-
公开(公告)号:CN111985296A
公开(公告)日:2020-11-24
申请号:CN202010549137.8
申请日:2020-06-16
申请人: 东南大学
摘要: 本发明涉及一种基于卡尔曼滤波轨迹预测的能量机关识别算法,利用几何约束集遍历轮廓删除伪装甲板,采用模板匹配方法对能量机关扇叶进行识别;接着建立了基于卡尔曼滤波的能量机关轨迹预测模型,采用卡尔曼滤波预测和更新能量机关运动状态,完成了能量机关的定位和预测;最后建立子弹抛物模型对云台角度进行补偿,获得云台横摆角和俯仰角;本发明不仅提高了查找能量机关轮廓的准确率,而且能够完成能量机关的准确定位与预测,解决了装甲误识别率高、鲁棒性差以及云台运动滞后等问题。
-
公开(公告)号:CN111383481A
公开(公告)日:2020-07-07
申请号:CN202010145735.9
申请日:2020-03-03
申请人: 东南大学
摘要: 本发明涉及一种城市拥堵路口智能网联汽车绿色通行车速优化方法,当信号灯为红灯时,获取在控制区域内部或者靠近控制区域的汽车数量以及信号的相位配时信息,利用智能驾驶员跟车模型计算待行队列内汽车的加速度或者减速度,并基于汽车运动学模型计算待行队列的长度与速度变化轨迹,估计待行队列通行时间;接着利用势能函数建立避撞函数,采用模型预测控制算法求解设计包含多约束和多目标的车速优化问题,计算获得绿色通行车速,直至被控汽车驶过路口停车线;本发明充分考虑了实际情况和现有技术水平,有效地提高了交通安全性、汽车节能水平、交通通行效率。
-
公开(公告)号:CN111123334A
公开(公告)日:2020-05-08
申请号:CN201910664988.4
申请日:2019-07-23
申请人: 东南大学
摘要: 本发明涉及一种极限工况下多车协同定位平台及定位方法,定位平台包括在极限工况情况下互相协作实现车辆精准定位的通信装置、车载装置、路侧装置以及卫星组;通信装置为位于网络中的车辆提供实时信号;车载装置安装在位于网络中的车辆上,其实时接收通信装置的信息以及相邻其他车辆的位置信息;路侧装置布设在道路两侧,其为车载装置实时提供道路两侧固定物的信息;卫星组为位于网络中的车辆在优质路况上提供道路级车辆定位,为位于网络中的车辆在极限工况下提供绝对定位,同时为车载装置、路侧装置提供辅助定位;本发明在极限工况下能够实时的完成道路与环境感知准确定位,为智能网联汽车的发展与交通道路系统的改善提供了强有力的基础。
-
公开(公告)号:CN111062088A
公开(公告)日:2020-04-24
申请号:CN201911030631.7
申请日:2019-10-28
申请人: 东南大学
摘要: 本发明涉及一种四轮独立驱动电动汽车参考车速容错自适应估计方法,选用鲁棒自适应Kalman滤波参考车速估计模块以及基于规则逻辑的参考车速估计模块两种模块进行估计,其中,将基于规则逻辑的参考车速估计模块作为鲁棒自适应Kalman滤波参考车速估计模块的备份,在Kalman滤波发散时,基于规则逻辑的方法可以对Kalman滤波进行替代进行输出;本发明对预设参数依赖性小、估计精度高、工况适应性好、容错能力强,不但能够实现车轮抱死、打滑、坡道行驶、转向行驶等多种复杂工况下的车速估计,而且满足了汽车控制系统软件设计的功能安全要求,可靠性得到有效保证。
-
公开(公告)号:CN114103967A
公开(公告)日:2022-03-01
申请号:CN202110436285.3
申请日:2021-04-22
申请人: 东南大学
摘要: 本发明公开了一种四轮独立驱动电动汽车质心侧偏角与轮胎侧向力估计方法,包含以下步骤:根据车轮动力学方程,计算轮胎纵向力;根据车辆的纵向动力学平衡方程,基于带有遗忘因子的最小二乘法估计整车质量;建立包括车辆纵向、侧向和横摆三个自由度的四轮驱动电动汽车动力学模型和反映轮胎瞬时力学特性的半经验魔术轮胎模型的鲁棒容积卡尔曼估计模块;基于所建立的鲁棒容积卡尔曼滤波模块,估计质心侧偏角与轮胎侧向力。本发明有效提高了复杂工况下滤波对模型参数摄动以及未建模噪声的抗干扰能力,不同工况下联合估计算法的准确性、鲁棒性和抗干扰性得到提高,解决了复合工况下四驱电动汽车质心侧偏角和轮胎侧向力联合估计问题。
-
公开(公告)号:CN113008240B
公开(公告)日:2021-12-14
申请号:CN202110226179.2
申请日:2021-03-01
申请人: 东南大学
IPC分类号: G01C21/20
摘要: 本发明公开了一种基于稳定域的四轮独立驱动智能电动汽车路径规划方法,包含:建立非线性七自由度非线性车辆模型,七自由度包括纵向、侧向、横摆和4个车轮;基于上述建立的非线性七自由度车辆模型,得出四轮独立驱动电动汽车的稳定域;基于上述得出的稳定域,进行路径规划。本发明提出的四轮独立驱动电动汽车路径规划方法,不仅可以满足智能电动汽车日常驾驶需求,而且在紧急避撞、高速行驶等紧急工况下,同样具有工况适应性好、路径规划准确性高、容错能力强等特点,充分发挥四轮独立驱动电动汽车相比于传统汽车或集中式电动汽车的优势,将四轮驱动电动汽车智能驾驶层和底盘控制层充分紧密的结合,提高电动汽车行驶过程中的安全性和高效性。
-
公开(公告)号:CN113705865A
公开(公告)日:2021-11-26
申请号:CN202110935648.8
申请日:2021-08-16
申请人: 东南大学
摘要: 本发明公开一种基于深度神经网络的汽车稳定性因数预测方法,其特征在于包含以下步骤:采集驾驶员在不同工况下驾驶时的汽车状态参数数据,针对每种工况采集多组汽车状态参数数据,对采集的数据进行预处理,建立汽车稳定性因数估计数据库;设计多层前馈神经网络,神经网络学习算法的训练;对神经网络进行测试,验证神经网络的训练效果是否满足要求。本发明方法能够保证不同工况下汽车操纵稳定性,用于汽车控制器设计,能够保证控制器在汽车处于不同工况下,均有较好的控制效果。
-
公开(公告)号:CN112026672A
公开(公告)日:2020-12-04
申请号:CN202010850348.5
申请日:2020-08-21
申请人: 东南大学
IPC分类号: B60R16/02 , B60R16/023 , B60L3/00
摘要: 本发明提出一种纯电动方程式赛车整车电气系统,以主控制器为核心,基于CAN总线进行数据传输,电气系统包括驱动系统、电池及BMS管理系统、安全系统和控制及数据采集系统。驱动系统采用后轮双电机驱动;电池及BMS管理系统实时检测电池的电流、电压、温度等信号,动态制定电池管理策略,通过热管理、主动均衡管理、充电管理、放电管理等手段控制电池工作在合适工况;安全系统实时检测赛车状态,若状态异常则切断所有动力来源;控制及数据采集系统结合踏板角度传感器等信号得到赛车行驶意图,最终实现赛车的动力系统、高压电安全、硬件预警保护等控制,解决了电动赛车线束布置复杂、CAN信号抗干扰能力弱、电气系统的鲁棒性差等问题。
-
公开(公告)号:CN111931560A
公开(公告)日:2020-11-13
申请号:CN202010579870.4
申请日:2020-06-23
申请人: 东南大学
摘要: 本发明涉及一种适用于无人方程式赛车的直线加速车道标志线检测方法,主要适用于赛道的起始线和终止线检测以及直线加速赛道的车道标志线检测,将图像进行灰度化处理,采用高斯滤波器去除噪声,基于Sobel算子进行道路边缘增强,通过将图像进行二值化处理得到道路预处理图像;采用Canny边缘检测算子进行车道线边缘的提取,接着结合车道线特征建立自适应三角形感兴趣区域,将图像分为左右两部分,采用Hough变换分别拟合识别车道标志线检测出道路边界,最后输出两条车道线并叠加到原始图像中;本发明可应用于无人驾驶领域的驾驶辅助系统,减少由于驾驶员分心而造成的伤亡事故。
-
公开(公告)号:CN111634195A
公开(公告)日:2020-09-08
申请号:CN202010396171.6
申请日:2020-05-12
申请人: 东南大学
摘要: 本发明涉及一种四轮驱动电动汽车的转矩优化分配控制方法,制订了电机在行车工况、滑行工况和起步工况下的电机效率计算模型,将汽车行驶模式分为双轴行车模式、单轴行车模式、双轴起步模式和单轴起步模式,分别确定了不同模式下的消耗功率计算方法,通过离线的全局优化算法获取以能量最优为目标的转矩分配系数。为了避免控制过程中转矩变化过大,建立面向转矩变化率的转矩优化分配模型,采用模糊控制规则确定动态权重因子,进而最终确定四轮转矩分配结果;该方法以降低能量消耗和电机内电流波动为目标,计算出面向节能和转矩变化率的转矩分配系数及其对应的全局最优效率,极大地提升电动汽车的续航里程,保证轮毂电机使用的安全性和长效性。
-
-
-
-
-
-
-
-
-