一种基于日志数据的故障诊断方法及装置

    公开(公告)号:CN117435441B

    公开(公告)日:2024-04-26

    申请号:CN202311763138.2

    申请日:2023-12-21

    IPC分类号: G06F11/30 G06N3/0455 G06N3/08

    摘要: 本申请公开了一种基于日志数据的故障诊断方法及装置,所述故障诊断方法包括:获取待处理的日志数据,所述待处理的日志数据包括:系统日志数据、错误日志数据、告警日志数据中的一种或几种日志数据;对所述待处理的日志数据进行预处理,获得预处理的日志数据;将所述预处理的日志数据输入预训练的故障诊断模型,获得故障诊断结果,其中,所述预训练的故障诊断模型是基于自编码器训练获得的,所述自编码器为基于Tensorflow的神经网络,所述自编码器的第一层包括十个节点,所述自编码器的第二层包括两个节点,所述自编码器的第三层含有十个节点。

    一种恶意代码溯源方法、系统、设备及存储介质

    公开(公告)号:CN115906083A

    公开(公告)日:2023-04-04

    申请号:CN202211489368.X

    申请日:2022-11-25

    IPC分类号: G06F21/56 G06N20/00

    摘要: 本申请实施例提供了一种恶意代码溯源方法、系统、设备及存储介质,用以解决现有的APT恶意代码攻击溯源分析准确率较低的技术问题。方法包括:实时收集正在进行攻击的APT恶意代码组织数据;将所述正在进行攻击的APT恶意代码组织数据输入预先训练的恶意代码组织溯源模型中,输出预测的APT恶意代码组织溯源结果;其中,所述恶意代码组织溯源模型是通过反汇编语言训练的。本申请将实时攻击的恶意代码转化为Asm2Vec函数所需类型,语义表示学习模型Asm2Vec揭示恶意代码汇编语言之间语义关系,不需要任何先验知识,也不需要数据之间的正确映射。只需在向量库中搜索即可实现同源分析,以针对特定组织的攻击实时精确防御。