TWS雷达多目标跟踪方法及系统

    公开(公告)号:CN108490429B

    公开(公告)日:2019-05-07

    申请号:CN201810120330.2

    申请日:2018-02-07

    IPC分类号: G01S13/72

    摘要: 本发明涉及一种TWS雷达多目标跟踪方法及系统,其中方法包括:初步间隔计算步骤、计算目标的统计距离,并判断统计距离是否落入波门范围内,是则计算观测时间与上一时刻状态估计的时间的差值作为重访时间间隔;否则扩大波门直至观测落入波门为止;状态更新步骤、根据初步间隔计算步骤中获得的重访时间间隔重新计算目标的统计距离,并判断新的统计距离是否落入波门范围内,是则利用落入波门内的观测进行状态更新。本发明利用落入波门内的观测进一步估计重访间隔,建立了一个新的边扫描边跟踪雷达中求解重访间隔的模型,解决了TWS雷达中重访时间间隔不确定的问题,提高了TWS雷达的跟踪性能,实现了精确跟踪。

    一种基于线性干扰观测器的并网整流器直流电压调节方法

    公开(公告)号:CN108631367A

    公开(公告)日:2018-10-09

    申请号:CN201810671261.4

    申请日:2018-06-26

    IPC分类号: H02J3/38 H02M7/219

    摘要: 一种基于线性干扰观测器的并网整流器直流电压调节方法,本发明涉及基于线性干扰观测器的并网整流器直流电压调节方法。本发明为了解决现有技术中的传统的PI控制方法存在的响应速度慢、抗干扰性能较差的问题。本发明包括:一:建立三相两电平并网整流器的动态模型;二:根据建立的三相两电平并网整流器的动态模型,确定三相两电平并网整流器的控制目标;三:设计电流跟踪环,以及设计基于线性干扰观测器的电压调节环。与传统线性干扰观测器相比,本发明具有两个观测器参数,一个参数用于提升观测器的暂态响应性能,另一个用于保持其稳态性能;本发明保持了系统的简单性,使系统易于分析,便于应用于工程实践。本发明用于电力电子控制技术领域。

    一种基于参数自适应学习的在轨手传振动主动抑制方法

    公开(公告)号:CN117555235A

    公开(公告)日:2024-02-13

    申请号:CN202311544716.3

    申请日:2023-11-17

    摘要: 一种基于参数自适应学习的在轨手传振动主动抑制方法,本发明涉及一种在轨服务过程手传振动的主动抑制方法。本发明为解决现有传统的指令整形振动抑制方法鲁棒性较差,难以克服实际在轨服务过程手传振动动力学模型中可能的干扰和不确定性;以及当外界干扰超出一定范围时,在轨服务过程手传振动动力学模型输出将处于发散状态而失控,将带来极大的危险性的问题。过程为:1:获得在轨服务过程手传振动动力学模型状态方程;2:求解指令整形器的参数;3:获得手传振动受力;4:对手传振动受力进行积分得到新的5:基于计算状态变量,确定在轨服务过程手传振动指令整形各脉冲的幅值构成的行向量。本发明属于航空航天及自动化领域。

    一种基于遗传算法的卫星编队系统融合定位优化方法

    公开(公告)号:CN117213485A

    公开(公告)日:2023-12-12

    申请号:CN202310924445.8

    申请日:2023-07-26

    IPC分类号: G01C21/20

    摘要: 一种基于遗传算法的卫星编队系统融合定位优化方法,它属于卫星编队导航与定位技术领域。本发明解决了卫星编队系统现有天基定位方法精度低以及星间观测的局限性的问题。本发明方法为:步骤1.基于星间观测数据采用Kalman滤波确定整周模糊度,将整周模糊度代入基线观测方程得到处理后的基线观测值;步骤2.根据伪距观测数据通过扩展Kalman滤波确定用户星初始位置及钟差;基于伪距观测方程和钟差得到伪距观测值;步骤3.根据导航星位置、步骤1中得到的基线观测值、步骤2中得到的伪距观测值和用户星初始位置,通过遗传算法进行多观测信息融合与智能优化,获得用户星位置信息。本发明方法可以应用于卫星编队系统融合定位与优化。

    基于轮询协议的远程状态估计方法

    公开(公告)号:CN116527515A

    公开(公告)日:2023-08-01

    申请号:CN202310549315.0

    申请日:2023-05-16

    IPC分类号: H04L41/14 H04L41/142

    摘要: 基于轮询协议的远程状态估计方法,它属于信息物理系统领域。本发明解决了现有远程状态估计方法的估计速度慢且估计误差大的问题。本发明方法具体为:步骤一、建立信息物理系统模型;步骤二、判断建立的信息物理系统模型是否为线性系统;若建立的信息物理系统模型为线性系统,则直接执行步骤三;否则建立的信息物理系统模型为非线性系统,则对建立的信息物理系统模型进行线性处理后,得到线性的信息物理系统模型,再执行步骤三;步骤三、设计远程状态估计器,并基于设计的远程状态估计器对信息物理系统模型进行远程状态估计;步骤四、将步骤三的远程状态估计结果传输给控制器,控制器做出决策。本发明方法可以应用于信息物理系统中远程状态估计。

    一种基于扩展滑模观测器的单连杆机械臂控制方法

    公开(公告)号:CN116460855A

    公开(公告)日:2023-07-21

    申请号:CN202310577224.8

    申请日:2023-05-22

    IPC分类号: B25J9/16 B25J13/00

    摘要: 一种基于扩展滑模观测器的单连杆机械臂控制方法,它属于单连杆机械臂控制技术领域。本发明解决了当执行器发生故障时,采用现有方法获得的控制效果差的问题。本发明方法具体为:步骤一、建立电机驱动的单连杆机械臂的动力学模型以及电机的故障模型;步骤二、基于状态空间法,根据步骤一中的动力学模型以及电机的故障模型建立含有执行器故障的单连杆机械臂系统模型;步骤三、设计用于估计单连杆机械臂系统状态与执行器故障的滑模观测器;步骤四、基于滑模观测器的估计结果设计积分型滑模控制器,利用设计的积分型滑模控制器对单连杆机械臂进行控制。本发明方法可以应用于单连杆机械臂控制。

    应用于自动驾驶车辆变道超车的轨迹规划方法及设备

    公开(公告)号:CN115092141B

    公开(公告)日:2023-07-21

    申请号:CN202210723612.8

    申请日:2022-06-23

    IPC分类号: B60W30/18 B60W60/00

    摘要: 应用于自动驾驶车辆变道超车的轨迹规划方法及设备,属于机器人运动规划技术领域。为了解决现有的轨迹规划方法存在规划路径效果欠佳的问题,本发明方法在Informed RRT*算法基础上引入了偏置采样节点集合,当循环每进行第b次时,在偏置采样节点集合中随机挑选一个采样偏置节点,在以该节点为圆心,r为半径的圆内进行随机均匀采样;当循环每进行第b次以外的循环时,则在以起点和终点为焦点、cbest为长轴,构建的椭圆内进行随机均匀采样;利用改进的Informed RRT*算法对构型空间进行探索,快速生成可行的路径;然后利用Minimum Jerk算法对生成的路径进行优化处理,得到自动驾驶车辆行驶轨迹。用于自动驾驶车辆变道超车的轨迹规划。

    基于同伦法的多无人机同步到达轨迹规划方法、存储介质及设备

    公开(公告)号:CN114911263B

    公开(公告)日:2023-05-12

    申请号:CN202210656391.7

    申请日:2022-06-10

    IPC分类号: G05D1/10

    摘要: 基于同伦法的多无人机同步到达轨迹规划方法、存储介质及设备,属于多无人机轨迹规划领域。为了解决目前的多无人机轨迹规划或者控制方法不能很好的满足多无人机同步到达的问题。本发明基于架无人机的运动学模型和轨迹角和控制变量遵守约束构建多无人机同步到达问题的模型,并对同步到达问题进行离散化,然后基于无人机的初始位置、初始姿态、目标位置、目标姿态,轨迹角的上、下界,轨迹角的控制变量的上、下界,航向角的控制变量的上界,以及距离步长,经过同步到达规划方法得到同步轨迹并基于同伦法对无人机的轨迹进行具体规划。本发明主要用于多无人机的同步到达轨迹规划。

    基于深度强化学习的绳驱并联机器人控制方法

    公开(公告)号:CN114995137B

    公开(公告)日:2023-04-28

    申请号:CN202210617587.5

    申请日:2022-06-01

    IPC分类号: G05B13/04

    摘要: 基于深度强化学习的绳驱并联机器人控制方法,属于绳驱并联机器人领域,本发明为解决现有精确动力学模型没有考虑不确定性的影响或者在运动过程中绳驱并联机器人发生了变化,控制性能低的问题。本发明方法包括以下步骤:第一步、建立绳驱并联机器人的动力学模型,将绳驱并联机器人的动力学模型描述成马尔科夫决策过程;第二步、利用Lyapunov的柔性actor‑critic强化学习算法框架获取动作控制信号ur(m),第三步、将基本控制器输出的动作控制信号ua(m)与强化学习算法框架获取动作控制信号ur(m)叠加生成绳驱并联机器人的控制信号。

    多智能体编队系统允许最大通信数据延迟的判定方法

    公开(公告)号:CN115903914A

    公开(公告)日:2023-04-04

    申请号:CN202211702605.6

    申请日:2022-12-28

    IPC分类号: G05D1/10

    摘要: 多智能体编队系统允许最大通信数据延迟的判定方法,解决了如何有效的判定允许最大通信数据延迟的问题,属于多智能体领域。本发明包括:S1、获取领航‑跟随多智能体编队系统的参数及迭代步长ΔT;S2、计算得到分块矩阵C、E;S3、初始化迭代次数f=1,设置时滞变量初始值d0=ΔT;S4、将d0代入判定条件,计算判定条件的可行解,如果有解,转入S5,如果没有解,减少迭代步长ΔT,转入S2,或更换通信拓扑的拉普拉斯矩阵及领航者与跟随者通信矩阵,转入S3;S5、更新迭代步数f=f+1;S6、df‑1=fΔT,将df‑1代入判定条件,计算判定条件的可行解,如果有解,转入S5,如果没有解,最大通信延迟dM为(f‑1)ΔT。