一种钢包精炼炉钼精矿合金化冶炼方法

    公开(公告)号:CN116904703A

    公开(公告)日:2023-10-20

    申请号:CN202310724216.1

    申请日:2023-06-19

    Abstract: 本发明涉及钢铁生产技术领域,特别是涉及一种钢包精炼炉钼精矿合金化冶炼方法,包括在转炉出完钢炉后渣面刚结壳或者钢水到达LF后,在钢渣表面加入钼精矿,利用钢渣表面的温度对钼精矿进行烘烤。本发明通过优化调整钼精矿加入时机,在转炉出完钢炉后或者钢水到达LF后,利用钢渣表面的温度对钼精矿进行烘烤,可在钢水增S增H可控、Mo元素收得率≥95%的前提下,有效去除钼精矿中80%以上的S元素,实现使用钼精矿替代钼铁或氧化钼的目的,实现钼精矿合金化的冶炼,合金降本。

    一种RH精炼炉真空过程钙处理方法

    公开(公告)号:CN110042202B

    公开(公告)日:2021-01-26

    申请号:CN201910323204.1

    申请日:2019-04-22

    Abstract: 本发明公开一种RH精炼炉真空过程钙处理方法,通过在RH真空精炼炉真空循环处理过程,利用RH合金料仓向真空室内循环的钢水中加入含钙合金进行钢水夹杂物改性,钙处理过程稳定可控,处理结束钢水钙成分控制稳定精确,钙收得率达到20%以上,钢水夹杂物变性充分,探伤合格率高,夹杂物评级在1.5以内。本发明成功解决了RH精炼炉真空处理结束后喂纯钙线钙处理时钢水翻腾裸露造成二次氧化的问题,稳定钙处理效果,降低夹杂物含量,提高了钢水的洁净度和成品钢板探伤合格率,降低了生产成本,大幅度提高经济效益。

    一种LF精炼炉生产低碳低硫钢防增碳方法

    公开(公告)号:CN108193018B

    公开(公告)日:2019-06-28

    申请号:CN201711423645.6

    申请日:2017-12-25

    CPC classification number: C21C7/0006 C21C7/0056 C21C7/0075 C21C7/06 C21C7/064

    Abstract: 本发明是一种LF精炼炉生产低碳低硫钢防增碳方法,LF炉待处理工位钢包底吹流量控制初始为45‑55NL/min,钢水到工作位将炉盖盖好后,钢包底吹流量控制为150‑200NL/min;钢包顶渣加入0.20‑0.25Kg/t钢铝丝进行渣脱氧,同时钢水中喂入1.0‑1.5m/t钢铝线进行钢水脱氧;下电极处理过程,钢包底吹流量控制为250‑400NL/min,钢包顶渣总渣量控制在12‑14Kg/t钢;分批次向渣面加入铝丝,每批次加入量0.12‑0.15Kg/t钢铝丝进行造渣;钢包底吹流量控制为150‑200NL/min。本发明可以使整个LF精炼炉冶炼过程增碳含量稳定控制在0.015%以内,冶炼终点成分控制稳定精确,钢水纯净度满足高品质钢水的要求,降低了改判率,提高经济效益。

    一种高纯净度抗酸管线钢冶炼工艺

    公开(公告)号:CN109280732A

    公开(公告)日:2019-01-29

    申请号:CN201811329461.8

    申请日:2018-11-08

    Abstract: 本发明公开了一种高纯净度抗酸管线钢冶炼工艺,涉及冶金技术领域,包括铁水倒罐→铁水预处理→转炉高碳低氧留氧操作→RH炉真空脱碳→RH炉合金化及真空脱气→LF精炼炉防增碳快速脱硫工艺→CCM流程,通过铁水脱硫扒渣,转炉出钢留氧制度和造渣制度的优化,RH炉真空脱碳及合金化工艺,LF炉扩散脱氧造渣和沉淀脱氧,冶炼过程全程合理的钢包氩气底吹控制,充分发挥碳含量控制与脱硫的冶金热力学和动力学条件,防增碳快速脱硫工艺,LF炉造渣脱硫效果明显,且钢水纯净度高,铸坯质量良好,钢板1.5级以内夹杂物含量控制在99%以上。

    一种高洁净度管线钢冶炼工艺

    公开(公告)号:CN104630418B

    公开(公告)日:2016-08-24

    申请号:CN201510021171.7

    申请日:2015-01-15

    Abstract: 本发明公开了一种高洁净度管线钢冶炼工艺,工艺路线为:铁水倒罐→铁水预处理→转炉冶炼→出钢脱氧合金化→LF精炼炉→钙处理→RH真空炉→连铸,其特征在于,包括如下具体步骤:步骤一,转炉冶炼工艺;步骤二,精炼炉冶炼工艺;步骤三,连铸工艺;本发明属于冶金领域的一种炼钢工艺,涉及高洁净度管线钢冶炼控制的方法,通过铁水脱硫预处理,转炉出钢脱氧制度和造渣制度优化,LF精炼炉深脱氧和造还原渣工艺,RH高真空度脱气和去夹杂物工艺,连铸全程保护浇铸,使铸坯成分均匀,S、P、O、N、H等有害元素含量低,非金属夹杂物有效控制,铸坯内部质量良好,保证高附加值的超低硫钢的生产。

    一种超低硫钢快速冶炼方法

    公开(公告)号:CN103898269B

    公开(公告)日:2016-01-20

    申请号:CN201410131770.X

    申请日:2014-04-02

    Abstract: 本发明公开一种超低硫钢快速冶炼方法,成功解决了超低硫钢([S]≤0.0010%)冶炼过程造渣脱氧脱硫的难点,采用铁水预处理脱硫扒渣,转炉出钢铝块深脱氧和复合精炼渣顶渣改质,LF精炼炉铝丝渣脱氧、石灰造渣以及喂铝线微调钢水中铝,结合LF炉冶炼过程全程合理的氩气底吹控制,充分发挥脱硫的冶金热力学和动力学条件,把扩散脱氧和沉淀脱氧进行有机结合,充分挖掘渣脱氧脱硫的潜力,使LF精炼炉在40min内将钢水中硫含量降低至0.0010%以内,铸坯全氧含量控制在0.0010%以内,钢水硫含量控制稳定,铸坯质量良好,钢板探伤合格率达99%以上,完全满足超低硫钢生产要求,保证冶炼生产节奏和连铸浇注炉数。

    超低硫钢LF炉渣碱度控制方法

    公开(公告)号:CN103572001B

    公开(公告)日:2015-04-15

    申请号:CN201310534316.4

    申请日:2013-11-01

    CPC classification number: Y02P10/242

    Abstract: 本发明公开一种超低硫钢LF炉渣碱度控制方法,其特征在于对转炉冶炼工艺和LF精炼炉冶炼工艺进行优化,通过转炉高温出钢,出钢过程强脱氧和钢包大渣量操作,LF精炼炉前期快速造高碱度强还原性白渣,精炼过程脱氧、脱硫造渣和底吹氩气流量的控制,精炼中后期添加适量的碱度调整剂,快速调整精炼炉钢包顶渣碱度,降低LF炉渣碱度到4~7以内,实现LF炉精炼过程碱度的稳定控制,使精炼后期钢包顶渣既具有强还原性,同时兼有良好的流动性,达到了钢水精炼的效果,提高了连铸坯内部质量。

    一种电石脱氧冶炼含铝钢工艺

    公开(公告)号:CN102952923B

    公开(公告)日:2014-11-05

    申请号:CN201210489019.8

    申请日:2012-11-27

    Abstract: 本发明属于冶金领域的一种炼钢工艺,是一种不需要全程用铝脱氧的电石脱氧冶炼含铝钢工艺,通过转炉出钢脱氧制度和造渣制度的优化,转炉炉后喂铝线调节钢水中铝,LF炉电石加铝丝脱氧造渣并配合LF炉喂铝线微调钢水中铝的生产工艺,利用电石和铝线的特点,充分把冶炼过程扩散脱氧与沉淀脱氧合理结合,该工艺转炉出钢脱氧稳定,LF炉造渣脱硫效果明显,铸坯质量良好,钢板探伤合格率稳定,使生产含铝钢的吨钢铝耗降低了0.80kg左右,大大提高生产含铝钢的经济效益。

    一种超低硫钢快速冶炼方法

    公开(公告)号:CN103898269A

    公开(公告)日:2014-07-02

    申请号:CN201410131770.X

    申请日:2014-04-02

    Abstract: 本发明公开一种超低硫钢快速冶炼方法,成功解决了超低硫钢([S]≤0.0010%)冶炼过程造渣脱氧脱硫的难点,采用铁水预处理脱硫扒渣,转炉出钢铝块深脱氧和复合精炼渣顶渣改质,LF精炼炉铝丝渣脱氧、石灰造渣以及喂铝线微调钢水中铝,结合LF炉冶炼过程全程合理的氩气底吹控制,充分发挥脱硫的冶金热力学和动力学条件,把扩散脱氧和沉淀脱氧进行有机结合,充分挖掘渣脱氧脱硫的潜力,使LF精炼炉在40min内将钢水中硫含量降低至0.0010%以内,铸坯全氧含量控制在0.0010%以内,钢水硫含量控制稳定,铸坯质量良好,钢板探伤合格率达99%以上,完全满足超低硫钢生产要求,保证冶炼生产节奏和连铸浇注炉数。

    一种特殊炼钢工艺下的钙处理方法

    公开(公告)号:CN103614513A

    公开(公告)日:2014-03-05

    申请号:CN201310641276.3

    申请日:2013-12-04

    CPC classification number: Y02P10/212

    Abstract: 本发明涉及一种特殊炼钢工艺下的钙处理方法,在铁水预处理工艺中脱硫,喷吹CaO+Mg粉将铁水硫含量脱除到0.0018%~0.0022%,脱硫后进行扒渣处理;转炉工艺中,控制转炉终点氧含量在650ppm以内;RH工艺中真空度≤300Pa,保持时间10~30min;RH处理完毕后二次回LF调温化渣,然后钙处理,钙线喂入速度180-200m/min,喂入量1.4m/t钢,同时控制底吹流量50-100NL/min。本发明能够使夹杂物由初期的硅锰酸盐逐渐转变为钙铝酸盐,钢板单位面积夹杂物数量显著降低,由87-100个/mm2减少至12-25个/mm2。RH真空和钙处理后夹杂物类型发生转变,生成物偏向CaO-CaS一侧;中间包钢水中夹杂物尺寸较小,小于10μm的夹杂物占99.61%,未发现尺寸大于30μm的夹杂物,该方法提高了钢水纯净度和钢板探伤合格率,钙收得率稳定在20%以上,经济效益明显。

Patent Agency Ranking