一种基于先验地图的LiDAR/IMU融合定位方法

    公开(公告)号:CN116124161B

    公开(公告)日:2024-07-05

    申请号:CN202211655028.X

    申请日:2022-12-22

    申请人: 东南大学

    摘要: 本发明公开了一种基于先验地图的LiDAR/IMU融合定位方法,首先对先验点云地图按照自定义网格大小进行分块,以解决大场景点云地图无法在计算能力受限的平台上加载和运行的问题;再设计基于LiDAR/IMU的融合定位方案,通过正态分布变换(NDT)算法进行激光雷达点云与分块地图的匹配,将实时点云与先验地图进行关联;其中还采用IMU预积分为地图匹配提供高频的初始猜测,将相邻两个激光雷达帧之间的IMU测量数据的积分转换到IMU坐标系下进行,实时计算相邻两时刻的速度、位置和旋转,为地图匹配提供高频的初始猜测,估计车辆实时位姿,实现位置定位。与传统NDT定位方法相比较,在定位鲁棒性和准确性上均有大幅度提高。

    一种用于GNSS/INS组合导航卫星同步多故障检测方法

    公开(公告)号:CN115047496B

    公开(公告)日:2023-06-02

    申请号:CN202210386806.3

    申请日:2022-04-14

    申请人: 东南大学

    摘要: 本发明是一种用于GNSS/INS组合导航卫星同步多故障检测方法,该方法在传统卡尔曼滤波的基础上,引入IGG‑III等价权重阵对异常观测值进行加权处理,从而避免多故障观测值对后续故障检测机制性能的影响。同时,设计基于卡方检验联合w‑检测法的故障检测和识别机制以保证GNSS/INS组合系统的连续可靠性。本发明设计的组合导航卫星同步多故障检测方法流程简单,思路清晰。同时为多故障场景下组合导航系统容错能力的提高研究提供积极的参考和借鉴意义。

    一种动态场景下基于语义分割的直接法视觉定位方法

    公开(公告)号:CN111340881B

    公开(公告)日:2023-05-19

    申请号:CN202010098733.9

    申请日:2020-02-18

    申请人: 东南大学

    摘要: 本发明公开了一种动态场景下基于语义分割的直接法视觉定位方法,属于SLAM同步定位与建图领域;本发明首先采用深度学习中的语义分割技术对图像中的动态物体进行分割,获得像素级别的动态物体语义信息;在此基础上,从原始图像中根据像素点梯度信息提取候选点并根据语义信息对动态区域的候选点进行剔除,仅保留静态区域的候选点;然后基于保留的候选点采取融合图像语义信息的金字塔模型估计相机位姿;最后基于滑动窗口优化并结合图像语义信息对关键帧的位姿进行优化。实验结果表明,在动态环境下,本发明公开的方法的定位精度较现有系统提升71%‑86%。

    一种基于先验地图的LiDAR/IMU融合定位方法

    公开(公告)号:CN116124161A

    公开(公告)日:2023-05-16

    申请号:CN202211655028.X

    申请日:2022-12-22

    申请人: 东南大学

    摘要: 本发明公开了一种基于先验地图的LiDAR/IMU融合定位方法,首先对先验点云地图按照自定义网格大小进行分块,以解决大场景点云地图无法在计算能力受限的平台上加载和运行的问题;再设计基于LiDAR/IMU的融合定位方案,通过正态分布变换(NDT)算法进行激光雷达点云与分块地图的匹配,将实时点云与先验地图进行关联;其中还采用IMU预积分为地图匹配提供高频的初始猜测,将相邻两个激光雷达帧之间的IMU测量数据的积分转换到IMU坐标系下进行,实时计算相邻两时刻的速度、位置和旋转,为地图匹配提供高频的初始猜测,估计车辆实时位姿,实现位置定位。与传统NDT定位方法相比较,在定位鲁棒性和准确性上均有大幅度提高。

    一种基于抗差估计的弹性导航交互式信息融合方法

    公开(公告)号:CN115560763A

    公开(公告)日:2023-01-03

    申请号:CN202211168720.X

    申请日:2022-09-24

    申请人: 东南大学

    IPC分类号: G01C21/20 G06F17/16

    摘要: 本发明是一种基于抗差估计的弹性导航交互式信息融合方法,该方法在传统扩展卡尔曼滤波的基础上,使用基于IGG‑III等价权函数的权重矩阵对各独立传感器的观测值分别进行加权处理,以保证各独立传感器观测值的可靠性,从而避免卡尔曼滤波估计值因异常观测值的干扰导致失真甚至不收敛现象。同时,利用抗差标准化新息向量计算各通道的模型似然函数值,提高多传感器融合系统中各独立通道的可用性。在此基础上,借助包含各观测传感器优先级信息的马尔可夫概率转移矩阵对各独立通道的估计状态进行交互式融合输出。整个方法流程简单,思路清晰,这为多传感器融合系统弹性导航技术的发展研究提供了积极的参考和借鉴意义。

    一种基于单频信噪比归一化的GPS/BDS多路径实时抑制方法

    公开(公告)号:CN111103600B

    公开(公告)日:2022-12-13

    申请号:CN202010050715.3

    申请日:2020-01-17

    申请人: 东南大学

    IPC分类号: G01S19/22 G01S19/33

    摘要: 本发明在常规基于高度角的随机模型基础上,提出了一种基于单频信噪比归一化的GPS/BDS多路径实时抑制方法,所提模型利用卫星高度角和信噪比对多路径误差进行检测,并对城市环境下的卫星进行降权处理。具体来说,对于同一站点,首先在理想环境下针对不同类型的卫星采用不同的信噪比标定方法进行标定,在城市环境下受多路径影响的信噪比观测值会偏离标定值,利用这一特性完成对多路径误差的检测,根据偏离值对该卫星进行降权处理以抑制多路径误差。最后对卫星残差进行一致性检验,进一步削弱多路径误差对定位结果的影响。通过两组RTD定位实验验证了在城市环境下,本发明提出的方法可以实时抑制多路径误差,提高定位精度。

    一种基于点线特征的单目VIO-GNSS融合定位算法

    公开(公告)号:CN113376669B

    公开(公告)日:2022-11-15

    申请号:CN202110692167.9

    申请日:2021-06-22

    申请人: 东南大学

    IPC分类号: G01S19/39 G01S19/48 G01S19/49

    摘要: 发明公开了一种基于点线特征的单目VIO‑GNSS融合定位算法。首先对基于点特征的VIO增加线特征提取模块,并提出一种基于几何约束的线特征匹配策略以增强图像特征约束。此后,将加入的线特征与原VIO提取的点特征共同作为视觉特征信息,与IMU预积分结果共同输入至非线性优化的滑动窗口内,最小化所有测量残差的代价函数,获得VIO局部位姿估计结果。下一步,通过杆臂补偿方程将VIO位姿估计结果从局部VIO坐标系转至全局ECEF坐标系,最后将ECEF坐标系下的VIO位姿估计值与GNSS观测值共同输入卡尔曼滤波器内,构建传播和测量更新过程中的误差状态向量,实现VIO和GNSS的松耦合位姿估计。