-
公开(公告)号:CN117476448A
公开(公告)日:2024-01-30
申请号:CN202311233958.0
申请日:2023-09-23
Applicant: 中国工程物理研究院上海激光等离子体研究所
IPC: H01L21/268 , B23K26/067 , B23K26/064 , B23K26/046 , B23K26/36 , B23K26/402 , B23K26/70 , H01L21/66
Abstract: 本发明公开了一种高效减薄剥离半导体材料的加工装置及方法,通过采用将一束激光分成多束激光的方法,并通过引入电阻测试系统、激光测距仪、红外热成像仪和CCD相机对半导体材料激光改质加工过程中的电阻率变化情况、材料发生的材料翘曲、材料表面出现的不同尺寸的缺陷以及聚焦系统升温带来的热透镜效应引发的误差进行实时测量,并将测量数据发送给计算机,计算机根据接收到的数据实时控制Z轴位移平台、衰减器和空间光调制器,对加工参数进行实时调整,从而实现自适应激光减薄剥离半导体材料的加工,提高了激光减薄剥离的精度,解决了接触式加工带来的损耗大、效率低的问题。
-
公开(公告)号:CN116921855A
公开(公告)日:2023-10-24
申请号:CN202310764884.7
申请日:2023-06-27
Applicant: 中国工程物理研究院上海激光等离子体研究所
IPC: B23K26/06 , B23K26/067 , B23K26/70
Abstract: 本发明公开了一种激光自适应减薄剥离半导体材料的装置及方法,通过在激光加工装置中引入激光测距仪,对加工过程中材料发生的翘曲以及材料表面存在的凹凸缺陷信息进行实时测量;同时引入红外热成像仪,对加工过程中聚焦系统的温度进行实时监控,并将以上测量得到的信息传输给计算机,经过运算分析后实时反馈给衰减器、空间光调制器以及Z轴位移平台,对加工参数进行实时调整,实现激光精密减薄剥离半导体材料的加工。本发明不仅解决了接触式加工带来的损耗大、效率低的问题,同时也提高了激光改质剥离技术的加工精度,为降低第三代半导体材料的使用成本提供了可靠的帮助。
-
公开(公告)号:CN116913809A
公开(公告)日:2023-10-20
申请号:CN202310783527.5
申请日:2023-06-29
Applicant: 中国工程物理研究院上海激光等离子体研究所
Inventor: 单翀 , 耿靖骅 , 焦健 , 胡北辰 , 隋展 , 赵晓晖 , 崔勇 , 高妍琦 , 季来林 , 孙今人 , 饶大幸 , 夏兰 , 冯伟 , 刘栋 , 史建 , 蔡国栋 , 朱翔宇
Abstract: 本发明公开了一种多波长激光耦合剥离半导体材料的设备及方法,通过将多波长激光耦合辐照至半导体材料内,利用光子能量更高的短波长激光将价带的电子跃迁至导带形成自由电子,随后利用长波长激光对自由电子进行吸收,并产生热应力差,进而诱导半导体材料改质,最终实现剥离,有效地解决了传统机械切割碳化硅损耗大、难度高等问题,同时也解决了已有激光剥离方法采用单波长基频激光需要高功率且难以控制工艺等问题,不仅使得半导体材料剥离更加容易、损耗更低,同时也使得改质工艺更加精密可控,为碳化硅的广泛应用提供可靠的帮助。
-
公开(公告)号:CN111579221B
公开(公告)日:2022-03-22
申请号:CN202010563416.X
申请日:2020-06-19
Applicant: 中国工程物理研究院上海激光等离子体研究所
IPC: G01M11/02
Abstract: 本发明公开了一种光学元件非线性效应I*L值的测试方法及装置,所述方法通过利用焦距小于光学元件厚度的透镜并通过调整光学元件的位置的方法将激光束聚焦在光学元件体内,同时将激光辐照在待测光学元件入射面的激光能量密度调整至小于待测光学元件入射面的激光损伤阈值,模拟出了非聚焦条件下的扰动诱导小尺度自聚焦效应,解决了传统测试方法中由于光学元件入射面损伤先于体内自聚焦成丝损伤发生,因而由光学元件入射面损伤带来的散射、缺陷吸收等激光损耗的问题,不仅提高了测试精度,也为光学元件在高功率激光装置中的安全使用以及提高材料的抗激光损伤能力提供更多的帮助。
-
公开(公告)号:CN111579221A
公开(公告)日:2020-08-25
申请号:CN202010563416.X
申请日:2020-06-19
Applicant: 中国工程物理研究院上海激光等离子体研究所
IPC: G01M11/02
Abstract: 本发明公开了一种光学元件非线性效应I*L值的测试方法及装置,所述方法通过利用焦距小于光学元件厚度的透镜并通过调整光学元件的位置的方法将激光束聚焦在光学元件体内,同时将激光辐照在待测光学元件入射面的激光能量密度调整至小于待测光学元件入射面的激光损伤阈值,模拟出了非聚焦条件下的扰动诱导小尺度自聚焦效应,解决了传统测试方法中由于光学元件入射面损伤先于体内自聚焦成丝损伤发生,因而由光学元件入射面损伤带来的散射、缺陷吸收等激光损耗的问题,不仅提高了测试精度,也为光学元件在高功率激光装置中的安全使用以及提高材料的抗激光损伤能力提供更多的帮助。
-
公开(公告)号:CN109361139B
公开(公告)日:2020-04-21
申请号:CN201811487197.0
申请日:2018-12-06
Applicant: 中国工程物理研究院上海激光等离子体研究所
Abstract: 本发明公开了一种栅栏脉冲产生系统,该系统包括光纤锁模激光器、波导幅度调制器和第一分束器,第一分束器的输出端分别连接有第一窄带滤波器和第二窄带滤波器,在第一窄带滤波器上串联有第一光纤延迟器,在第二窄带滤波器上串联有第一光纤衰减器,第一光纤延迟器的输出端和第一光纤衰减器的输出端并联然后均与第一耦合器的输入端相连,第一耦合器的输出端与若干二进制堆积单元串联,在二进制堆积单元的输出端分别连接有第一光纤放大器和第二光纤放大器,在第一光纤放大器上串联有第一N*1并联式堆积单元,在第二光纤放大器上串联有第二N*1并联式堆积单元,然后与合束器串联。本发明栅栏脉冲可以有效的抑制SRS和SBS的积累。
-
公开(公告)号:CN109802294A
公开(公告)日:2019-05-24
申请号:CN201910227096.8
申请日:2019-03-25
Applicant: 中国工程物理研究院上海激光等离子体研究所
Abstract: 本发明涉及到一种任意时间整形和光谱整形的低相干脉冲产生装置,其结构包括有低相干宽带种子源、波导幅度调制器、任意波形发生器、光纤放大器、第一声光调制器、第一光纤准直器、起偏器,双折射晶体、检偏器、第二光纤准直器、光纤放大器和第二声光调制器,低相干宽带种子源连接波导幅度调制器输入端,波导幅度调制器的调制端口连接任意波形发生器,波导幅度调制器输出端连接光纤放大器;第一声光调制器与第一光纤准直器的尾纤相连,第一光纤准直器依次连接起偏器、双折射晶体和检偏器;第二光纤准直器的尾纤依次连接光纤放大器和第二声光调制器。本发明的装置可获得宽带低相干脉冲,脉冲宽度、形状、重复频率可以任意调节,光谱形状可调。
-
公开(公告)号:CN109725431A
公开(公告)日:2019-05-07
申请号:CN201910034307.6
申请日:2019-01-15
Applicant: 中国工程物理研究院上海激光等离子体研究所
Abstract: 本发明公开了一种紧凑型大口径光栅压缩器,该光栅压缩器为对称结构,它包括第一大口径光栅、第二大口径光栅、第一大口径反射镜、第二大口径反射镜、第三大口径光栅、第四大口径光栅,所述第一大口径反射镜与第二大口径反射镜之间左右对称设置,所述第一大口径光栅与第二大口径光栅的表面之间相互平行,第三大口径光栅与第四大口径光栅的表面之间相互平行,所述第一大口径光栅与第四大口径光栅在横向上位于同一条直线上,所述第二大口径光栅与第三大口径光栅在横向上位于同一条直线上。本发明能够实现大口径光栅压缩器较为紧凑的排布方式及高精密的光栅平行度,有利于获得良好的脉冲压缩效果,产生皮秒级高能拍瓦激光。
-
公开(公告)号:CN107069402B
公开(公告)日:2019-03-22
申请号:CN201710048926.1
申请日:2017-01-23
Applicant: 中国工程物理研究院上海激光等离子体研究所
IPC: H01S3/10
Abstract: 本发明公开了一种基于双折射滤波的增益平坦宽带钕玻璃放大器,它包括偏振控制器、双折射滤波光谱均衡器和钕玻璃放大器,偏振控制器由在光路中依次排列的四分之一波片和半波片组成,所述双折射滤波光谱均衡器由在光路中依次排列的起偏器、相位延迟器和检偏器组成,所述起偏器和检偏器的偏振透过方向一致,所述相位延迟器固定于旋转调整架上,所述钕玻璃放大器包括钕玻璃和泵浦光源。本发明结合双折射滤波光谱均衡器和钕玻璃放大器,构建了一种增益平坦的钕玻璃宽带激光放大器。具体而言是采用双折射光谱滤波技术调节光谱透过率,对传统钕玻璃放大器的增益光谱进行反补偿,最终实现在较宽光谱范围内的平坦的增益谱线。
-
公开(公告)号:CN106840612B
公开(公告)日:2018-12-07
申请号:CN201710069388.4
申请日:2017-02-08
Applicant: 中国工程物理研究院上海激光等离子体研究所
IPC: G01M11/02
Abstract: 本发明公开了一种大口径光栅损伤的在线快速测量装置,该装置包括激光器、准直透镜、半波片、偏振分束器、第一透镜、第二透镜、大口径光栅、成像系统、数据处理系统,激光器发出的线偏振光束通过准直透镜准直为平行光束,平行光束经半波片后以高透过率通过偏振分束器,经偏振分束器后的透射光束依次经过第一透镜、第二透镜构成的扩束系统后将光束口径扩大,扩束后的光束入射到大口径光栅上,大口径光栅的衍射光将沿原路返回后入射到偏振分束器上,偏振分束器的反射光由成像系统接收,成像系统与数据处理系统相连接,由数据处理系统对成像系统获得的图像进行分析处理,得出大口径光栅的损伤信息。本发明能够实现大口径光栅损伤的在线快速测量。
-
-
-
-
-
-
-
-
-