduced to a first non-zero amount by a scaling factor that is based on one or more inputs received prior to receiving the input.
The present disclosure generally relates to providing electronic devices with faster, more efficient methods and context-specific user interfaces for indicating time. Such methods and interfaces optionally complement or replace other methods for indicating time. Such methods and interfaces reduce the cognitive burden on a user and produce a more efficient human-machine interface. For battery-operated computing devices, such methods and interfaces conserve power and increase the time between battery charges.
A control device with haptic feedback includes a vibrating plate having a touch surface provided with touch sensors and capable of being vibrated at an ultrasonic frequency by electromagnetic actuators controlled by a control electronics, so as to generate an ultrasonic lubrication effect on the touch surface. A three-dimensional touch interface is fixed to and integral with the touch surface, configured to communicate vibrations of the ultrasonic lubrication effect from the touch surface to the finger of a user by means of the three-dimensional touch interface.
A light-emitting touch panel includes a circuit board, a plurality of light-emitting elements, a shading plate and a cover plate. The light emitting element has a first height in a first direction. The shading plate has a plurality of spacing regions corresponding to the light emitting elements, respectively. A first width is provided between two partition walls of each spacing region in a second direction. Each partition wall has a second height in the first direction, and the second height is greater than the first height. The cover plate has a light-transmitting region, the light emitted by the light-emitting elements passes through the light-transmitting region, and a bright region is formed on the top surface of the cover plate away from the shading plate, wherein a second width of the bright region in the second direction is related to the second height and the first width.
A display panel, a touch control structure and a display device. The display panel includes a display structure layer and a touch control structure layer having a plurality of mesh pattern units in polygonal shapes composed of metal wires. The touch control structure layer includes a Boundary region, and each mesh pattern unit in the Boundary region is provided with a cut that disconnect the metal wires of the mesh pattern unit. The mesh pattern unit includes at least two parallel first sides. The cuts include consecutive cuts and the quantity of cuts in a set of consecutive cuts is less than or equal to three. The consecutive cuts are cuts provided on both the two sides of each mesh pattern unit of at least one mesh patterns units arranged continuously in a first direction and the first direction intersects the first side of each mesh pattern unit.
A cake decoration that enables visual shows controlled by a controller that is either remote to the decoration or integral with the decoration and interacts with a finger controller.
A method includes, while displaying a computer-generated object at a first position within an environment, obtaining extremity tracking data from an extremity tracker. The first position is outside of a drop region that is viewable using the display. The method includes moving the computer-generated object from the first position to a second position within the environment based on the extremity tracking data. The method includes, in response to determining that the second position satisfies a proximity threshold with respect to the drop region, detecting an input that is associated with a spatial region of the environment. The method includes moving the computer-generated object from the second position to a third position that is within the drop region, based on determining that the spatial region satisfies a focus criterion associated with the drop region.
Apparatus and methods for contact-minimized automated teller machine (“ATM”) use and transaction processing using Doppler-radar based gesture recognition and authentication. The apparatus and methods may include an ATM including a millimeter-wave radar transmitter and receiver. Movement of one or more objects, including fingers, within a radar field may be analyzed and translated into gestures and authentication passcode(s). By utilizing the radar field instead of physical buttons or a touchscreen, contact with the ATM may be minimized.
Systems and methods herein describe a multi-modal interaction system. The multi-modal interaction system, receives a selection of an augmented reality (AR) experience within an application on a computer device, displays a set of AR objects associated with the AR experience on a graphical user interface (GUI) of the computer device, display textual cues associated with the set of augmented reality objects on the GUI, receives a hand gesture and a voice command, modifies a subset of augmented reality objects of the set of augmented reality objects based on the hand gesture and the voice command, and displays the modified subset of augmented reality objects on the GUI.
Method of creating shared AR session based on a gesture starts with server receiving observed motion data from first device associated with first user. First device generating observed motion data based on an analysis of data stream comprising images of second user performing a gesture. Second user being associated with second device. Server receiving from second device captured motion data that corresponds to the gesture. Captured motion data being recorded by a sensor included in second device. Server determines whether there is a match between observed motion data from first device and captured motion data from second device. In response to determining that there is the match, server generates shared AR session between first device and second device and causes shared AR session to be displayed by first device and second device. Other embodiments are described herein.
A method for determining a current viewing direction of a user of a pair of data glasses having a virtual retina scan display. The method includes at least the method steps: projecting at least substantially parallel infrared laser beams onto an eye of a user of the data glasses, acquiring two-dimensional images from the infrared laser beams reflected back by the eye of the user, and determining pupil contours in the acquired two-dimensional images. The instantaneous viewing direction of the user of the data glasses is ascertained from a comparison of an instantaneous elliptical shape of the pupil contour with an elliptical shape of a reference pupil contour.
A content display device includes a line-of-sight direction detection unit, a gazing point identification unit, a gazing content identification unit, and a display control unit. The line-of-sight direction detection unit is configured to detect a line-of-sight direction of a person located in a vicinity of a display region in which a plurality of contents are simultaneously displayed. The gazing point identification unit is configured to, based on the line-of-sight direction, identify a gazing point in the display region of the person. The gazing content identification unit is configured to, based on a distribution of the gazing point detected in a predetermined period, identify a gazing content at which the person is gazing. The display control unit configured to determine a display mode of each of the plurality of contents, based on a result of identifying the gazing content, and display each of the plurality of contents in the display mode determined.
A method for disengaging a surgical instrument of a surgical robotic system comprising receiving a gaze input from an eye tracker; determining, by one or more processors, whether the gaze input indicates the gaze of the user is outside or inside of the display; in response to determining the gaze input indicates the gaze of the user is outside of the display, determining an amount of time the gaze of the user is outside of the display; in response to determining the gaze of the user is outside of the display for less than a maximum amount of time, pause the surgical robotic system from a teleoperation mode; and in response to determining the gaze of the user is outside of the display for more than the maximum amount of time, disengage the surgical robotic system from the teleoperation mode.
The present disclosure relates to determining when the head position of a user viewing user interfaces in a computer-generated reality environment is not in a comfortable and/or ergonomic position and repositioning the displayed user interface so that the user will reposition her/his head to view the user interface at a more comfortable and/or ergonomic head position.
A virtual object display device comprises a display and a display control device configured to perform display control of the display. The display control device includes: a coordinate system calculation unit configured to detect movement and rotation of the virtual object display device in a real world, and use an inertial coordinate system in which a coordinate origin thereof follows the movement of the virtual object display device and an effective field of view of the display is rotated therein in accordance with the rotation of the virtual object display device so as to define an arrangement position of an inertial coordinate system virtual object; and a display control unit configured to, when the inertial coordinate system virtual object is included in the effective field of view of the display, display the inertial coordinate system virtual object within the effective field of view.
The present disclosure relates to a fingerprint sensing system and a method performed by the fingerprint sensing system of verifying that setting data of a fingerprint sensor of the fingerprint sensing system has not been modified. In aspect, a method performed by a fingerprint sensing system of verifying that setting data of a fingerprint sensor of the fingerprint sensing system has not been modified is provided. The method comprises blocking access to the fingerprint sensor setting data held in a storage of the fingerprint sensing system, acquiring from the fingerprint sensor a representation of the fingerprint sensor setting data to be utilized upon capturing a fingerprint image, and verifying from the acquired representation if the fingerprint sensor setting data corresponds to fingerprint sensor setting data that previously was written to the storage.
A system receives a request from a user to execute a command on an air-gapped computer system. If a role-based access control system permits the user to execute the command, the system prompts a number of approvers to determine whether to approve of the user executing the command. If a required number of approvers have approved of the user executing the command, the system encodes the command and incorporates the encoded command in an encoded message. The system uses a simplex communication output device to communicate the encoded message to a simplex communication input device for the air-gapped computer system. The system enables execution of the command by requesting the air-gapped computer system to execute the command, or by providing the user with an access token, received from the air-gapped computer system, which enables the user to physically access the air-gapped computer system and execute the command.
A package dependencies representation and usage thereof. A data structure representing package dependencies in a computer program. The data structure comprising: a set of package instance nodes, each of which representing a different instance of a code package, wherein each package instance node comprising a unique identifier in the set of package instance nodes and a reference to a package record, wherein the package record representing a package, wherein the instance package is an instance of the package; a set of edges connecting package instance nodes of the set of package instance nodes, wherein an edge from a source node to a target node represents a dependency relationship of a package represented by the source node on a package represented by the target node.
This disclosure describes techniques for selectively placing and maintaining sensitive workloads in subsystems that achieve a minimum level of trustworthiness. An example method includes identifying at least one trustworthiness requirement associated with an application and transmitting, to a first subsystem, a request for at least one trustworthiness characteristic of the first subsystem and at least one second subsystem connected to the first subsystem. A response indicating the at least one trustworthiness characteristic is received from the first subsystem. The example method further includes determining that the at least one trustworthiness characteristic satisfies the at least one trustworthiness requirement; and causing the application to operate on a mesh comprising the first subsystem and the at least one second subsystem.
A system, a method, and a program for providing a virtual code, a virtual code generating device, and a virtual code verifying device are provided. The method includes receiving, by a virtual code verifying means, a virtual code from a virtual code generating means, extracting, by the virtual code verifying means, a plurality of detailed codes included in the virtual code, and searching for, by the virtual code verifying means, a storage location of a real code based on the plurality of detailed codes.
A method is provided for determining command-to-process correspondence. The method includes identifying, by the hardware processor, initial processes resulting from executions of container immutability change events for each of multiple initially mutable containers in a cluster, based on an execution time, a process identifier and a process group identifier for each of the container immutability change events. The method also includes designating, by the hardware processor, a particular external command, from among external container commands stored in a database, as having a correspondence to an initial process, responsive to the initial process matching at least one respective process resulting from executing the particular external command.
Disclosed are examples of systems, apparatus, methods and computer program products for sharing and publishing files. In one aspect, the database system can maintain a user database, a file database and a library. The database system can receive a first request initiated by a first user to share a first file with one or more second users and, responsive to the first request, enable a second set of one or more permissions for each of the second users. The database system also can receive a second request initiated by the first user to publish the first file to the library and, responsive to the second request, publish the first file to the library. The database system additionally can restrict access to the published file based on permissions associated with the library.
Embodiments of the present invention are directed to facilitating data preprocessing for machine learning. In accordance with aspects of the present disclosure, a training set of data is accessed. A preprocessing query specifying a set of preprocessing parameter values that indicate a manner in which to preprocess the training set of data is received. Based on the preprocessing query, a preprocessing operation is performed to preprocess the training set of data in accordance with the set of preprocessing parameter values to obtain a set of preprocessed data. The set of preprocessed data can be provided for presentation as a preview. Based on an acceptance of the set of preprocessed data, the set of preprocessed data is used to train a machine learning model that can be subsequently used to predict data.
Neural network-based categorization can be improved by incorporating graph neural networks that operate on a graph representing the taxonomy of the categories into which a given input is to be categorized by the neural network based-categorization. The output of a graph neural network, operating on a graph representing the taxonomy of categories, can be combined with the output of a neural network operating upon the input to be categorized, such as through an interaction of multidimensional output data, such as a dot product of output vectors. In such a manner, information conveying the explicit relationships between categories, as defined by the taxonomy, can be incorporated into the categorization. To recapture information, incorporate new information, or reemphasize information a second neural network can also operate upon the input to be categorized, with the output of such a second neural network being merged with the output of the interaction.
A method for training an image recognition model includes: obtaining training image sets; obtaining a first predicted probability, a second predicted probability, a third predicted probability, and a fourth predicted probability based on the training image sets by using an initial image recognition model; determining a target loss function according to the first predicted probability, the second predicted probability, the third predicted probability, and the fourth predicted probability; and training the initial image recognition model based on the target loss function, to obtain an image recognition model.
A system for refining an item identification model detects a triggering event at a platform, where the triggering event corresponds to a user placing the item on a platform. The system captures images of the item. The system extracts a set of features from at least one of the images. The system identifies the item based on the set of features. The system receives an indication that the item is not identified correctly. The system receives an identifier of the item. The system identifies the item based on the identifier of the item. The system feeds the identifier of the item and the images to the item identification model. The system retrains the item identification model to learn to associate the item to the images. The system updates the set of features based on the determined association between the item and the images.
An inference device comprises a weight storage part that stores weights, an input data storage part that stores input data, and a PE (Processing Element) that executes convolution computation in convolutional neural network using the weights and input data. The PE adds up weight elements to be multiplied with elements of the input data for each of variable values of the elements of the input data. The PE multiplies each of the variable values of the elements of the input data with each cumulative sum value of weights corresponding to the variable values of the elements of the input data. The PE adds up a plurality of multiplication results obtained by the multiplications.
Systems, methods, and other techniques for genealogical entity resolution. The systems obtain first tree data and second tree data, the first tree data corresponding to a first tree person and the second tree data corresponding to a second tree person. The systems extract a set of features from the first tree data and the second tree data. The systems further generate an individual-level similarity score for each possible pairing of tree persons based on the set of features to identify a set of most-similar tree persons based on the individual-level similarity score for each possible pairing. The systems also provide a plurality of individual-level similarity scores for the set of most-similar tree persons as input to a family-level ML model to determine that the first tree person and the second tree person correspond to a same individual.
A method, device and system for organizing media content on a computer-based system to form a playlist, wherein the device has access to a database with a plurality of music tracks and associated feature vectors including feature values representing different semantic characteristics of a music track, as well as metadata including at least one type of metadata record representing associated information about the respective music track. The playlist is determined based on a query from the client device that includes an input vector, and at least one input metadata record, using an additional similarity matrix representing a measure of similarity between different metadata records of the same type.
Provided are mechanisms and processes for performing visual search using multi-view digital media representations, such as surround views. In one example, a process includes receiving a visual search query that includes a surround view of an object to be searched, where the surround view includes spatial information, scale information, and different viewpoint images of the object. The surround view is compared to stored surround views by comparing spatial information and scale information of the surround view to spatial information and scale information of the stored surround views. A correspondence measure is then generated indicating the degree of similarity between the surround view and a possible match. At least one search result is then transmitted with a corresponding image in response to the visual search query.
A file management device comprising a memory; and a processor coupled to the memory and the processor configured to stores a feature included in a data file and a tag provided to the data file in association with each other as a provision rule, adds a tag to a newly input data file based on the stored provision rule, and displays the stored provision rule. The processor is further configured to displays the provision rule in an editable state by using a character string.
The subject matter described herein relates to methods, systems, and computer readable media for dynamic cluster-based search and retrieval. An example method for dynamic cluster-based search and retrieval occurs at a server. The method includes: retrieving document data for a plurality of documents related to user input; performing keyword discovery on the document data for determining term related frequency metrics and document related frequency metrics; representing the plurality of documents as a term-document matrix based on the term related frequency metrics and the document related frequency metrics; reducing, using latent semantic analysis, the dimensionality of the matrix; clustering, using a k-means clustering algorithm and the dimensionally reduced matrix, the plurality of documents into clusters; and sending presentation information to a client device for displaying visual representations of the clusters, wherein each visual representation is associated with one or more of the plurality of documents.
The present disclosure relates to systems, non-transitory computer-readable media, and methods that generate a dynamic cross-platform ask interface and utilize a cross-platform language processing model to provide platform-specific, contextually based responses to natural language digital text queries. In particular, in one or more embodiments, the disclosed systems utilize machine learning models to extract registered intents from digital text queries to identify platform-specific configurations associated with the registered intents. Utilizing the platform-specific configurations, the disclosed systems can generate tailored platform-specific requests for information, as well as customized end-user search results that cause client devices to efficiently, accurately, and flexibly render platform-specific search results.
Embodiments use a graphical tree to illustrate hierarchical records including a child record having parent field(s) identifying a first parent record and a second parent record of the child record. The graphical tree is generated by determining a first position for the child record and a second position for the first parent record without considering the second parent record. Subsequently, a third position for the second parent record is determined at a same level as the second position. Once the positions are determined, a first shape, a second shape and a third shape are rendered at the first position, the second position and the third position, respectively. The graphical tree is then generated by visually connecting the first shape with the second shape and the third shape, thereby graphically illustrating the plurality of hierarchical records on a target output medium.
In some embodiments, a method sends first messages that request first information for a set of blocks of the blockchain to the N replicas. Each replica maintains a respective instance of the blockchain. Second messages is received from at least a portion of the N replicas. The second messages include the first information for the set of blocks from each respective instance of the blockchain that is maintained by the N replicas. The method analyzes the first information to determine whether a consensus on the first information is reached by a number of replicas. When consensus is reached, a request is sent to a replica for one or more blocks to back up to a backup blockchain and second information is received for the one or more blocks from the replica. The method uses the second information to back up the one or more blocks in the backup blockchain.
Systems and methods for displaying search item scores and related information for easier search result selection. In one aspect, the method includes receiving a search request for a software component, retrieving a programming language information of the software component, retrieving an ecosystem information of the software component, retrieving a licensing information of the software component, retrieving a quality score of the software component, retrieving a security score of the software component, retrieving details of sources and associated details of the software component, dynamically generating a results information widget including information associated with the software component, and searching, based on the retrieved information, internet sources to assimilate associated information of the software components.
A non-transitory computer-readable storage medium storing a pattern search program that causes a computer to execute a process, the process includes designating priority ranks of each of attributes included in a plurality of attribute patterns that indicate one or more attributes, based on an inclusion relationship between occurrence sets of a plurality of samples with respect to each of the attributes included in the plurality of attribute patterns; and determining whether each of the plurality of attribute patterns is an emerging pattern according to a search order based on the priority ranks, when a frequency of occurrence of the plurality of samples in a first attribute pattern is less than the frequency of occurrence of the plurality of samples in a second attribute pattern that has all the attributes except one of the attributes with lowest one of the priority ranks among the attributes included in the first attribute pattern.
Identifying table joins includes obtaining respective casting similarities between pairs of columns of a first table and a second table. Each pair of columns includes a first column of the first table and a second column of the second table. Ones of the pairs of columns not satisfying a casting similarity condition are discarded to obtain first join candidates. Respective string similarities for the first join candidates are obtained. Ones of the first join candidates not satisfying a string similarity condition are discarded to obtain second join candidates. Final join candidates are obtained using the respective casting similarities and the respective string similarities of the second join candidates. A selected join candidate of the final join candidates is received from a user.
A data structure is specialized in efficiently representing a key-value pair in a highly optimized way. The data structure is a pointer in a traversal graph that takes advantage of constant time traversal for all operations. The data structure has specific instructions for inserting data nodes, router nodes, and how the expansion or collapse of the graph works. The data structure can be applied where the time to get the result back is most prominent. The data structure can be used to reduce the memory footprint to reach the data that is being searched and achieve a worst-case time complexity in constant time.
Systems and methods for extracting data views from heterogeneous data sources in accordance with embodiments of the invention are illustrated. One embodiment includes a method for extracting data views. The method includes steps for receiving data from several data sources and identifying raw fields from the received data. The process further includes steps for mapping the identified raw fields to common fields by determining similarities between a raw field and each of the common fields, identifying a target common field based on the determined similarities, and mapping the raw field to the target common field. The process further includes steps for extracting views of the received data based on the mapping of the identified raw fields to common fields.
The present disclosure relates to a system and techniques for preventing corruption of snapshot data by limiting the visibility of committed data. To do this, the system may maintain an index that indicates the highest transaction identifier value such that no future commits will have a transaction identifier less than or equal to the indexed transaction identifier value. In embodiments, if a read is performed, only transactions having a transaction identifier less than or equal to the index value can be read. Each time that a transaction is committed, the index value is updated to the transaction identifier for the transaction having the highest transaction identifier without any intermediary transactions.
Computer-implemented systems and methods are provided for modeling, executing, and controlling context-driven user interactions. In some embodiments, systems and methods are provided for modeling user interactions and generating interaction models. Each generated interaction model may be executable for controlling a context-driven user interaction. The interaction model may include data identifying one or more interaction objects and one or more modules that are executable in session(s) of the modeled interaction.
Identifying data quality along a data flow. A method includes identifying quality metadata for two or more datasets. The quality metadata defines one or more of quality of a data source, accuracy of a dataset, completeness of a dataset, freshness of a dataset, or relevance of a dataset. At least some of the metadata is based on results of operations along a data flow. Based on the metadata, the method includes creating one or more quality indexes for the datasets. The one or more quality indexes include a characterization of quality of two or more datasets.
A technique for performing data deduplication operates at sub-block granularity by searching a deduplication database for a match between a candidate sub-block of a candidate block and a target sub-block of a previously-stored target block. When a match is found, the technique identifies a duplicate range shared between the candidate block and the target block and effects persistent storage of the duplicate range by configuring mapping metadata of the candidate block so that it points to the duplicate range in the target block.
A file management device is a file management device that is connected to a plurality of manufacturing machines or a plurality of robots through a communication network and includes: an input unit to which a user inputs a file deletion command including a file name of files to be deleted; and a file deletion unit that causes the plurality of manufacturing machines or the plurality of robots to delete the files to be deleted with the same file name stored in the plurality of manufacturing machines or the plurality of robots in response to the file deletion command input through the input unit.
An event historian system receives event data from a client system via a network connection and stores the event data in a block data storage system. An event data block in which to store the received event data is selected based on the time range of the occurrence of the received event data. The received event data is stored in a snapshot within the event data block. Event property data is extracted from the received event data and used to build a plurality of event property index files.
A plurality of computing devices are communicatively coupled to each other via a network, and each of the plurality of computing devices is operably coupled to one or more of a plurality of storage devices. The computing devices may take snapshots to store points in time coherently for a distributed storage system.
The purpose of the present invention is to cause a reception side communication device to appropriately detect a start bit. A serial communication unit (100), which transmits serial data by a combination of a high level signal and a low level signal, is provided with: a serial communication part (111) that provides the start bit on the head of the serial data, and transmits the high level signal in a prescribed duration just before the start bit; and a duration setting part (113) that sets the duration.
A bridging module, a data transmission system, and a data transmission method are provided. The bridging module obtains a first read request, and allocates a first data storage space for first return data corresponding to the first read request. The bridging module combines a first master transaction identifier and an address of the first data storage space as a first slave transaction identifier of the first read request, and sends the first read request to a slave device. The bridging module obtains a second read request, and allocates a second data storage space for second return data corresponding to the second read request. The bridging module combines a second master transaction identifier and an address of the second data storage space as a second slave transaction identifier of the second read request, and sends the second read request to the slave device.
A device may include a lane group, a command queue, and a link manager. The lane group may include a first lane and at least one or more second lanes to form a link for communicating with a host. The command queue may store commands for at least one direct memory access (DMA) device, the commands generated based on a request of the host. The link manager may, in response to detecting an event that an amount of the commands stored in the command queue being less than or equal to a reference value, change an operation mode from a first power mode to a second power mode in which power consumption is less than that of the first power mode, deactivate the at least one or more second lanes, and provide a second operation clock lower than a first operation clock to the at least one DMA device.
A semiconductor memory system includes a first semiconductor memory die and a second semiconductor memory die. The first semiconductor memory die includes a primary data interface to receive an input data stream during write operations and to deserialize the input data stream into a first plurality of data streams, and also includes a secondary data interface, coupled to the primary data interface, to transmit the first plurality of data streams. The second semiconductor memory die includes a secondary data interface, coupled to the secondary data interface of the first semiconductor memory die, to receive the first plurality of data streams.
Described are techniques including a method comprising detecting a deallocated Input/Output (I/O) queue associated with a first entity in a Non-Volatile Memory Express (NVMe) storage system. The method further comprises broadcasting an Asynchronous Event Request (AER) message indicating I/O queue availability based on the deallocated I/O queue. The method further comprises allocating, in response to the AER message, a new I/O queue to a second entity in the NVMe storage system.
Disclosed are a method and a Universal Flash Storage (UFS) system for performing save state switching using selective lanes between a first electronic device and a second electronic device. The method includes: determining, by the first electronic device, whether a data request is received from an application layer of the first electronic device; and performing, by the first electronic device, at least one of: setting a first lane from among a plurality of lanes between the first electronic device and the second electronic device to an active state and the other lanes from among the plurality of lanes to a power save state based on determining that the data request is not received from the application layer of the first electronic device; and setting the plurality of lanes between the first electronic device and the second electronic device to the active state based on determining that the data request is received from the application layer of the first electronic device.
A flow table management system can include a hardware memory module communicatively coupled to a network interface card. The hardware memory module is configured to store a flow table including a plurality of network flow entries. The network interface card further includes a flow table age cache configured to store a set of recently active network flows and a flow table management module configured to manage a duration for which respective network flow entries in the flow table stored in the hardware memory module remain in the flow table using the flow table age cache. In some implementations, age information about each respective flow in the flow table is stored in the hardware memory module in an age state table that is separate from the flow table.
A memory system may include: a nonvolatile memory device; and a controller suitable for generating first map information which maps physical addresses of the nonvolatile memory device to logical addresses received from a host, selecting some segments of the first map information as second map information, and outputting the second map information to the host, the controller may determine whether the second map information is updated, and may determine updated map segments as third map information, and the controller may output information to the host indicating the third map information corresponding to a command received from the host.
Graphics processors for implementing multi-tile memory management are disclosed. In one embodiment, a graphics processor includes a first graphics device having a local memory, a second graphics device having a local memory, and a graphics driver to provide a single virtual allocation with a common virtual address range to mirror a resource to each local memory of the first and second graphics devices.
A data storage device includes a memory device and a controller coupled to the memory device. The controller is configured to generate a first mapping portion and a second mapping portion, where the first mapping portion and the second mapping portion correspond to a same data set, and where the first mapping portion and the second mapping portion includes one or more parity bits, receive an update for the same data set, update the first mapping portion and the second mapping portion based on the update, where the second mapping portion is updated non-concurrently to updating the first mapping portion, and where the updating includes flipping a parity bit of the one or more parity bits, and determine whether the one or more parity bits of the first mapping portion matches the one or more parity bits of the second mapping portion.
The present disclosure generally relates to more efficient use of a delta buffer. To utilize the delta buffer, an efficiency can be gained by utilizing absolute delta entries and relative delta entries. The absolute delta entry will include the type of delta entry, the L2P table index, the L2P table offset, and the PBA. The relative delta entry will include the type of delta entry, the L2P table offset, and the PBA offset. The relative delta entry will utilize about half of the storage space of the absolute delta entry. The relative delta entry can be used after an absolute delta entry so long as the relative delta entry is for data stored in the same block as the previous delta entry. If data is stored in a different block, then the delta entry will be an absolute delta entry.
The present disclosure generally relates to more efficient use of a delta buffer. To Utilize the delta buffer, an efficiency can be gained by utilizing absolute delta entries and relative delta entries. The absolute delta entry will include the type of delta entry, the L2P table index, the L2P table offset, and the PBA. The relative delta entry will include the type of delta entry, the L2P table offset, and the PBA offset. The relative delta entry will utilize about half of the storage space of the absolute delta entry. The relative delta entry can be used after an absolute delta entry so long as the relative delta entry is for data stored in the same block as the previous delta entry. If data is stored in a different block, then the delta entry will be an absolute delta entry.
A processing device comprises processors, a first memory shared by the processors, and a cache comprising a second memory comprising a plurality of memory units, each of the plurality of memory units in the second memory being associated with a respective one of a plurality of request identifiers. The cache receives a memory read request including a request identifier and a memory address from at least one of the processors, identifies an allocated memory address identifier for the memory address, accesses the first memory to read data of the memory address, obtains one or more request identifiers which requested data of the memory address from the second memory based on the allocated memory address identifier, and transmitting the data of the memory address to one or more processors which requested data of the memory address based on the one or more request identifiers.
A system and method are provided for data collection and analysis of information related to applications. Specifically, the developer of the application may install analytic software, which may be embodied as a software development kit (SDK), on an integrated development environment (“IDE”) associated with the developer, wherein the analytic software may be installed with a wizard-like interface having a series of easy to follow instructions. Once installed, the application, with the analytic software incorporated therein, may be provided and installed on a plurality of end user devices. Thereafter, the analytic software may work in conjunction with analytic processing logic to assist the developer in obtaining pertinent information related to bugs associated with the application that is being executed on an end user device.
A sample ratio mismatch (SRM) analyzer receives data from an online controlled experiment (OCE) and provides information to help determine a root cause of an SRM. The SRM analyzer may identify one or more segments in the data that include an SRM and may determine whether a triggered scorecard of the OCE includes an SRM. The data may include one or more scorecards. The SRM analyzer may determine whether each scorecard has an SRM. The SRM analyzer may test a difference in proportion of users assigned to treatment between a last scorecard without an SRM and a first scorecard with an SRM. If the difference in proportion is statistically meaningful, the SRM analyzer may determine that the SRM arose after the last scorecard. If the difference in proportions is not statistically meaningful, the SRM analyzer may determine that the SRM existed from a beginning of the OCE.
A method and system for automated continuous validation for regulatory compliance of CS with dynamic component. On identification of learning in the CS, a User Acceptance Testing (UAT) is performed using automated test cases of varying types in accordance with what-if scenarios and synthetic data generated using a unique approach. Thereafter, a base validation testing of the CS is performed with clean data (positive scenarios of outcome of the CS) and dirty data (negative scenarios) by conducting repeatability, stability (consistency) and reliability checks. The base validation testing is then followed by learning saturation testing on only if the dynamic component is validated, is rolled out in production environment else is rolled back to the earlier version.
The present disclosure is directed to methods and systems for monitoring nodes on a distributed computing network. A distributed computing system can monitor each node within a wireless network to identify when a node is disconnected from the network. The distributed computing system can dynamically perform tasks on behalf of the node until the node is reconnected to the wireless network. In some implementations, the distributed computing system monitors the utilization of the wireless network to identify when the wireless network has the capacity to perform a task.
Processor trace systems and methods are described. For example, one embodiment comprises executing instrumented code by a compiler, the instrumented code including at least one call to un-instrumented code. The compiler can determine the at least one call to un-instrumented code is a next call to be executed. A resume tracing instruction can be inserted into the instrumented code prior to the at least one call to the un-instrumented code. The resume tracing instruction can be executed to selectively add processor tracing to the at least one call to the un-instrumented code, and the at least one call to the un-instrumented code can be executed.
A system is provided for managing a managed infrastructure that has physical hardware components. A signalizer engine is coupled to the managed infrastructure. The signalizer engine includes a central processor and a main memory. In response to input from the managed infrastructure, the central processor and the main memory use graph coordinates to determine hop proximity of a source of an event. Clusters of events are then produced relating to one or more failures or errors in the physical elements of the managed infrastructure. Each event being is converted to words to group the events into the clusters that relate to a failure or an actionable problem in the physical hardware components to produce an output. A compare and merge engine is coupled to the signalizer engine to receive the output. In response to the output, the system executes physical corrections to the physical hardware of the managed infrastructure. One or more interactive displays is in communication with the compare and merge engine to provide a collaborative interface for allowing posts to be created.
A method includes determining, by an analysis system, a system sector of a system for function evaluation. The method further includes determining, by the analysis system, at least one evaluation perspective for use in performing the function evaluation on the system sector. The method further includes determining, by the analysis system, at least one evaluation viewpoint for use in performing the function evaluation on the system sector. The method further includes obtaining, by the analysis system, function data regarding the system sector in accordance with the at least one evaluation perspective and the at least one evaluation viewpoint. The method further includes calculating, by the analysis system, a function evaluation rating as a measure of function maturity for the system sector based on the function data, the at least one evaluation perspective, the at least one evaluation viewpoint, and at least one evaluation rating metric.
A method for execution by a storage network includes receiving a request pertaining to a data object. Metadata associated with the data object is determined and used to identify data segments associated with the data object and a set of storage units associated with the data segments. Based on a set of query requests, a response is received from a storage unit from the set of storage units. When the response indicates a storage environment that is unfavorable as compared to predetermined performance metrics, the storage network facilitates migration of encoded data slices associated with the storage unit to another storage unit.
Methods, systems, and computer-readable storage media for receiving, by an operation guard system executed within a cloud platform, session information representative of a session of a user within the cloud platform, the session information including user information and operation information, determining, by the operation guard system, that the user is signed into a technical group for execution of an operation represented in the operation information, and in response, providing, by the operation guard system, a risk score associated with the operation, and determining, by the operation guard system and at least partially based on the risk score, that the operation is a risk-oriented operation based on the risk score, and in response, preventing execution of the operation and transmitting an alert.
Systems and methods for propagating poison information are provided. Embodiments include receiving write data having a poison flag asserted indicating the data to be written to a memory device is erroneous. Embodiments further include converting the write data to a pre-fixed data pattern and generating a parity code, based upon, at least in part, the pre-fixed data pattern. Embodiments may also include injecting a correctable error into the write-data or parity code and writing the write data and parity code into the memory device. The correctable error injection may occur in the data or in the parity code and during the read the comparison may occur accordingly.
Cloud-based monitoring of hardware components in a fleet of storage systems, including: collecting, for a plurality of hardware components that are included in a physical storage system, information describing the operation each hardware component, wherein information is collected for the hardware components of multiple physical storage systems; predicting, based on the information describing the operation each hardware component and historical information describing the operation of one or more other hardware components, the expected performance of each hardware component; and modifying, based on the expected performance of each hardware component, the utilization of at least one or more of the physical storage systems in the fleet.
One or more embodiments of a regulator circuit for providing power to a load device having a first power demand profile over time. The regulator circuit comprises a regulator and an energy storage device coupled to the regulator and the load device. The regulator circuit is configured to scavenge provided energy that is available beyond the first power demand profile. Further, the regulator circuit is configured to store that energy in the energy storage device, and the energy storage device is configured to augment deliverable peak power to the load device when the load device requires more power than is provided by the regulator circuit.
A memory controller component of a memory system stores memory access requests within a transaction queue until serviced so that, over time, the transaction queue alternates between occupied and empty states. The memory controller transitions the memory system to a low power mode in response to detecting the transaction queue is has remained in the empty state for a predetermined time. In the transition to the low power mode, the memory controller disables oscillation of one or more timing signals required to time data signaling operations within synchronous communication circuits of one or more attached memory devices and also disables one or more power consuming circuits within the synchronous communication circuits of the one or more memory devices.
A remote controller enabled to control an external device includes a communication interface to communicate with the external device, an energy harvester to obtain an electrical energy, a power supplier to receive supply of the electrical energy from the energy harvester, and a processor configured to, based on a supply voltage of the power supplier being greater than or equal to a first threshold value and less than a second threshold value, control the communication interface to release communication connection established to communicate with the external device, and supply the electrical energy obtained by the energy harvester to the power supplier.
Example approaches for customization of thermal and power policies in computers, are described. In an example, a microcontroller of a computing system, also referred to as system, validates thermal policy custom data stored in a firmware storage medium of the system, in response to a supply of power to the system. On a successful validation of the thermal policy custom data, thermal control settings is updated with a customized thermal policy included in the thermal policy custom data. In response to initiation of a boot operation of the system, a processor of the system validates power policy custom data stored in the firmware storage medium. In response to a successful validation of the power policy custom data during the boot operation, the processor updates power control settings of the system with a customized power policy included in the power policy custom data.
An electronic device including a hinge module, a first body, a second body, and a flexible display assembled to the first body and the second body is provided. Each of the first body and the second body is pivoted and slidably connected to the hinge module, and a cover of the hinge module is exposed out of the first body and the second body. The first body and the second body are rotated relatively via the hinge module to bend or flatten the flexible display, when the flexible display is bending from a flat state, a bending portion of the flexible display leans against the cover and pushes the cover away from the first body and the second body.
A moving image control method for controlling display of a moving image on a foldable display device is provided. The moving image control method includes: acquiring moving image position information indicating a position in a display region at which the moving image is displayed; acquiring fold state information indicating a fold state of the foldable display device; and controlling whether the moving image is stopped or reproduced in the display region based on the moving image position information and the fold state information.
According to certain embodiments, an electronic device comprises: a housing surrounding at least a side surface of the electronic device; a flexible display exposed through a first surface of the electronic device facing a first direction, the exposed area varying based on the movement of the housing; and a flexible material exposed through a second surface of the electronic device facing a second direction opposite to the first direction, the exposed area varying based on the movement of the housing, wherein the width of the flexible material that is exposed through the second surface, expands in a third direction in accordance with the expansion of the width of the flexible display in the third direction, the third direction being substantially perpendicular to the first direction and the second direction.
Disclosed is an electronic device comprising: a display, a buffer layer disposed on one surface of the display, an adhesive layer disposed on one surface of the buffer layer, and an adhesion prevention part disposed on a portion of one surface of the adhesive layer, the part corresponding to a folding area where the foldable electronic device is folded, wherein the adhesion prevention part is formed by printing an ink material and curing the ink material by an ultraviolet ray. In addition, various embodiments understood through the specification are possible.
A clock oscillator, a clock oscillator production method and use method, and a chip including the clock oscillator are provided. The clock oscillator includes a resonator, a shock-absorbing material layer, and a base, and at least a part of the shock-absorbing material layer is located between the resonator and the base. In the clock oscillator, the shock-absorbing material layer is added between the resonator and the base, and the shock-absorbing material layer can effectively prevent a mechanical wave from being conducted between the base and the resonator, so that the resonator is protected from external vibration. This can ensure, when there is external vibration, that an output frequency of the resonator is not deteriorated and improve shock absorption performance of the clock oscillator.
An apparatus and methods are provided for a portable mass airflow (MAF) training module configured to simulate an air intake into an internal combustion engine. An in-line blower draws an airflow through an air filter by way of a first air duct and a second air duct. A throttle assembly is coupled between the first air duct and the second air duct. The throttle assembly includes a throttle plate that may be rotated to regulate the airflow. The power output of the in-line blower is variable to simulate the air intake of various sizes of the internal combustion engine. A MAF sensor and a duct velocity sensor are configured to provide airflow information. The portable MAF training module enables a practitioner to select a desired throttle setting and observe a resultant mass airflow through the portable MAF training module that is measured by the MAF sensor.
A method executable by an autonomous mobile device includes moving in a work environment, obtaining environmental data acquired by a sensing device, and determining whether the sensing device is in a suspected ineffective state based on the environmental data. The method also includes based on a determination that the sensing device is in the suspected ineffective state, rotating at a same location for a first predetermined spin angle. The method also includes obtaining an estimated rotation angle based on one or more motion parameters acquired by a dead reckoning sensor, comparing the estimated rotation angle with the first predetermined spin angle, and based on a determination that a difference between the estimated rotation angle and the first predetermined spin angle is greater than a first predetermined threshold value, executing escape instructions to move backwardly for a first predetermined distance and move along a curve or a folded line.
A system includes: a depth module including an encoder and a decoder and configured to: receive a first image from a first time from a camera; and based on the first image, generate a depth map including depths between the camera and objects in the first image; a pose module configured to: generate a first pose of the camera based on the first image; generate a second pose of the camera for a second time based on a second image; and generate a third pose of the camera for a third time based on a third image; and a motion module configured to: determine a first motion of the camera between the second and first times based on the first and second poses; and determine a second motion of the camera between the second and third times based on the second and third poses.
Systems and methods are provided for navigating an autonomous vehicle. In one implementation, a system includes a processing device programmed to receive a plurality of images representative of an environment of the host vehicle. The environment includes a road on which the host vehicle is traveling. The at least one processing device is further programmed to analyze the images to identify a target vehicle traveling in a lane of the road different from a lane in which the host vehicle is traveling; analyze the images to identify a lane mark associated with the lane in which the target vehicle is traveling; detect lane mark characteristics of the identified lane mark; use the detected lane mark characteristics to determine a type of the identified lane mark; determine a characteristic of the target vehicle; and determine a navigational action for the host vehicle based on the determined lane mark type and the determined characteristic of the target vehicle.
A computer-implemented method for determining a motion trajectory for a mobile robot based on an occupancy prior indicating probabilities of presence of dynamic objects and/or individuals in a map of an environment. Occupancy priors are determined by a reward function defined by reward function parameters. The determining of the reward function parameters includes: providing semantic maps; providing training trajectories for each of semantic maps; computing a gradient as a difference between an expected mean feature count and an empirical mean feature count depending on each of the semantic maps and on each of the training trajectories, the empirical mean feature count is the average number of features accumulated over the provided training trajectories of the semantic maps, wherein the expected mean feature count is the average number of features accumulated by trajectories generated depending on the current reward function parameters; and updating the reward function parameters depending on the gradient.
In resource sharing by autonomous devices in an environment, first and second autonomous devices send first and second reservation requests, respectively, to a reservation controller for access to a resource in the environment required to perform first and second tasks. The first and second reservation requests include first and second requested utilizations, respectively, for usage of the resource. The first autonomous device receives a first permit with a first granted utilization, and the second autonomous device receives a second permit with a second granted utilization, for usage of the resource. Using the resource, the first autonomous device performs the first task according to the first granted utilization, and the second autonomous device performs the second task according to second granted utilization, where second granted utilization does not conflict with the first granted utilization.
A robot for transporting items, including: a chassis; a cavity within which items are stored for transportation; a set of wheels coupled to the chassis; a control system to actuate movement of the set of wheels; a power supply; at least one sensor; a processor electronically coupled to the control system and the at least one sensor; and a tangible, non-transitory, machine readable medium storing instructions that when executed by the processor effectuates operations including: capturing, with the at least one sensor, data of an environment and data indicative of movement of the robot; generating or updating, with the processor, a map of the environment based on at least a portion of the captured data; inferring, with the processor, a current location of the robot; and actuating, with the processor, the robot to execute a transportation task.
A moving robot and a controlling method thereof are disclosed. A moving robot according to the present disclosure includes a traveling unit to move a main body, a communication unit to communicate with a location information transmitter for transmitting signals within an area, and a control unit to set a virtual boundary with respect to a location calculated based the signals, and to control the traveling unit to move the main body without departing from the boundary. The communication unit includes first and antennas provided at respective transceivers that transceive signals with the location information transmitter, and the first and second antennas have an adjustable distance. When signals are received through the first and second antennas, the control unit determines a relative location of the location information transmitter based on a current location of the main body using a frequency corresponding to the distance between the first and second antennas.
To make it possible to change the action of an unmanned vehicle by reflecting the importance of purposes that can change in response to a change in the situation. An unmanned vehicle (11) acts according to a plurality of purposes. A purpose importance input means (12) inputs the importance of each purpose in the unmanned vehicle (11). An action parameter determining means (13) determines a parameter for controlling the action of the unmanned vehicle (11) based on purpose importance information indicating the input importance of each purpose. An action controlling means (14) controls the action of the unmanned vehicle (11) in accordance with the parameter determined by the action parameter determining means (13).
A production line monitoring system for monitoring a production line including a plurality of production devices is provided. The production line monitoring system includes: a plurality of terminals attached to a plurality of workers; and a server configured to communicate with the plurality of terminals via a wireless network. The server performs processing of receiving operation information about the production device and generating event information based on the operation information, processing of transmitting the event information to a first terminal and a second terminal of the plurality of terminals, and processing of transmitting event stop information to the second terminal when receiving response information transmitted from the first terminal after performing the processing of transmitting the event information.
An opt-in from at least one user of a plurality of users associated with at least one tool of a plurality of tools is received. An authentication associated with a first opted-in user of the plurality of users associated with an access of a first tool of the plurality of tools is determined. A set of credentials required to operate the first tool associated with the first opted-in user is verified. A request to an Internet of things (IoT) receiver device is transmitted. A response from an IoT transmitter device is received. In response to determining that the first user is utilizing required equipment to operate the first tool, power to the first tool is supplied.
Examples discussed herein relate to managing power allocation for devices, such as network devices, with processing chip. In some examples, based on determining that a first temperature measurement of the processing chip does not satisfy an operating temperature threshold, the network device allocates power from a power source to a first heating element of the network device to heat the processing chip & allocates power from the power source to a second heating element of the network device to heat the processing chip. Based on determining that a second temperature measurement satisfies the operating temperature threshold, the network device allocates power from the power source to a set of power over ethernet ports of the network device & the first amount of power from the power source selectively to the first heating element to heat the processing chip.
A method adapts an apparatus to a motor-driven tool from a set of different types of motor-driven tools. The apparatus is arranged on the tool. The method has the steps of: capturing an identifier of the tool by way of the apparatus, and transmitting an item of type-specific configuration information from a database to the apparatus on the basis of the captured identifier in such a manner that the apparatus is designed to process operating data of the tool in a type-specific manner.
A method comprises measuring a light intensity at a window; determining if the light intensity exceeds a cloudy-day threshold; operating in a sunlight penetration limiting mode to control the motorized window treatment to control the sunlight penetration distance in the space; enabling the sunlight penetration limiting mode if the light intensity is greater than the cloudy-day threshold; and disabling the sunlight penetration limiting mode if the total lighting intensity is less than the cloudy-day threshold. The cloudy-day threshold is maintained at a constant threshold if a calculated solar elevation angle is greater than a predetermined solar elevation angle, and the cloudy-day threshold varies with time if the calculated solar elevation angle is less than the predetermined solar elevation angle. The cloudy-day threshold is a function of the calculated solar elevation angle if the calculated solar elevation angle is less than the predetermined solar elevation angle.
A control system comprises a memory storing a sequence of sensor data received from one or more sensors. The control system has a processor which processes the sensor data to compute a sequence of derived sensor data values. An autoencoder receives the sequence of derived sensor data values and computes a forward prediction of the sequence of derived sensor data values, the autoencoder having been trained imposing a relationship on positions of the derived sensor data values encoded in a latent space of the autoencoder. A processor initiates control of an apparatus using the forward prediction.
Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for shaping compute load using virtual capacity. In one aspect, a method includes obtaining a load forecast that indicates forecasted future compute load for a cell, obtaining a power model that models a relationship between power usage and computational usage for the cell, obtaining a carbon intensity forecast that indicates a forecast of carbon intensity for a geographic area where the cell is located, determining a virtual capacity for the cell based on the load forecast, the power model, and the carbon intensity forecast, and providing the virtual capacity for the cell to the cell.
In various example embodiments, techniques are provided for efficient and reliable anomaly detection and evaluation in a water distribution system (e.g., a smart water distribution system) using both flow and pressure time series data from sensors of the system. The techniques may implement a multi-step workflow that involves decomposing the time series data to remove seasonality and rendering the time series data stationary, detecting outliers of the stationary time series data, classifying sensor events in response to flow or pressure of detected outliers exceeding high or low thresholds for at least a given number of time steps, classifying anomaly events by correlating one or more sensor events related to flow with one or more sensor events related to pressure or by clustering a plurality of sensor events in temporal proximity, and determining a quantitative score for each of the detected anomaly events that indicates a level of significance or importance.
The present invention provides a toner that can maintain excellent transferability even when a transfer bias is low. The toner includes a toner particle that includes a toner base particle and a plurality of convex portions X existing on a surface of the toner base particle, wherein the convex portion X contains an organic silicon polymer; when a cross-section of the toner is observed with a scanning transmission electron microscope (STEM), and the convex portions X comprise a plurality of convex portions Y each having a convex height H of 40 nm or higher, a number ratio P (H/w) of the a number of the convex portions Y2 in which a ratio (H/w) of the convex height H to the convex width w is 0.33 or larger and 0.80 or smaller is 70% by number or more with respect to a total number of the convex portions Y.
A drive transmission device includes a drive train including a plurality of drive transmitters, and a container. The plurality of drive transmitters of the drive train transmit a driving force of a drive source to a rotator rotatable around a shaft and a swing member rotatable around a shaft different from the shaft of the rotator. The container contains the drive train.
An image forming apparatus includes: an apparatus body having a receiving surface on which a document is placed and that is provided on a rear portion of an upper surface, the rear portion being positioned behind a front end of the upper surface; a reading unit provided on the rear portion such that the reading unit is openable and closable, the reading unit reading an image on the document while transporting the document; an inclined surface on which no operation unit is disposed, the inclined surface being continuously inclined downward from a front end of the rear portion to the front end of the upper surface; and a projecting portion provided on a front portion of the apparatus body at a position on a first side of the inclined surface in a left-right direction, the projecting portion projecting forward and upward with respect to the inclined surface.
An image forming apparatus includes a first collecting container provided detachably and configured to collect residual toner discharged from an image forming portion, a second collecting container provided detachably and configured to collect the residual toner discharged from the image forming portion, and a feeding device to feed the residual toner, discharged from the image forming portion, toward the first collecting container and the second collecting container selectively. The first collecting container and the second collecting container are provided below an intermediary transfer belt and disposed side by side in a widthwise direction perpendicular to a rotational axis direction of an image bearing member, and at least a part of the first collecting container overlaps with the intermediary transfer belt as viewed in the vertical direction, and at least a part of the second collecting container overlaps with the intermediary transfer belt as viewed in the vertical direction.
An image forming apparatus includes a rotatable photosensitive member, a charging member, a developing device, a transfer member, a brush, a driving source and a control portion. The control portion controls the driving source to execute an image forming process in which image formation on the recording material is executed and a non-image-forming process in which the photosensitive member is driven to rotate other than in the image forming process. The non-image-forming process between a first recording material and a second recording material, to which the image formation is executed following the first recording material, is defined as a first non-image-forming process, and the non-image-forming process between the second recording material and a third recording material is defined as a second non-image-forming process. The control portion determines a time of the second non-image-forming process based on history information correlating with a usage amount of the photosensitive member and a time of the first non-image-forming process.
A transfer device includes an intermediate transfer member that has an outer peripheral surface to which a toner image is to be transferred, a primary transfer device that has a primary transfer member performing primary transfer of a toner image formed on a surface of an image holder to the outer peripheral surface of the intermediate transfer member, a secondary transfer device that has a secondary transfer member which is arranged in contact with the outer peripheral surface of the intermediate transfer member and performs secondary transfer of the toner image transferred to the outer peripheral surface of the intermediate transfer member to a surface of a recording medium, and a cleaning device that has a cleaning blade cleaning the outer peripheral surface of the intermediate transfer member, in which a coefficient D of dynamic friction between the intermediate transfer member and the cleaning blade is 0.2 or more and 1.2 or less, a lead-in angle A that a contact portion of the cleaning blade coming into contact with the intermediate transfer member forms with the intermediate transfer member is 15° or more and 80° or less, and the coefficient D of dynamic friction and the lead-in angle A satisfy Expression (1),
lead-in angle A−(50×coefficient D of dynamic friction)>0 Expression (1).
An image forming apparatus includes a photosensitive member, a developing member to supply a toner to the photosensitive member at a developing portion, and a transfer member to transfer a toner image to a recording material passing through a transfer portion from the photosensitive member. In a case which the transfer is performed to a shorter width recording material and thereafter, the transfer is successively performed to a longer width recording material, a control portion controls a first back contrast formed when an area of a surface of the photosensitive member corresponding to the transfer portion through which the shorter width recording material is passing reaches the developing portion, and a second back contrast formed when an area of the surface corresponding to the transfer portion through which the longer width recording material is passing reaches the developing portion so that the second back contrast is higher than the first back contrast.
A fixing device includes an endless belt, a rotatable pressing member, a pad member inside of the belt, and a sliding member held by the pad member and sliding on an inner circumferential surface of the belt in a nip. The rotatable pressing member nips and feeds a recording material in the nip in cooperation with the belt and fixes a toner image on the recording material by applying heat and pressure. The sliding member includes a base material layer on which a plurality of projections projecting toward the rotatable pressing member are formed on a side sliding with the belt and a sliding layer provided on an outer surface of the plurality of projections. A leading end of the plurality of projections is a plane and an average roughness (Ra) of the plane satisfies 0.13 μm≤Ra≤1.67 μm.
A projection screen includes an optical collimating layer and a surface diffusion layer which are arranged in sequence. A grating absorption layer for absorbing ambient light from various directions except a projection light direction is also provided between the optical collimating layer and the surface diffusion layer. The grating absorption layer includes a plurality of light-absorption ring-shaped units with different radii. The plurality of light-absorption ring-shaped units are arranged in a concentric ring. Each of the light-absorption ring-shaped units consists of a plurality of gratings arranged in the circumferential direction of the concentric ring. By taking a vertical symmetrical center line of the projection screen as a center, in a direction extending along the circumferential direction of the concentric ring to the left side and the right side of the projection screen, the distance between two adjacent gratings in the same light-absorption ring-shaped unit gradually increases.
A camera includes a viewfinder portion causing a frontward field of view to be visible through a viewfinder, and a drive lever rotatable about a shaft. An operation cylinder operable to extend and contract an extendable unit includes a guide surface extending in a circumferential direction and a recess adjacent to the guide surface. The drive lever includes an actuation portion that comes in contact with the guide surface of the operation cylinder. The camera further includes an urging member urging the actuation portion in the drive lever, a prism that changes a direction of a field of view visible through the viewfinder portion, and a prism guide lever rotatable about a shaft. The prism guide lever includes a prism holder holding the prism, and a follower gear meshing with a drive gear in the drive lever. The prism holder is placeable into the viewfinder portion.
Backdrop rear-illumination apparatus, active green screen and method for performing dynamic backdrop rear-illumination. The active green screen comprises a green screen, a diffusing material and a backdrop rear-illumination apparatus, the backdrop rear-illumination apparatus comprising a light assembly and a light controller. The light assembly comprises one or more light-emitting device, a light emitted by each light-emitting device first passing through the diffusing material and then passing through the green screen. The light controller comprises light driver(s) for controlling at least one operating parameter of the light-emitting device(s). The light controller further comprises at least one user interface or a light remote control module for respectively actuating the light driver(s). A computing device generates light control command(s) via a graphical user interface or an algorithm. The light control command(s) are transmitted to the light remote control module for controlling the at least one operating parameter of the light-emitting device(s).
According to an aspect, a display device includes: an array substrate comprising a plurality of pixel electrodes; a counter substrate comprising a common electrode in a position at least overlapping the pixel electrodes; a liquid crystal layer between the array substrate and the counter substrate; and a light source disposed so as to emit light into a side surface of the array substrate or a side surface of the counter substrate. The array substrate includes, in a display region: a plurality of signal lines arranged in a first direction with spaces between the signal lines; a plurality of scanning lines arranged in a second direction with spaces between the scanning lines; and common potential wiring provided outside the display region. The counter substrate comprises light-blocking coupling wiring that couples the common electrode to a conductive first power feeding portion.
A pixel electrode or a common electrode is a light-transmissive conductive film; therefore, it is formed of ITO conventionally. Accordingly, the number of manufacturing steps and masks, and manufacturing cost have been increased. An object of the present invention is to provide a semiconductor device, a liquid crystal display device, and an electronic appliance each having a wide viewing angle, less numbers of manufacturing steps and masks, and low manufacturing cost compared with a conventional device. A semiconductor layer of a transistor, a pixel electrode, and a common electrode of a liquid crystal element are formed in the same step.
Provided are a backlight module, a preparation method thereof, and a display device. The backlight module includes a substrate, multiple light-emitting elements, a reflection structure and a rubber frame structure, and the multiple light-emitting elements, the reflection structure and the rubber frame structure are located on one side of the substrate. The multiple light-emitting elements and the reflection structure are located within a limited area of the rubber frame structure, and the reflection structure is located between every two adjacent light-emitting elements; and the reflection structure includes a first reflection surface adjacent to a light-emitting element, and the rubber frame structure includes a second reflection surface adjacent to the light-emitting element.
A display device is provided, including a substrates, a circuit board, and a plurality of wires. The substrates has an upper surface, a lower surface opposite to the upper surface, and a first side connecting the upper surface and the lower surface. The circuit board is disposed on the upper surface, and the plurality of wires is disposed on the upper surface and electrically connects the circuit board. The first side has a vertical portion and a first inclined portion, the vertical portion is substantially vertical to the upper surface and a portion is concave in a cross-sectional view. An included angle between the first inclined portion and the lower surface is greater than 90 degrees and less than 180 degrees, and the first inclined portion is greater than the vertical portion in roughness.
A system may include a laser source, an acousto-optic modulator (AOM) coupled to the laser source, an atom trap, and at least one optical medium coupled between the AOM and the atom trap. Furthermore, at least one piezoelectric transducer may be coupled to the at least one optical medium, and a beam polarization controller may be coupled to the at least one piezoelectric transducer.
An optical imaging system includes a first lens, a second lens, a third lens, a fourth lens, a fifth lens, a sixth lens, and a seventh lens sequentially disposed in numerical order along an optical axis of the optical imaging system from an object side of the optical imaging system toward an imaging plane of the optical imaging system; and a spacer disposed between the sixth and seventh lenses, wherein the optical imaging system satisfies 0.5
The method for creating an optical fiber ribbon of the present disclosure includes a first step of arranging a plurality of optical fibers in parallel to each other for creating the optical fiber ribbon. In addition, the method includes a second step of intermittently bonding the plurality of optical fibers partially at specific intervals using a matrix material. Further, intermittent bonding of the plurality of optical fibers is in pattern of text. Furthermore, intermittent bonding of the plurality of optical fibers allows the optical fiber ribbon to bend along preferential axis. Moreover, intermittent bonding of the plurality of optical fibers is in pattern of text.
A system for stabilizing optical parameters of a fiber Bragg grating (FBG) includes a mechanical mount, a heating element coupled to the mechanical mount, and a base plate coupled to the heating element. The base plate comprises a longitudinal groove. The system also includes a fiber anchor coupled to the mechanical mount and a fiber including the FBG mechanically attached to the fiber anchor. The FBG of the fiber is disposed in the longitudinal groove.
A connector assembly that includes a connector that has a ferrule and a latch. The latch is movable about a connection point. The connector assembly also includes a boot that is removably mounted to the connector. The boot is axially slidable to move the latch. The connector assembly also includes a locking assembly to selectively lock the boot from sliding axially relative to the connector.
Control systems for liquid lenses can use feedback control using one or more measured parameters indicative of a position of the fluid interface in the liquid lens. Capacitance between a fluid and an electrode in the liquid lens can vary depending on the position of the fluid interface. Current mirrors can be used for making measurements indicative of the capacitance and/or the fluid interface position. The liquid lens can be calibrated using the measurements indicative of capacitance and/or fluid interface position as the voltage is driven across an operational range. A control system can use pulse width modulation (PWM) for driving a liquid lens, and a carrier frequency for the PWM signals can be varied to control power consumption in the liquid lens. The slew rate can be adjustable to control power consumption in the liquid lens.
A method of in situ point spread function (PSF) retrieval is disclosed which includes encoding 3D location of molecules into PSFs, receiving molecule-generated images containing PSFs, segmenting the images into sub-PSFs, initializing template PSFs from a pupil function, determining a maximum normalized cross correlation (NCC) coefficient (NCCmax) between the sub- and template PSFs, associating each of the sub-PSFs with a template PSF based on the NCCmax and storing the sub-PSFs in associated bins, aligning and averaging the binned sub-PSFs, applying a phase retrieval algorithm to the averaged sub-PSFs to update the pupil function, regenerating the template PSFs, repeating until a difference between a new and a prior generation pupil function is below a predetermined threshold, generating in situ PSFs from the last pupil function, and applying a maximum likelihood estimation algorithm based on the in situ PSFs and the sub-PSFs to thereby generate lateral and axial locations of molecules.
An optical assembly a substrate having a first surface and a second surface that is opposite to and substantially parallel with the first surface. The first surface has a first curved profile and the second surface has a second curved profile. The optical assembly also includes a beam splitter on the first surface and a reflector on the second surface. The optical assembly is configured to transmit image light received at the first surface in an optical path that includes reflection at each of the reflector and the beam splitter before the image light is output from the second surface. The optical assembly is also configured to transmit ambient light received at the first surface such that the second light is output from the second surface without undergoing reflection at either the reflector or the beam splitter. A method of transmitting light through the optical assembly is also disclosed.
An information processing device includes a control unit that has control so that, when detected a status transition of a user including a rising motion or a moving motion of the user during reproduction of a wide-angle image covering the entire field of view of the user, a real-space image acquired by an outward-facing camera provided on a display device that is worn on the head of the user and has a display unit covering the entire field of view is displayed on the display unit in real-time and a 2D image corresponding to a portion of the wide-angle image is displayed on the real-space image.
A vibrating device includes a translucent cover, an ejector to eject a liquid onto the surface of the translucent cover, and a first vibrating portion to vibrate the translucent cover at a vibration acceleration of larger than about 8.0×105 m/s2 and equal to or smaller than about 21.0×105 m/s2.
A Mid-Wave Infrared (MWIR) objective and relay lens system has an F# of 3.33 and angular field of view of 15.28°. It is deployed, with a focal plane and scanning system, on airborne platforms for wide area motion imagery. It is corrected for monochromatic and chromatic aberrations over of 3.3 to 5.1 micrometers. Effective focal length is 20 inches, and the overall length is 40.70 inches. The lens has, from object to image, two groups of optical elements with a cold shield/aperture stop 6 inches from the image plane. Group 1 acts as an objective lens with a positive power and three elements, Group 2 acts as a relay lens has a positive power and four elements. The lens is made of Germanium and Silicon. It used in a scanning system in a pre-objective configuration where the fast scan mirror is located in front of the lens system.
A lens module includes a first lens, an object-side surface thereof being convex; a second lens, both surfaces thereof being convex; a third lens, both surfaces thereof being concave; a fourth lens having positive refractive power, both surfaces thereof being convex; a fifth lens, an object-side surface thereof being concave; and a sixth lens, an object-side surface thereof being convex. The first to sixth lenses are sequentially disposed in numerical order from the first lens to the sixth lens from an object side of the lens module toward an image side of the lens module.
The present application discloses an optical imaging lens, comprising, in order from an object side to an image side along an optical axis: a first lens having a positive refractive power; a second lens having a positive refractive power; a third lens having a negative refractive power; a fourth lens; a fifth lens having a negative refractive power; and a sixth lens having a positive refractive power, wherein a distance TTL from an object side surface of the first lens to an imaging plane of the optical imaging lens on the optical axis and an entrance pupil diameter EPD of the optical imaging lens satisfy TTL/EPD<1.9; and a total effective focal length f of the optical imaging lens satisfies 6.0 mm
An ophthalmic article having a coating system which provides antireflective and easy clean properties to the ophthalmic article. The coating system includes alternating layers of low refractive index metal oxide and high refractive index metal oxynitrides and corresponding high refractive index metal oxides. The coating system provides favorable surface energy to the ophthalmic article when at least one layer of the high refractive index metal oxynitride is encapsulated between two layers of low refractive index metal oxide.
A fusion method of satellite-based and ground-based lightning data includes S1, selecting valid data in the satellite-based and ground-based lightning data; S2, determining a time threshold for fusing the satellite-based and ground-based lightning data; S3, determining a spatial threshold for fusing the satellite-based lightning data and the ground-based lightning data; and S4, constructing a data fusion scheme to obtain a fused all lightning data set.
A sub-bottom geophysical imaging apparatus includes a carriage assembly having at least one acoustic transmitter, and at least one acoustic receiver proximate the transmitter. A position determining transponder is mounted on the carriage. A plurality of position transponders is disposed at spaced apart positions to communicate with the transponder mounted on the carriage. A pair of tracks is provided for moving the carriage to selected positions above the bottom. Electrodes are provided for a resistivity sensor and a shear acoustic transmitter and receiver disposed in at least one of the pair of tracks. A signal processing unit is configured to coherently stack and beam steer signals detected by the line array, the electrodes and the shear transmitter and receiver. The signal processing unit is configured to record signals detected by the line array of acoustic receivers, the electrodes and the shear acoustic transmitter and receiver.
A radiation dosimetry gel, usable in a polymer gel dosimeter having an improved sensitivity and high safety, includes a gelator, and a compound of the following Formula (1):
wherein R1 is a hydrogen atom or a methyl group, m and n are each an integer of 2 to 4, k is 0 or 1, and a plurality of R1s and ms are each the same as or different from one another. Also provided for is a radiation dosimeter including the radiation dosimetry gel as a material for radiation dosimetry.
A printed radiation sensor that includes a substrate, an interdigitated electrode, and a conductive polymeric film. The interdigitated electrode including a first electrode with a plurality of first electrode digits and a second electrode with a plurality of second electrode digits. The interdigitated electrode disposed on the substrate. The conductive polymeric film including a blend of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) and polyvinyl alcohol (PVA). The PEDOT:PSS is configured to provide an electrically conductive medium. The PVA is configured to provide ductility and stability of the printed radiation sensor. Upon radiation exposure, the PVA is further configured to crosslink within a material matrix of the printed radiation sensor militating against the recombination of chain scission by forming a semi-interpenetrating polymer network (SIPN) with the PEDOT:PSS to provide an enhanced and stable impedance reading.
Described herein is a time-of-flight ranging system and methods for its operation. The system includes an array of single photon avalanche diode (SPAD) pixels and control circuitry. The control circuitry simultaneously accumulates integrated SPAD event data from one cluster of SPAD pixels while integrating SPAD event data from another cluster during different target illuminations. The system also includes first and second VCSEL clusters, each responsible for a different target illumination. By processing and managing the data in this manner, the system can effectively reduce the time used to gather and analyze the event data, leading to faster and more accurate distance measurements.
Aspects of the present disclosure involve systems, methods, and devices for determining specular reflectivity characteristics of objects using a Lidar system of an autonomous vehicle (AV) system. A method includes transmitting at least two light signals directed at a target object utilizing the Lidar system of the AV system. The method further includes determining at least two reflectivity values for the target object based on return signals corresponding to the at least two light signals. The method further includes classifying specular reflectivity characteristics of the target object based on a comparison of the first and second reflectivity value. The method further includes updating a motion plan for the AV system based on the specular reflectivity characteristics of the target object.
A LIDAR data based object recognition apparatus merges segments over-segmented in a LIDAR data based segmentation process. The apparatus includes a segment generator generating a plurality of segments by grouping points acquired from a LIDAR sensor. A target segment selector selects a target segment that is a base for merging from the plurality of segments and a segment merging determination unit checks whether segments other than the target segment are mergeable segments and determines whether to merge the target segment and the mergeable segments based on attribute information of the target segment and the mergeable segments. A segment merger merges the target segment and the mergeable segments and outputs a merged segment.
A motion capture system and method are provided. In a motion capture method, a plurality of motion datasets are accessed. Each motion dataset is associated with a motion sensing unit at which timestamped motion data points of that motion dataset are generated, each motion sensing unit is configured to be in physical contact with a different part of a body of interest. Each timestamped motion data point is timestamped at the motion sensing unit at which it is generated using a clock time that is synchronized across the plurality of motion sensing units. The timestamped motion data points are processed to generate a kinematic model which describes motion of the respective parts of the body of interest.
A computer implemented method of validating an output from a GNSS at a receiver including a fusion system comprising location sensors. A location estimate and a location error estimate are computed. A navigation update including a sensor location estimate and sensor location error estimate is also computed with the fusion system based on sensor measurements from the location sensors. A determination is made as to whether or not GNSS filters should be applied based at least on the location estimate, the sensor location estimate, and the sensor location error estimate. When GNSS filters should be applied, the location estimate and/or the location error estimate may be adjusted or rejected and a new navigation update may be computed with the fusion system based on the adjustment or rejection. When the GNSS filters should not be applied, the new navigation update is computed with the location estimate and the location error estimate.
Techniques for determining an object contour are discussed. Depth data associated with an object may be received. The depth data, such as lidar data, can be projected onto a two-dimensional plane. A first convex hull may be determined based on the projected lidar data. The first convex hull may include a plurality of boundary edges. A longest boundary edge, having a first endpoint and a second endpoint, can be determined. An angle can be determined based on the first endpoint, the second endpoint, and an interior point in the interior of the first convex hull. The longest boundary edge may be replaced with a first segment based on the first endpoint and the interior point, and a second segment based on the interior point and the second endpoint. An updated convex hull can be determined based on the first segment and the second segment.
Techniques of designing a sensing system for pseudo 3D mapping in robotic applications are described. According to one aspect of the present invention, an image system is designed to include at least two linear sensors, where these two linear sensors are positioned or disposed orthogonally. In one embodiment, the two linear sensors are a horizontal sensor and a vertical sensor. The horizontal sensor is used for the lidar application while the vertical sensor is provided to take videos, namely scanning the environment wherever the horizontal sensor misses. As a result, the videos can be analyzed to detect anything below or above a blind height in conjunction with the detected distance by the lidar.
A method of using a first device to locate a second device is disclosed. The first device, while in a first mode, transmits a first signal and receives a second signal comprising a reflection of the first signal by the second device. The first device determines, based on the received second signal, a position of the second device relative to the first device. The first device transitions to a second mode, and while in the second mode, receives a third signal from the second device. The first device determines, based on the third signal, an orientation of the second device relative to the first device. The first device comprises one or more receiving antennas, and the second device comprises one or more transmitting antennas. The third signal corresponds to a transmitting antenna of the second device.
A battery diagnosing apparatus includes a measuring unit configured to measure voltage and temperature of a battery, an ohmic resistance determining unit configured to determine an ohmic resistance of the battery based on an impedance profile generated for the battery, and a control unit configured to calculate a voltage change amount by comparing the voltage of the battery measured by the measuring unit with a reference voltage, calculate a resistance change rate by comparing the ohmic resistance determined by the ohmic resistance determining unit with a reference resistance, judge an internal gas generation level of the battery by comparing magnitudes of the calculated resistance change rate and a criterion resistance change rate, and judge an internal gas generation cause of the battery by comparing magnitudes of the calculated voltage change amount and a criterion voltage change amount.
Disclosed is a test circuit for testing an integrated circuit core or an external circuit of the integrated circuit core. The test circuit may not only transmit a cell function input to a cell function output using only one multiplexer in a bypass mode, may but also use a clock gating scheme capable of blocking a clock signal from transmitting to a scan flip-flop to hold a capture procedure.
Devices, systems, and methods are provided for an enhanced anechoic chamber. An enhanced anechoic chamber device may operate a gimbal setup attached to a mounting arm of an anechoic chamber and a radar under test to modify an azimuth angle and an elevation angle of a radar under test. The enhanced anechoic chamber device may cause the radar under test to transmit one or more signals towards one or more reflectors situated in a field of view of the radar through an aperture of an anechoic chamber, wherein the one or more reflectors are situated outside the anechoic chamber. The enhanced anechoic chamber device may receive reflected signals from the one or more reflectors at the radar under test, wherein the reflected signals pass through the aperture before reaching the radar under test. The enhanced anechoic chamber device may measure signal energy of at least one of the reflected signals. The enhanced anechoic chamber device may generate an output indicating an operational status of the radar under test.
A magnetic field detection apparatus includes a magnetoresistive effect element and a conductor. The magnetoresistive effect element includes a magnetoresistive effect film extending in a first axis direction and including a first end part, a second end part, and an intermediate part between the first and second end parts. The conductor includes a first part and a second part that each extend in a second axis direction inclined with respect to the first axis direction. The conductor is configured to be supplied with a current and thereby configured to generate an induction magnetic field to be applied to the magnetoresistive effect film in a third axis direction orthogonal to the second axis direction. The first part and the second part respectively overlap the first end part and the second end part in a fourth axis direction orthogonal to both of the second axis direction and the third axis direction.
A test and measurement device, including a first input structured to receive a first voltage from a first conductor of a first triaxial cable, a second input structured to receive a second voltage from a second conductor of the first triaxial cable or a second triaxial cable, circuitry configured to change modes based on the first voltage and the second voltage; and an output structured to output a signal.
A high precision weighing system and weighing method has a weighing plate and weighing unit separation mechanism and a weight loading mechanism. The weighing plate and weighing unit separation mechanism controls separation of a weighing plate and a weighing unit, so that the weighing plate or the weighing plate and its carried material do not apply force to the weighing unit. The weight loading mechanism loads a weight onto the weighing unit or removes a weight from the weighing unit; the weighing system records a weighing value of the weighing unit during the action of the weighing plate and weighing unit separation mechanism and a sensitivity value during the action of the weight loading mechanism. The weighing system modifies the weighing value at the time of the most recent combination of the weighing plate and the weighing unit based on the recorded weighing and sensitivity values, achieving a high precision.
A method for measuring glucose and cortisol levels in earwax, wherein the measured levels of cortisol and glucose are interpreted as the average cortisol and glucose levels and a medical device that provides an effective, safe and hygienic self-extraction of earwax.
A method is provided for determining the presence of soluble, misfolded α-synuclein protein in a biological sample. The method comprises contacting the biological sample with a pre-incubation mixture, the pre-incubation mixture comprising: a monomeric α-synuclein protein; a buffer composition; a salt; and an indicator, to form an incubation mixture. An incubation cycle is conducted on the incubation mixture in the presence of either a silicon nitride bead or a borosilicate glass bead having a diameter of from about 1 mm to about 5 mm. The method further comprises determining if a detectable amount of misfolded α-synuclein aggregate is present in the biological sample.
A method for forming dendritic mesoporous nanoparticles comprising preparing a mixture containing one or more polymer precursors, a silica precursor, and a compound that reacts with silica and reacts with the polymer or oligomer formed from the one or more polymer precursors, and stirring the mixture whereby nanoparticles are formed, and subsequently treating the nanoparticles to form dendritic mesoporous silica nanoparticles or dendritic mesoporous carbon nanoparticles. The silica precursor may comprise tetraethyl orthosilicate (TEOS), the one or more polymer precursors may comprise 3-aminophenol and formaldehyde and the compound may be ethylene diamine (EDA). There is a window of amount of EDA present that will result in asymmetric particles being formed. If a greater amount of EDA is present, symmetrical particles will be formed.
The present disclosure provides a basal ganglia-on-a-chip for screening therapeutic agents for brain and nervous system diseases and a method for fabricating the same. The present invention provides a method for screening therapeutic agents for dopamine-dependent brain and nervous system diseases by using a basal ganglia-on-a-chip. When the basal ganglia-on-a-chip of the present invention is used in the effect evaluation of therapeutic agents for brain and nervous system diseases, the effect evaluation of therapeutic candidate substances can be economically and promptly carried out compared with an existing technique.
In a method for sensing translocation of a molecule through a nanopore, a molecule in a first fluidic solution in a first fluidic reservoir that is in direct fluidic connection with the nanopore is directed to a nanopore inlet and translocated through the nanopore to a nanopore outlet and through a fluidic passage that is in direct fluidic connection with the nanopore outlet, to a second fluidic solution in a second fluidic reservoir disposed in direct fluidic connection with the fluidic passage. The fluidic passage has at least one fluidic section in which a length of the fluidic section is greater than a width of the fluidic section. Translocation of the molecule through the nanopore is sensed by measuring the electrical potential local to the fluidic passage during the translocation of the molecule.
The invention relates to a method (100) for determining a hydrocarbon-water contact position in a hydrocarbon reservoir, said method comprising the steps of:—Providing (110) at least two reservoir fluid samples collected, from connected hydrocarbon reservoir(s), at different known sampling depth values, —Measuring (120) abundance of at least one isotope of noble gas from each of the at least two reservoir fluid samples, and—Calculating (130) the hydrocarbon-water contact position in the hydrocarbon reservoir from the measured abundances and the known sampling depth values of the at least two reservoir fluid samples.
Provided are method and system for rapidly predicting foaming tendency of edible frying oil, including: heating the oil; immersing a polar component content detection probe into the oil to measure an initial polar component content of the oil; at a frying state, removing the detection probe from the oil, placing frying food into the oil and frying the same taking out the frying food from the oil after frying, and measuring the largest frying oil foam height and recording the same as an initial foam height; at an air introduction state, immersing the detection probe and introducing air into the oil, and continuing to introduce air and heat thereinto until the polar component content in the oil is 10%; repeating the frying state; and fitting measurements and parameters into a formula.
An optical device includes a first axicon lens to which collimated light is incident and which is configured to form diverging ring-shaped light; a lens to which the ring-shaped light formed by the first axicon lens is incident and which is configured to form ring-shaped collimated light; and a condensing mirror that is configured to condense the ring-shaped collimated light formed by the lens. A photoacoustic microscope includes the optical device described above and a detector that is configured to detect an acoustic wave caused by light condensed by the condensing mirror.
A non-destructive testing method for flexural strength of fine ceramic, an apparatus, and a storage medium, including adjusting an uncut intact fine ceramic test sample to an ultrasonic testing position, and fixing the test sample; adjusting an ultrasonic testing instrument, controlling and adjusting the positions of ultrasonic testing probes of the ultrasonic testing instrument until the ultrasonic testing probes, the fine ceramic test sample and the resiling direction are located on the same plane, performing ultrasonic testing on the test sample, and collecting ultrasonic testing data of the test sample; adjusting the position of the fine ceramic test sample until a resilience testing rod and the test sample are located on the same plane and fixed, performing resilience testing on the test sample, and collecting resilience testing data of the test sample; and building a data model, or substituting testing data into the pre-built data model.
The present invention forms a detection layer in an embedded biosensor probe by using a phenazine derivative as a redox mediator in which a phenazine group is covalently bonded to a high molecular weight polymer having a carboxyl group or an amino group, such as polyamino acid, polyimine, or polyallylamine; and the distance between the phenazine group and the high molecular weight polymer main chain is increased by using a polyethylene glycol chain.
A live flaw detection system for a multi-bundled conductor splicing sleeve and an application method thereof are disclosed. The system includes an upper apparatus and a lower apparatus, where the upper apparatus includes an unmanned aerial vehicle and an industrial X-ray machine, and a laser sensor, and the lower apparatus includes a press plate frame apparatus, vertical screw slide table modules, a horizontal screw slide table module, a projection imager, and a linear retractable apparatus. The unmanned aerial vehicle functions as a power apparatus that controls the system to be online or offline, the industrial X-ray machine is configured to perform ray flaw detection on each splicing sleeve, the laser sensor is configured to guide the unmanned aerial vehicle to land the lower apparatus on splicing sleeves accurately, and the press plate frame apparatus is configured to fixedly clamp the splicing sleeves.
System and methods for analyzing single molecules and performing nucleic acid sequencing. An integrated device includes multiple pixels with sample wells configured to receive a sample, which when excited, emits radiation. The integrated device includes at least one waveguide configured to propagate excitation energy to the sample wells from a region of the integrated device configured to couple with an excitation energy source. A pixel may also include at least one element for directing the emission energy towards a sensor within the pixel. The system also includes an instrument that interfaces with the integrated device. The instrument may include an excitation energy source for providing excitation energy to the integrated device by coupling to an excitation energy coupling region of the integrated device. One of multiple markers distinguishable by temporal parameters of the emission energy may label the sample and configuration of the sensor within a pixel may allow for detection of a temporal parameter associated with the marker labeling the sample.
An absolute thickness distribution cannot be accurately calculated with a conventional technique. A sensor device is provided that includes a plurality of magnetic sensors arranged to face an outer circumference surface of a pipeline and ultrasonic sensors arranged to face the outer circumference surface and measure a thickness of the pipeline in a measurement region in which the plurality of magnetic sensors measure a magnetic field, the ultrasonic sensors being less than the plurality of magnetic sensors.
A method for providing in situ chemical transformation and ionization of a portion (e.g., inorganic oxidizer) of a sample via an analyte detection system is disclosed herein. The method includes introducing a gas into an ionization some of the analyte detection system via an inlet. The method further includes generating ions within the ionization source and directing the gas and generated ions through and out of the ionization source and to the sample. The sample is located proximal to the ionization source in an ambient environment. The ions chemically react with the sample and desorb and ionize an analytic from the sample, the analyte being generated from the inorganic oxidizer, the desorbed analyte having a lower melting point and/or better desorption kinetics than the inorganic oxidizer. The method further includes receiving the desorbed analyte via an analyzer of the analyte detection system.
There is provided a cool box for use in an automatic analyzer. The cool box has a box body and an air circulator. The box body has a receiving space capable of accommodating therein receptacles for analytes or reagents. The circulator has an intake portion, a fan, and an exhaust portion and operates to circulate air in the receiving space by rotation of the fan. The circulator further includes an inhibitor removing agent retaining portion on which a pouch is set. The pouch contains an analysis inhibitor removing agent for removing components (analysis inhibitor) which adversely affect or inhibit analysis of the analytes.
A device and method for isolating extracellular vesicles from biofluids is disclosed. A nanoporous silicon nitride membrane is provided with a tangential flow of biofluid. A pressure gradient through the nanoporous silicon nitride membrane facilitates capture of extracellular vesicles from the tangential flow vector of biofluid. Reversal of the pressure gradient results in the release of the extracellular vesicles for subsequent collection.
A system for optical interrogation of tissue samples, the system including: a microtome configured to section one or more tissue sections from a tissue block, the one or more tissue sections including one or more tissue samples; a transfer medium configured to gather the one or more tissue sections and to transfer the one or more tissue sections to one or more slides; and an optical interrogation system including an illumination system configured to illuminate the one or more tissue sections and an imaging system configured to perform an imaging analysis on the one or more tissue sections illuminated with the illumination system.
The disclosure is an engine simulation test device capable of realizing an ultrahigh compression temperature and pressure, belonging to the field of a diesel engine high-temperature and high-pressure system, solving the problems that the existing engine simulation test cannot achieve ultra-high compression temperature and pressure, and the temperature and pressure are not adjustable. It includes a compressed air inlet mechanism, a nitrogen gas inlet mechanism, a pressure stabilizing mechanism, a cyclic heating mechanism, an air inlet mechanism and a fast compressor mechanism. The compressed air inlet mechanism and the nitrogen gas inlet mechanism are both connected with a gas inlet end of a pressure stabilizing tank in the pressure stabilizing mechanism, the compressed air inlet mechanism and the nitrogen gas inlet mechanism respectively introduce air and nitrogen gas into the pressure stabilizing tank, the pressure stabilizing tank is connected with the cyclic heating mechanism, the cyclic heating mechanism heats gas in the pressure stabilizing tank, a gas outlet end of the pressure stabilizing tank is connected with the fast compressor mechanism, and the air inlet mechanism is connected between the pressure stabilizing tank and the fast compressor mechanism. The device is mainly used for an engine simulation test.
An example dehumidifier system may include one or more of a processor, an input display unit, a temperature and humidity censor configured to acquire current temperature and relative humidity data, an analog-to-digital transducer configured to convert, the acquired current temperature and relative humidity data from analog to digital output, a psychrometric converter module executed by the processor to convert the relative humidity data into ratio/absolute humidity data, a digital-to-analog transducer configured to convert the ratio/absolute humidity data into an analog format, a hysteresis comparator unit configured to compare hysteresis setpoint data received from the input display unit with data received from the temperature and humidity censor, and a ratio/absolute humidity setpoint comparator unit configured to compare a ratio/absolute humidity setpoint data received from the input display unit with the converted ratio/absolute humidity data.
A protective tube, in particular for sealed introduction into a process space having a flow directed in a direction, having a hollow body, which is closed at its lower end, an opening at its upper end for introducing a temperature sensor; and at its upper end has a contour for sealing to a process space. The hollow body is cylindrical inwardly, an outer contour of the hollow body tapers toward the closed lower end, and at least in sections, at least one helix structure is arranged on the outer contour and/or at least in sections, at least one helix structure is arranged in the outer contour. A gas sample collector for introduction into a process space is also provided.
The present disclosed is directed to systems, methods, and devices for obtaining feedback information from individuals to reveal group preferences and to systems, methods, and devices for enabling providers to provide outcomes which utilize, at least in part, the preferences of the group. For example, a system comprising a plurality of devices, wherein at least one device of the plurality of devices captures at least one feedback in one substantially simple transaction; and the at least one device of the plurality of devices sends the at least one captured feedback to at least one computer; and the at least one computer receives the least one feedback; and the at least one feedback can be given at one or more of the following: periodic time intervals, predefined time intervals, random time intervals, substantially random time intervals and substantially any time.
A thermal imaging apparatus comprising: a thermal detector device (100) comprising an array of thermal sensing pixels (102) and signal processing circuitry (104) coupled to the detector device (100). The circuitry (104) supports a background identifier (110) and a pixel classifier (112), the background identifier (110) comprising a common intensity identifier (114) and an expected background intensity calculator (116). The background identifier (110) receives pixel measurement data captured by the detector device (100) in respect of pixels of the array (102) and the common intensity identifier (114) identifies a largest number of substantially the same pixel intensity values from the pixel measurement data. The expected background intensity calculator (116) uses the largest number of substantially the same pixel intensity values to generate a model of expected background intensity levels. The pixel classifier (112) uses the model to determine whether an intensity measurement by a pixel (118) of the array (102) corresponds to a background or an object in an image.
The system is configured to locate, track and/or analyze activities of living beings in an environment. The system does not require the input of personal biometric data. The sensor system detects infrared (IR) energy from a living being moving in an environment, determines a temperature of the living being based on IR energy data of the IR energy, projects the temperature onto a grid having sequential pixels, determines serial changes of the temperature in the sequential pixels and determines a trajectory of the living being based on the serial changes of the temperature in the sequential pixels.
The invention provides a curved-slit imaging spectrometer, wherein a fiber bundle transfers a straight line image of a front objective lens to a curved slit, and the front objective lens doesn't need to have a curved image plane to directly abut the spectrometer, so that the system is less complicated, and the front objective lens and spectrometer have a simple structure. The arc-shaped or approximately arc-shaped curved slit matches the optimum imaging circle of the Offner-type spectrometer, thereby achieving an extra-long slit. The arced slit is 5 to 10 times longer than the straight slit of the classical Offner-type spectrometer. In the case of a compact size, the length of the slit can be greater than 100 mm. Also, the same spectral response function applies in different fields of view while presenting desirable imaging quality.
A spectrometer device includes an optical interference filter which is designed to filter specific wavelength ranges of an incident light beam on passage through the optical interference filter. The spectrometer device also includes a detector device which is designed to detect the filtered light beam. Further, the spectrometer device includes a focusing device with a reflective surface. The focusing device is designed to focus the filtered light beam onto the detector device by reflection on the surface.
A combined weighing system 1 includes a first X-ray inspection device 20, a combined weighing device 40, a bag making and packaging device 50, a weight inspection device 60, a second X-ray inspection device 70, and a management device 90 that manages each device. The management device 90 revises a weight conversion table of the first X-ray inspection device 20 and a correction value of the combined weighing device 40 based on an average value of weights of products B, which is calculated from a result of inspection over a certain time period in the weight inspection device 60.
The embodiments of the present disclosure provide a method and system for compensating ultrasonic metering based on a smart gas Internet of Things system, comprising: determining a first preset condition based on a gas pipeline feature obtained from an external database, wherein the first preset condition refers to a judgment condition for evaluating whether a flow compensation is required; obtaining a gas transportation feature and an environmental feature based on at least one sensor; determining a compensation scheme based on the gas transportation feature, the environmental feature, and the first preset condition, wherein the compensation scheme includes at least one of a flow rate compensation coefficient, a flow compensation parameter, a temperature compensation coefficient, or a pressure compensation coefficient; sending the compensation scheme to an ultrasonic metering device, and controlling the ultrasonic metering device to determine updated flow metering data according to the compensation scheme.
Methods and apparatuses associated with flow sensing devices are provided. An example flow sensing device may include a sensing element disposed at least partially within the housing, and a plurality of channels disposed within the housing defining a flow path configured to convey a flowing media through the flow sensing device, wherein the flow path is disposed proximate the sensing element such that at least a portion of the flowing media makes direct contact with the sensing element.
A field device (10) includes a sensor (11) that measures a physical quantity and outputs a measurement signal indicating a measured value, converters (12, 15, 16) that perform a predetermined conversion process on the measurement signal, and a processor (17) that outputs an output signal corresponding to the measurement signal subjected to the conversion process. The processor (17) starts verifying operational soundness of the converters (12, 15, 16) when the measurement signal subjected to the conversion process satisfies a predetermined condition, and outputs, while the operational soundness of the converters (12, 15, 16) is being verified, a signal corresponding to the measurement signal subjected to the conversion process and acquired immediately before the operational soundness of the converters (12, 15, 16) is verified, or a signal corresponding to the measurement signal indicating a predetermined measured value of the sensor (11), as the output signal.
The invention relates to a method for determining shifts in position in at least two different spatial directions between a first element and a second element which are movable relative to each other, with at least two sensors which measure contactlessly and are spaced, in the at least two different spatial directions, from at least two standards which are fixed to the second element, sensor areas of the at least two sensors opposing the at least two standards in the respective spatial direction and sensing said standards, wherein: —the at least two sensors scan the at least two standards and generate, in interaction with the at least two standards, output signals with which in combination an absolute position of the second element is determined, said absolute position being associated with a linear movement in a further spatial direction or with a rotary movement, and—wherein the output signals of the at least two sensors are also used to determine values which characterise the distance between the respective sensor and the corresponding standard of the second element in the associated spatial direction, are corrected as a function of the determined absolute position of the second element, and from which the shift in position of the second element relative to the first element in the respective spatial direction is determined.
One example method involves generating a calibration control signal that causes an actuator to rotate a first platform at least one complete rotation about an axis. The method also involves receiving encoder output signals. The encoder output signals are indicative of angular positions of the first platform about the axis. The method also involves receiving sensor output signals from an orientation sensor mounted on the first platform. The sensor output signals are indicative of a rate of change to an orientation of the orientation sensor. The method also involves determining calibration data based on given sensor output signals received from the orientation sensor during the at least one complete rotation. The calibration data is for mapping the encoder output signals to calibrated measurements of the angular positions of the first platform about the axis.
Systems and methods for extrinsic calibration of vehicle-mounted sensors are provided. One example method involves obtaining first sensor data collected by a first sensor and a second sensor while a vehicle is aligned in a first yaw direction. The method also involves obtaining second sensor data collected by the first sensor and the second sensor while the vehicle is aligned in a second yaw direction. The method also involves determining, based on the first sensor data and the second sensor data, (i) first pitch and roll misalignments of the first sensor relative to the vehicle and (ii) second pitch and roll misalignments of the second sensor relative to the first sensor. The method also involves determining third pitch and roll misalignments of the second sensor relative to the vehicle based on (i) the first pitch and roll misalignments and (ii) the second pitch and roll misalignments.
A method is presented for determining a reliability of a low-definition map to make the activation of at least one driving assistance system of an autonomous vehicle reliable when the autonomous vehicle is traveling on a road and wherein the vehicle comprises a navigation system and a perception system, the navigation system comprising the mapping and providing mapped data, the perception system providing measured data of the vehicle and/or the external environment of the vehicle, the method comprising the steps of: receiving mapped data; receiving measured data; determining a path of the road; calculating a road correlation value; calculating a sign correlation value; determining a reliability indicator, reliable or unreliable.
An in-vehicle apparatus includes: a selection unit configured to select at least one candidate camera from plural cameras based on position information of each of the plural cameras; a reception unit configured to establish communication connection with the candidate camera selected by the selection unit and to start to receive video captured by the candidate camera; and a display control unit configured to display the video received by the reception unit in response to a predetermined display condition being satisfied.
Generating route guidance in near real-time. At least one example is a method of providing route guidance by way of a mobile device, the method comprising: acquiring an applet by the mobile device, the acquiring responsive to a trigger event, and the trigger event identifies a destination location; determining, by the applet executed on the mobile device, an initial location of the mobile device; sending, by the applet executed on the mobile device, to a server an indication of the initial location of the mobile device and an indication of the destination location; receiving, by the mobile device from the server, a map comprising the initial location and the destination location; determining, by the applet executed on the mobile device, a route from the initial location to the destination location; and providing, by the applet executed on mobile device, guidance along the route to the destination location.
A vehicle includes a user interface; and a controller configured to determine a predicted place where an image is predicted to have been captured according to an output of a place prediction neural network for the image selected by a user, and control the user interface to perform a route guide to the predicted place, wherein the place prediction neural network is learned from an image tagged with place information.
Disclosed are various embodiments for implementing passenger profiles for autonomous vehicles. A passenger of the autonomous vehicle is identified. A passenger profile corresponding to the passenger and comprising a passenger preference is identified. The passenger preference is identified. A configuration setting of the autonomous vehicle corresponding to autonomous operation of the autonomous vehicle is then adjusted based at least in part on the passenger preference.
A functional iterative integration-based method for an inertial navigation solution includes: fitting a Chebyshev polynomial function of an angular velocity and a Chebyshev polynomial function of a specific force according to gyroscope-measured values and accelerometer-measured values on a time interval; iteratively calculating Chebyshev polynomial coefficients of an attitude quaternion by using the obtained Chebyshev polynomial coefficients of the angular velocity and an integral equation of the attitude quaternion, and performing polynomial truncation on a result obtained from each iterative calculation according to a preset order; iteratively calculating Chebyshev polynomial coefficients of a velocity/position by using the obtained Chebyshev polynomial coefficients of the specific force, the Chebyshev polynomial coefficients of the attitude quaternion and an integral equation of the velocity/position, and performing polynomial truncation on a result obtained from each iterative calculation according to a preset order; and obtaining attitude/velocity/position information on the corresponding time interval.
A three-dimensional data creation method for use in a vehicle including a sensor and a data receiver that transmits and receives three-dimensional data to and from an external device. The three-dimensional data creation method includes: creating second three-dimensional data based on information detected by the sensor and first three-dimensional data received by the data receiver; and transmitting, to the external device, third three-dimensional data that is part of the second three-dimensional data.
An object of the present disclosure is to propose a height measuring device which performs height measurement with high accuracy at each height with a relatively simple configuration even when the sample surface height changes greatly. A height measuring device which includes a projection optical system configured to project a light ray onto an object to be measured and a detection optical system including a detection element configured to detect a reflected light ray from the object to be measured, where the projection optical system includes a light splitting element (103) which splits a trajectory of the light ray with which the object to be measured is irradiated into a plurality of parts, and thus it is possible to project a light ray to a predetermined position even when the object to be measured is located at a plurality of heights, is proposed.
A firearm mounting plate assembly is provided. The firearm mounting plate assembly includes a firearm slide with a first side, a second side, and a top side. A recess defined by a first slide wall and a recess base surface is disposed on the firearm slide top side. The recess includes a rib. The firearm mounting plate assembly includes a mounting plate with a top surface, a bottom surface, a front side, and a rear side. The mounting plate includes one or more bosses. The mounting plate is configured to secure within the recess of the firearm slide.
A loading aid which projects beyond the lateral faces (220, 230) of the slide (200) and is attached in the region of a rear end face (210) of the slide (200) of a firearm is created by a panel (110) which projects beyond the lateral faces (220, 230) of the slide (200) with at least one of its lateral regions (120, 130) lying opposite one another and is introduced into a horizontally oriented recess (211) in the rear end face (210) of the slide (200).
A bolt carrier group and a method for manufacturing it are disclosed. The bolt carrier group contains a first bolt carrier section containing a first end and a second end, a second bolt carrier section containing a first end and a second end, a plurality of pins positioned between the first bolt carrier section and the second bolt carrier section, a coupling pin configured to prevent decoupling of the first bolt carrier section from the second bolt carrier section.
Ultrasound devices and systems are disclosed in which cooling of an active acoustic element of an ultrasound transducer is achieved via an electrically conductive member that extends beyond a proximal side of the active acoustic element to contact a heat exchanger. The electrically conductive member delivers electrical driving signals to the active acoustic element while conducting heat to the heat exchanger. A region of the proximal surface of the active acoustic element that is free from contact with the electrically conductive member may also absent from contact with a liquid or a solid, thereby facilitating reflection of ultrasound energy. The heat exchanger may include an electrically insulating fluid that contacts the electrically conductive member to remove the heat conducted through the electrically conductive member. The active acoustic element may be a multilayer lateral mode element, and the electrically conductive member may form an electrode of the lateral mode element.
Cryocooler health monitoring systems and methods are provided. In one example, a method includes determining, for each setpoint temperature of a plurality of setpoint temperatures, a respective power applied to a cryocooler to set a cold tip of the cryocooler to the setpoint temperature. The method further includes determining a first load line associated with the cold tip based on the plurality of setpoint temperatures and the respective powers applied to the cryocooler. The method further includes determining a health metric associated with the cold tip based on the first load line and a reference load line associated with the cryocooler. Related devices and systems are also provided.
Provided is a refrigerator including a cabinet having a refrigerating compartment and a freezing compartment defined therein, and an ice-maker disposed in the freezing compartment, wherein the ice-maker includes a cold-air hole for receiving cold air, an upper tray having a plurality of hemispherical upper chambers defined therein, a lower tray pivotably disposed below the upper tray, wherein the lower tray has a plurality of lower chambers defined therein respectively connected to the upper chambers by pivoting, wherein each of the lower chambers and each of the upper chambers connected with each other define an ice chamber for forming spherical ice therein, a driver for pivoting the lower tray, and at least one shield formed on an outer face of the upper tray and corresponding to at least one of the ice chambers respectively, thereby to reduce the cold-air from invading the at least one corresponding ice chamber.
The present application concerns a climate control unit for controlling air temperature and/or humidity. Moreover, the present application concerns a system comprising such a climate control unit. The climate control unit according to the invention makes use of two refrigerant paths that share a common part in which a compressor and evaporator are arranged, and that each have a non-shared part. A reheat coil is provided in one of the non-shared parts. According to the invention, a respective expansion device is provided in both non-shared parts.
A fan drive circuit for a variable speed fan motor in a cooling system, includes an inverter configured to supply a current signal to stator windings of the variable speed fan motor, a frequency detection circuit coupled to an output stage of an inverter of a compressor motor of the cooling system and configured to detect a first frequency of a compressor current signal at the output stage of a variable speed compressor drive circuit and generate a frequency signal, and a digital signal processor (DSP) coupled to the inverter and the frequency detection circuit. The DSP is configured to receive the frequency signal corresponding to the first frequency from the frequency detection circuit, select a second frequency corresponding to the first frequency at which to operate the variable speed fan motor, and transmit control signals to the inverter to supply current to the stator windings at the second frequency.
A method for controlling a vapour compression system (1) including a compressor unit (2) including one or more compressors (3, 12), a heat rejecting heat exchanger (4), a receiver (6), an expansion device (7) and an evaporator (8) arranged in a refrigerant path. A pressure value indicating a pressure prevailing inside the receiver (6) is obtained, and the obtained pressure value is compared to a first threshold pressure value. In the case that the obtained pressure value is below the first threshold pressure value, the compressor(s) (3, 12) of the compressor unit (2) are controlled in order to reduce a suction pressure of the vapour compression system (1).
An air-conditioning apparatus includes an indoor unit and an outdoor unit connected to each other via a refrigerant pipe through which refrigerant flows. The air-conditioning apparatus includes a refrigerant sensor that detects leakage of the refrigerant in the indoor unit, a notification unit that provides a notification of occurrence of leakage of the refrigerant, a transmitter that communicates with an external terminal via a network, and a controller that controls the notification unit and the transmitter. The notification unit includes a display and a speaker disposed on a surface of a casing of the indoor unit, and the external terminal. When leakage of the refrigerant is detected by the refrigerant sensor, the controller controls the notification unit and the transmitter to provide a notification of occurrence of leakage of the refrigerant.
An air-conditioning apparatus includes an outdoor heat exchanger. The outdoor heat exchanger includes a first heat exchanger and a second heat exchanger. A controller performs a heating operation and a heating-defrosting operation, in which one of the first heat exchanger and the second heat exchanger functions as an evaporator, an other one the first heat exchanger and the second heat exchanger functions as a condenser. When a temperature of the indoor heat exchanger by a temperature detection unit is treated as a first temperature, and a temperature of the indoor heat exchanger by the temperature detection unit is treated as a second temperature, the controller reduces a rotation speed of an indoor fan in a case where the second temperature is lower than the first temperature and where a difference between the first temperature and the second temperature is greater than or equal to a first setting value.
The invention proposes a method and a device (110) for thermal-electrochemical energy storage and energy provision. The device (110) comprises: at least one thermal energy store (118), wherein the thermal energy store (118) comprises at least one heat transport medium (121) and at least one storage medium (119) selected from the group consisting of: an electromagnetic storage medium, a thermal storage medium; at least one heating device (134), wherein the heating device (134) is designed to receive the heat transport medium (121) from the thermal energy store (118), to heat this medium and return it to the thermal energy store (118); at least one electrochemical cell (146), wherein the electrochemical cell (146) comprises at least one gas chamber (148), wherein the electrochemical cell (146) further comprises at least one first electrode (150) and at least one second electrode (152): wherein the second electrode (152) is designed as a 3-phase electrode (154), wherein the 3-phase electrode (154) has at least one first phase boundary (156) to the gas chamber (148) and at least one second phase boundary (158) to the electrochemical storage medium (119); wherein the electrochemical cell (146) is designed to electrochemically react the electrochemical storage medium (119); and at least one container (160), wherein the container (160) is designed to receive a supply on the heat transport medium (119), wherein the container (160) is further designed to receive the thermal storage medium (119) from the thermal energy store (118).
A control method for an air conditioner indoor unit is provided. The air conditioner indoor unit has a housing, a drain pan, an air deflector, a door, and a sweeping strip. In a wind-free mode of the indoor unit, an orthographic projection of the air deflector in the drain pan is located in the drain pan. According to the method, the air conditioner indoor unit enables the non-draught mode; when receiving an instruction of ending the non-draught mode, the air conditioner indoor unit controls the door to move back and forth for n times to close and open the air outlet, so as to drive the sweeping strip to move to sweep the condensate water on the surface of the air deflector, n being greater than 0; and the wind-free mode is ended.
Aspects of the present disclosure include methods, systems, and non-transitory computer readable media for receiving at least one calibration heat signal from a calibration device, wherein the at least one calibration heat signal corresponds to a calibration temperature known to the controller, receiving a plurality of heat signals from a plurality of sources in the building, determining a plurality of temperatures associated with the plurality of heat signals based on the at least one calibration heat signal and the calibration temperature, determining an internal target temperature of the building based on the plurality of temperatures, and transmitting, to the HVAC system, a control signal indicating the internal target temperature.
Provided are an air-conditioning system, a data transmission method and apparatus, and a non-transitory computer storage medium. A centralized air-conditioning controller, at least one air conditioner, and at least one environmental information collection module are provided. The environmental information collection module detects current environmental data information of an area where the air conditioner that has been matched through networking is located, sends the current environmental data information to the air conditioner that has been matched through networking for the air conditioner controlling the operation of at least one device of the air conditioner according to the received information, and sends the current environmental data information and saved identity identification information of the air conditioner that has been matched through networking to the centralized air-conditioning controller for the centralized air-conditioning controller monitoring and controlling the operation of the air conditioner according to the received information.
A method for cleaning an air conditioner includes: in response to a cleaning instruction, controlling frosting on the surface of a target heat exchanger; after a frosting completion condition is met, controlling defrosting of the frost on the target heat exchanger; and after a defrosting completion condition is met, reducing the surface temperature of the target heat exchanger to a sterilization temperature, and carrying out quick cooling sterilization, wherein the temperature difference between the sterilization temperature and the defrosting temperature during defrosting meets a set temperature change sterilization condition. By a frosting-defrosting process, dirt such as dust on the heat exchanger may be effectively stripped and deep bacteria may be exposed, and then the quick cooling sterilization process may kill the bacteria by utilizing the sharp temperature change during switching from the defrosting process to the quick cooling process. Also disclosed is the air conditioner.
A portable heating device is provided that generally consists of an upper housing having a plurality of openings that allow heat to escape from a coiled infrared heating tube that generates radiant heat. The portable heating device also includes an upper surface with an opening that produces a visible flame and conductive heat. The upper surface is also associated with a flame burner that feeds a cooking surface.
An aspect of some embodiments of the current invention relates to a device, that may ignite a substance without the user directly causing the ignition. for example, the device may perform ignition in a manner that does not transgress Jewish religious prohibitions, for example the Jewish religious law prohibits kindling a flame on the Sabbath and/or festivals. In some cases, kindling may be permitted in an indirect manner referred to in Jewish law by the Aramaic term “Grama”. For example, the device may be designed to ignite a cigarette. Optionally, the device may be designed to be carried safely in a pocket. In some embodiments, the device may initiate ignition without direct user action and/or the initial ignition may be used to ignite another object in accordance with Jewish law allowing transfer of fire but prohibiting starting of a new fire on a holiday.
A boiler performs mixed-fuel combustion of a sulfur-containing fuel and ammonia as a fuel, and includes a furnace having a plurality of wall parts, a burner installed on at least one of the wall parts of the furnace, and an ammonia injection port that is configured to cause the ammonia to be burned as the fuel to flow along an inner wall surface of the wall part where the burner is not installed.
Devices, systems, facilities, and methods for post combustion capture of emissions from a natural gas generator used to power a data center disclosed herein. The facility includes a process for capturing and sequestering CO2 from a post combustion capture of the natural gas generator utilizing the heat from the flue gas and from the data center. The CO2 rich streams from the post combustion capture system are sent to sequestration of some form via a sequestration compressor, thereby reducing the overall emissions from the facility.
A lighting device for professional illumination. The device includes a main housing having a front opening, a first light source, a first reflector configured to receive at least a portion of light emitted by the first light source and to reflect at least a portion thereof, and a second reflector configured to receive at least a portion of light reflected by the first reflector and to reflect at least a portion thereof. The lighting device is configured to emit at least a portion of light reflected by the second reflector out of the lighting device through the front opening. The lighting device further includes an actuator configured to move the first reflector or the second reflector in relation to each other in response to a predetermined control signal.
A light fixture includes a housing for supporting a light source and an enclosure for supporting a driver in electrical communication with the light source. The enclosure is selectively supported in one of a first position and a second position while maintaining electrical communication between the driver and the light source in both positions. The enclosure is directly coupled to the housing in the first position, and the enclosure is supported separately from the housing in the second position.