-
公开(公告)号:CN106185733B
公开(公告)日:2018-12-07
申请号:CN201610663455.0
申请日:2016-08-12
Applicant: 哈尔滨工程大学
IPC: B66F11/00
Abstract: 本发明提供一种六自由度激振器的简易吊装装置,包括由内置滑道的四根支撑桁架、八根水平桁架组成的方形框架,在方形框架的下端的四个角分别安装有转向轮,方形框架的上端面上设置有两根可调位置的水平型材,每根水平型材上安装有两个一号吊耳,每个一号吊耳上铰接有螺纹锁紧构件,四个螺纹锁紧构件的端部分别与四个二号吊耳铰接,且四个二号吊耳安装在激振器上。本发明装置具有结构简单、拆装方便、调节灵活、稳定性好等优点。
-
公开(公告)号:CN106644332A
公开(公告)日:2017-05-10
申请号:CN201610532849.2
申请日:2016-07-07
Applicant: 哈尔滨工程大学
Abstract: 本发明提供一种流激涡放频率实验装置,包括流激试验管道、蜂窝器、轴流泵电机5、流速测速仪、水密盖板、注水口、排气口、水密活塞和设置在试件上的压力计、振动加速度计,流激试验管道分非试验区管道和试验区管道,非试验区管道上方设置有注水口和排气口,试验区管道的一个面上设置有方形孔,可拆卸水密盖板安装在所述方形孔上,流速测速仪设置在试验区管道的上壁面的前端,轴流泵电机设置在流激试验管道外部,轴流泵电机的输出端连接有水密轴管,水密轴管的端部伸入至非实验区管道内且安装有轴流泵桨叶,蜂窝器设置在轴流泵桨叶与突缩段之间的非实验区管道上。本发明可测得试件的流激涡放频率,且低成本、适用范围广、结构简单、操作方便等。
-
公开(公告)号:CN106090521A
公开(公告)日:2016-11-09
申请号:CN201610362385.5
申请日:2016-05-26
Applicant: 哈尔滨工程大学
IPC: F16L55/033
CPC classification number: F16L55/0333
Abstract: 本发明的目的在于提供充液管道低频鼓式主被动复合消声系统,包括上游外管封头、矩形壳体、下游外管封头、板式膜结构,矩形壳体的两端分别与上游外管封头和下游外管封头相连,板式膜结构位于矩形壳体里并分别与上游外管封头和下游外管封头固定,板式膜结构与矩形壳体、上游外管封头、下游外管封头构成封闭的背腔,下游外管封头连接下游管路,上游外管封头上安装第一水听器,下游外管封头上分别安装水压传感器和以及向背腔填充气体的压力平衡装置,下游管路上安装第二水听器。本发明突破了传统被动消声结构,利用柔性板式膜结构与封闭背腔形成的鼓式构型对入射声波产生反射作用达到抗性降噪。充液流动的管路不存在截面突变结构,降低了阻力损失。
-
公开(公告)号:CN118862554A
公开(公告)日:2024-10-29
申请号:CN202410869814.2
申请日:2024-07-01
Applicant: 哈尔滨工程大学
IPC: G06F30/23 , G01D21/02 , G06T17/20 , G06F30/27 , G06F111/10 , G06F113/14 , G06F119/10
Abstract: 一种船舶通海管路管口辐射噪声指标评估方法及装置,涉及船舶减振降噪指标论证技术领域。为解决现有技术中存在的,现有的船舶通海管口辐射噪声指标评估方法研究中,无法按照现有的方法进行船舶通海管口辐射噪声指标的计算的技术问题本发明提供方法包括:采集通海管路材料参数、噪声源以及消声元器件的参数;得到流噪声传递至通海管路的管口时的衰减量;根据噪声源、降噪效果和衰减量,得到通海管路管口位置的综合声压级;根据综合声压级,得到预设考核点的辐射噪声的平均声压级;根据辐射噪声的平均声压级得到通海管路管口位置的辐射噪声的声压谱源级和声源级总级。适用于早期设计阶段的噪声评估,为船舶减振降噪设计提供了重要的参考。
-
公开(公告)号:CN118130023A
公开(公告)日:2024-06-04
申请号:CN202410187166.2
申请日:2024-02-20
Applicant: 哈尔滨工程大学
Abstract: 一种带有导流装置的复合材料平板流激测试装置及方法,属于船舶与海洋工程测试技术领域。本发明解决了现有的流激测试装置采用复合材料平板进行流激测试时,水流遇到结构转戾易引起脱流、回流等湍流漩涡,易对振动噪声测试结果产生影响的问题。通过第一导流结构实现复合材料平板前部迎流面与匀速工作段顶部内壁之间的平滑过渡,通过第二导流结构实现复合材料平板后部迎流面与匀速工作段顶部内壁之间的平滑过渡。通过第一导流结构,引导水流沿复合材料平板的迎流面运动,避免水流遇到结构转戾对测量引起不良影响。通过第二导流结构,以光顺引导水流离开复合材料平板后部,避免结构转戾处引起的脱流、回流等湍流漩涡对测量引起的不良影响。
-
公开(公告)号:CN117434158A
公开(公告)日:2024-01-23
申请号:CN202311212827.4
申请日:2023-09-20
Applicant: 哈尔滨工程大学
Abstract: 本发明是一种基于大样模型的船舶复合材料声学性能测试评估方法。本发明涉及船舶声学性能测试技术领域,本发明在复合材料大样声学性能试验装置的壳板下表面敷设复合材料大样模型;进行激振器激振试验,测量各个测点的振动信号和噪声信号;将复合材料铲去,重新测量振动信号和噪声信号;将计算值与各自指标值进行对比,当复合材料考核评价参数均大于等于各自的指标值时,则被测复合材料合格。本发明提出了复合材料大样声学性能考核指标体系,并针对考核指标体系,提出了一种有效、合理实用的复合材料声学性能测试评估方法。
-
公开(公告)号:CN115783161A
公开(公告)日:2023-03-14
申请号:CN202211377045.1
申请日:2022-11-04
Applicant: 哈尔滨工程大学 , 中国人民解放军92578部队
Abstract: 本发明提出了一种降低振动能量传递的船舶首部声纳平台,旨在降低振动能量传递对船舶首部声纳平台自噪声的影响,属于船舶减振降噪技术领域。该声纳平台包括液压弹簧减振装置、传动杆缓冲装置、定位块固定装置和水听器基阵等,传动杆缓冲装置包括平台、传动杆和支撑弹簧等,传动杆包括两个相互铰接的杆体,平台上端通过液压弹簧减振装置与上甲板相连,定位块固定装置包括配合相连的上定位块和下定位块,下定位块与下甲板相连,水听器基阵包括多个水听器、弹性绳和两个刚性杆,弹性绳两端分别与两个刚性杆相连,多个水听器间隔一定距离布置在弹性绳上。该声纳平台主要用于降低船舶首部声纳区背景噪声,提高声纳探测水平。
-
公开(公告)号:CN115465428A
公开(公告)日:2022-12-13
申请号:CN202211058792.9
申请日:2022-08-31
Applicant: 哈尔滨工程大学 , 中国人民解放军92578部队
Abstract: 本发明提供一种水下航行器艉部动力舱减振降噪装置,根据水下航行器低噪声航行要求,对动力舱内主机等高噪声设备进行多级减隔振处理。动力舱设备不与水下航行器壳体结构直接接触,其下部安装在减振基座上,前部与减振舱壁相连,尾部与推力舱壁相连,并在四周设置限位装置固定。减振舱壁与推力舱壁均不与水下航行器壳体结构直接相连,而是通过减振器连接。水下航行器正常航行时,动力舱设备产生的振动能量很难通过板壳结构传递到壳体外置,从而达到降低其水下辐射噪声的目的。本发明方案合理可行,应用前景广阔,适用范围广,能较好地控制水下航行器水下辐射噪声,达到隐蔽航行的目的。
-
公开(公告)号:CN110956946B
公开(公告)日:2022-12-13
申请号:CN201911098100.1
申请日:2019-11-12
Applicant: 哈尔滨工程大学
IPC: G10K11/168 , G10K11/172 , B32B3/26 , B32B25/14 , B32B15/20 , B32B15/06 , B32B9/00 , B32B9/04 , B32B7/02 , B32B33/00
Abstract: 本发明提供的是一种带有功能梯度板的耦合共振型水下声学覆盖层。包括外覆盖层、内覆盖层和功能梯度板,外覆盖层和内覆盖层铺设在功能梯度板的两侧,外覆盖层和内覆盖层内均有周期性空腔,外覆盖层中空腔与内覆盖层中空腔位置一一对应、形状互不相同。外覆盖层和内覆盖层铺设在功能梯度板的两侧,三者以此种方式耦合提高了声学覆盖层低频范围的吸声性能,并有效地拓宽了覆盖层的吸声频率范围。使得功能梯度板的动力学行为对覆盖层吸声特性的影响占主导作用。由于功能梯度板的共振效应,空腔与功能梯度板之间能够在低频范围能够产生耦合共振,能够对低频声波产生强吸收作用,同时,增强了在特定频率下声学覆盖层的共振效应,增强了声波的能量耗散。
-
公开(公告)号:CN110853609B
公开(公告)日:2022-12-13
申请号:CN201911098103.5
申请日:2019-11-12
Applicant: 哈尔滨工程大学
IPC: G10K11/00 , G10K11/168 , G10K11/172
Abstract: 本发明提供的是一种基于多层散射体与空腔耦合共振的水下声学覆盖层。包括覆盖层,所述覆盖层包括外覆盖层(1)和内覆盖层(3),还包括谐振效应板(2),所述谐振效应板(2)夹在外覆盖层(1)与内覆盖层(3)之间、通过谐振效应板(2)实现耦合。本发明的谐振效应板位于内、外覆盖层之间,这种耦合方式有助于改善声学覆盖层的低频吸声特性。所述声学覆盖层通过散射体分层设计、空腔与散射体的耦合以及谐振效应板等方式拓宽了声学覆盖层的吸声频段、增强了声波在声学覆盖层内的能量耗散。
-
-
-
-
-
-
-
-
-