-
公开(公告)号:CN118939736A
公开(公告)日:2024-11-12
申请号:CN202410944068.9
申请日:2024-07-15
IPC分类号: G06F16/28 , G06F16/215 , G06F16/2453 , G06F16/22 , G06F16/2455
摘要: 本发明涉及基于查询和元数据异常检测的数据湖仓聚簇方法与系统,属于大数据计算技术领域。包括:数据采集与预处理;EC‑GKDE算法异常判定:对预处理操作后的数据集进行训练,得到所有查询任务的异常分数,进行初次判定;元数据信息异常判定:获取异常查询任务的关联表,获取Hive元数据服务中HDFS实际路径信息,并计算该HDFS实际路径下小文件所占比例,二次判定该异常查询任务的关联表是否为异常表;聚簇优化:提交聚簇任务,将小文件合并为大文件。本发明减少存储资源的开销,大大降低了查询任务需要消耗的时间;本发明可以控制聚簇操作执行的次数,减轻聚簇机制带来的并发更新不支持、增量查询不友好和集群资源浪费的问题。
-
公开(公告)号:CN117958831B
公开(公告)日:2024-10-29
申请号:CN202311479336.6
申请日:2023-11-08
IPC分类号: A61B5/318 , A61B5/346 , A61B5/00 , G06F18/241 , G06F18/2415 , G06F18/10 , G06F18/213 , G06N3/0442 , G06N3/0455 , G06N3/0895
摘要: 一种基于自监督学习的多导联心电分类方法,涉及心电信号分类技术领域,首先采用多种不同数据增强的方式对原始信号进行处理,设计合适的编码器模块和利用大量易获得的无标签数据提取心电特征,使编码器学习到更多关于心电信号类别的信息。最后利用少量标注数据微调模型编码器进行特征优化,通过训练模型,不断优化特征提取器的参数,使得生成的特征能够更好地反映输入数据的结构和信息。自监督学习的方式在一定程度上减少心电分类需要大量昂贵人工标注数据造成的阻碍,提高了模型的泛化能力。
-
公开(公告)号:CN118779197A
公开(公告)日:2024-10-15
申请号:CN202411237023.4
申请日:2024-09-05
IPC分类号: G06F11/34 , G06F11/30 , G06F9/50 , G06N3/006 , G06F18/23213 , G06F18/2415
摘要: 本发明涉及一种基于BWO和聚类算法的作业资源消耗模式分析方法,属于大数据计算技术领域;包括:(1)作业运行与任务调度;(2)工作节点资源指标监控;(3)数据预处理和生成数据集;(4)运行基于白鲸优化算法和K‑prototypes算法的BWO/K‑prototypes算法;(5)BWO/K‑prototypes算法最优解应用;(6)聚类结果分析;(7)Flink作业的资源消耗模式分析结果获取与保存。本发明不仅可以提升Flink集群的执行效率,避免异常抛出;还可以减少资源占用,避免不必要的资源浪费。
-
公开(公告)号:CN118488055A
公开(公告)日:2024-08-13
申请号:CN202410630553.9
申请日:2024-05-21
IPC分类号: H04L67/10 , H04L67/101 , H04L67/1008 , H04L67/60 , H04L67/61
摘要: 本发明涉及云边环境中QoS感知的微服自适应在线迁移方法及系统,包括:首先,使用最长加权路径算法识别关键路径,基于CCT方法聚合这些关键路径,以得到待迁移候选微服务集;其次,通过基于关键路径变异系数和响应时间增量系数的倾斜决策树,从待迁移候选微服务集中准确地识别待迁移微服务;最后,使用平衡指标对待迁移微服务之间的网络通信开销以及资源竞争进行综合权衡,在线确定将待迁移微服务迁移到哪一个合适的空闲节点,实现云边环境中QoS感知的微服自适应在线迁移。本发明有助于在突发负载情况下满足QoS要求的基础上,提高系统资源的利用效率。
-
公开(公告)号:CN114741572B
公开(公告)日:2024-07-23
申请号:CN202210364463.0
申请日:2022-04-08
申请人: 山东省人工智能研究院 , 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学
IPC分类号: G06F16/9035 , G06F16/9038 , G06F16/906
摘要: 一种基于图卷积神经网络群组发现的群组推荐方法,根据电影主题类别将用户—电影交互数据划分为数据子集,使用各数据子集构建用户—电影交互图,通过图卷积网络从交互图中学习用户/电影嵌入表示,然后利用Kmeans算法进行群组发现,通过均值融合策略,将群组成员嵌入表示融合为群组嵌入表示,最后将群组嵌入表示与电影嵌入表示进行内积得到群组对电影的预测偏好得分,根据偏好得分向群组推荐电影。侧重于群组发现阶段的用户嵌入获取方法,考虑了群组的内部一致性对群组推荐算法性能的影响,将用户—电影的交互信息融入用户/电影的特征信息之中,提高了群组发现中的用户嵌入表示的准确度,进而增强了群组推荐算法的性能。
-
公开(公告)号:CN118035722A
公开(公告)日:2024-05-14
申请号:CN202410177495.9
申请日:2024-02-08
IPC分类号: G06F18/213 , G06F18/10 , G06N3/0895 , G06F123/02
摘要: 本发明属于船舷风速预测技术领域,提供了一种基于自监督对比学习的船舷风速校正预测方法及系统,包括:获取海洋观测数据;提取所获取的海洋观测数据的数据特征;对所提取的数据特征进行多粒度对比学习,得到海洋观测数据的不同粒度时间序列数据的特征向量;根据所得到的时间序列数据特征向量,完成船舷风速的校正预测。本发明利用超声波风速数据来校正左右船舷风速,通过构建正负样本对,自动从海洋观测时间序列中提取不同粒度的表征向量,而无需手动调整参数或依赖领域专业知识;具备自动学习数据内在结构和模式的能力,提高对左右船舷风速数据误差的感知,增强校正能力。
-
公开(公告)号:CN117958834A
公开(公告)日:2024-05-03
申请号:CN202311541071.8
申请日:2023-11-20
IPC分类号: A61B5/346 , A61B5/00 , G06F18/241 , G06F18/25 , G06N3/0455 , G06N3/0464 , G06N3/048 , G06N3/0895 , G06N3/084
摘要: 一种基于随机掩码和生成式自监督学习的心电分类方法,涉及ECG心电分类技术领域,将原始心电信号在一定约束下将导联信号随机遮掩破坏掉原始心电信号的完整性,使其信号的大部分时空信息被随机掩盖,然后再设计一种高效的编码器生成随机掩蔽策略下的信号,重构在时间和导联维度上遮掩的导联心电信号来学习时空表征。并且为提高编码器对局部特征的感受能力,编码器中引入注意力机制和增加卷积层的步幅、从而扩大神经元的感受野增加对局部特征的感知能力。
-
公开(公告)号:CN117481606A
公开(公告)日:2024-02-02
申请号:CN202311498055.5
申请日:2023-11-13
IPC分类号: A61B5/00 , A61B5/346 , G06F18/241 , G06F18/10 , G06F18/213 , G06F18/22 , G06N3/048 , G06N3/0464
摘要: 一种基于改进孪生网络的小样本心电信号分类方法,涉及心电信号分类技术领域,通过构建CMP模块作为孪生网络的子网络,将提取局部特征和全局特征相结合,能够更好的分析波峰的位置、振幅和偏移量等信息,使得转换后的特征向量变得更加鲁棒,从而提高小样本心电信号分类的准确率和稳定性。
-
公开(公告)号:CN116468619A
公开(公告)日:2023-07-21
申请号:CN202310184267.X
申请日:2023-03-01
申请人: 山东省人工智能研究院 , 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
摘要: 一种基于多特征反馈融合的医学影像去噪方法,运用了采用了解码‑编码的网络框架,通过多特征反馈融合网络对图像进行特征提取。特征反馈融合网络由多特征反馈融合模块(MFFM)和并联扩张卷积模块组成。通过并联多个不同扩张率的扩张卷积层在提取浅层特征的同时既增大特征图的感受野,又保证信息不丢失。多特征反馈融合模块(MFFM)可以将进一步提取的深层特征以注意力机制的形式反馈给浅层特征,从而实现深层特征和浅层特征的深度融合。将融合后的特征图池化放大至相同尺寸可以保证输入特征图的shape不变。化特征向量,降低噪声因子的干扰。恢复特征图融合了关键像素特征,强化了特殊而又复杂的模糊边缘,降低了噪声对冠状动脉CTA的影响。
-
公开(公告)号:CN116167304A
公开(公告)日:2023-05-26
申请号:CN202310436896.7
申请日:2023-04-23
申请人: 山东省计算中心(国家超级计算济南中心)
IPC分类号: G06F30/28 , G06F17/12 , G06F17/15 , G06F17/16 , G06F111/10 , G06F113/08 , G06F119/14
摘要: 本发明涉及油藏数值模拟技术领域,本发明公开了基于神威架构的油藏数值模拟GMRES优化方法及系统,包括:将油藏数值模拟压力方程离散后得到的压力线性方程组的求解任务,按系数矩阵的维度划分为若干个计算任务,并将计算任务并行分发至多个主核;每个主核将计算任务中热点函数的数据平均分发至从核,并调用从核进行热点函数计算;主核根据从核回传的计算结果,计算得到压力线性方程组的解。实现了两级并行和负载均衡,极大的缩短了计算时间。
-
-
-
-
-
-
-
-
-