一种微电网储能裕度的检测方法

    公开(公告)号:CN104392394B

    公开(公告)日:2017-05-31

    申请号:CN201410673998.1

    申请日:2014-11-20

    IPC分类号: G06Q50/06

    摘要: 本发明公开了一种微电网储能裕度检测方法,其特点是根据引入储能设备前后,微电网所能承载负荷的能力的变化,对微电网储能裕度进行检测或是计算微电网要达到某一储能裕度时,所需的储能装置的最小容量。不投入储能设备,建立基于成本目标、可再生能源波动抑制目标和功率需求匹配目标的模型,将非间歇性微电源作为决策变量带入,采用粒子群算法对模型求解,记录所求得的非间歇性微电源的出力和单位发电负荷所对应的综合成本。投入储能设备,将非间歇性微电源和储能设备出力作为决策变量带入模型并采用粒子群算法求解,记录此时所的储能设备的出力和单位发电负荷所对应的综合成本。采用二分法,不断调整投入储能设备后微电网的负荷水平,直到达到终止条件。

    一种基于能耗数据采集的分布式光伏系统能效预评估方法

    公开(公告)号:CN106384015A

    公开(公告)日:2017-02-08

    申请号:CN201610875497.0

    申请日:2016-09-30

    IPC分类号: G06F19/00

    CPC分类号: G06F19/00

    摘要: 一种基于能耗数据采集的分布式光伏系统能效预评估方法,包括首先进行的分布式光伏系统输出功率特性分析,再进行的包含能耗数据采集和用电负荷曲线特征分析的单位用能情况分析,最后进行的用电综合匹配的三大步骤。本发明能更细致的对分布式光伏系统的实际发电量情况进行预评估,做出的评估结论更贴合接入单位实际情况;本发明能够对该单位用能策略进行调整或给出调整建议,再在此基础上配置分布式光伏系统能起到一定的节能和“削峰填谷”效益,另外,本发明可视接入单位的发、用电综合匹配情况的不同,对于是否有必要另外配置储能相关设备能给出明确的结论和建议,能对分布式光伏系统的未来收益情况和投资回报周期给出明确的结论和建议。

    一种Boost变换器控制方法
    96.
    发明授权

    公开(公告)号:CN104079170B

    公开(公告)日:2016-10-19

    申请号:CN201410342093.6

    申请日:2014-07-18

    IPC分类号: H02M3/156 H02M1/14

    摘要: 本发明涉及一种Boost变换器控制方法,在电流内环电压外环的双环控制基础上,将输入电压与负载电流的前馈引入到电流参考的生成环节,消除输入电压与负载电流的变动对输出电压的干扰,简化电流环节,得到电压环传递函数。此方法显著的提高了Boost变换器的输出电压稳定能力,减小输出电压稳态误差,并且在负荷突变过程中有效减小输出电压的暂态突变。本发明所提方法概念清晰,前馈环节设计方法简单,控制效果显著。

    一种智能微电网系统
    97.
    发明授权

    公开(公告)号:CN103595138B

    公开(公告)日:2016-06-29

    申请号:CN201310596156.6

    申请日:2013-11-21

    IPC分类号: H02J13/00 H02J3/38 H02J3/32

    摘要: 本发明涉及一种智能微电网系统,包括就地控制层、网络通信层、主站层和软件层,就地控制层通过通信网络层与主站层通信连接,主站层通过信息交互总线与软件层通信连接,本发明集成光伏发电、风力发电、多种类型和容量的储能系统及现代电力电子、通信、控制技术,在实现高可靠性供电的同时,实现可再生能源的优化配置,实现对微网内负荷的高可靠性供电;正确反映微网和外部电网之间的相互作用、相互影响的关系,充分展现分布式能源对于提高供电可靠性的作用;实现光伏、风电、储能系统及微网系统的运行数据采集和存储,为微网关键技术的研究积累运行数据。解决了现有微电网系统能源利用率低、环境效益差、电能质量及供电可靠性差的问题。

    一种智能配电网低碳效益评估方法

    公开(公告)号:CN105375472A

    公开(公告)日:2016-03-02

    申请号:CN201510819358.1

    申请日:2015-11-23

    IPC分类号: H02J3/00

    CPC分类号: H02J3/00 H02J2003/007

    摘要: 本发明涉及一种智能配电网低碳效益评估方法,其包括以下步骤:(1)待评价智能配电网将其采集的网络及负荷数据信息发送给潮流计算模块,潮流计算模块进行全网的潮流计算,并将计算结果发送给逆流追踪模块;(2)逆流追踪模块形成待评价智能配电网功率有向图,并得到在该潮流计算结果下的逆流追踪矩阵各项值,并将各项值发送给低碳指标计算模块;(3)低碳指标计算模块进行相关碳排放理论计算,得出各低碳指标计算结果,并将计算结果发送给低碳效益评估模块;(4)低碳效益评估模块接收各低碳指标计算结果,并根据待评价智能配电网低碳规划前后的电网信息,分别进行低碳效益评估计算,得到智能配电网规划前后各项低碳指标的计算结果,并对评估计算结果的数值进行比较,得到待评价智能配电网的最优运行方案。

    一种风电场恒定电压控制系统及其控制方法

    公开(公告)号:CN105207248A

    公开(公告)日:2015-12-30

    申请号:CN201510553881.4

    申请日:2015-09-02

    IPC分类号: H02J3/38 H02J3/16

    摘要: 本发明公开了一种风电场恒定电压控制方法,包含以下步骤:采集有功功率实时值、无功功率实时值及电压实时值;获取电抗、电压给定值及无功功率输出额定值;根据有功功率实时值和电压实时值计算得到有功电流分量,根据无功功率实时值和电压实时值计算得到无功电流分量;根据电抗、电压给定值、有功电流分量及无功电流分量求取得到电压参考值;将所述电压参考值与电压实时值进行比较,得到电压差;根据电压差计算得到无功功率输出初始值;将无功功率输出初始值与无功功率输出额定值进行比较,得到无功功率补偿指令;根据无功功率补偿指令完成无功功率补偿。本发明结合风电场控制的特点,以提高风电场调度自动化控制水平,提高电网的电压稳定水平。