-
公开(公告)号:CN111008603A
公开(公告)日:2020-04-14
申请号:CN201911246128.5
申请日:2019-12-08
Applicant: 中南大学 , 重庆市地理信息和遥感应用中心(重庆市测绘产品质量检验测试中心)
Inventor: 李朋龙 , 丁忆 , 连蓉 , 马泽忠 , 李晓龙 , 罗鼎 , 肖禾 , 段松江 , 王岚 , 王亚林 , 钱进 , 刘朝晖 , 王小攀 , 魏文杰 , 谭攀 , 曾远文 , 张灿 , 范文武 , 秦成 , 张斌
Abstract: 本发明公开了一种面向大尺度遥感图像的多类目标快速检测方法,包括以下步骤:将大比例尺遥感图像进行裁剪,并通过重新缩放和旋转来增强数据;利用具有串联线性整流函数模块和Inception模块的卷积特征提取器,将所得的图像数据作为输入并输出多个级别的特征;构建多尺度目标提议网络,并利用多尺度目标提议网络将卷积特征提取器输出的特征生成类似目标区域预测框;构建基于融合特征映射的精确目标检测网络,输入带有类似目标区域预测框的图像,利用精确目标检测网络实现精确的目标检测,输出检测结果。实现了具有大尺度变化的遥感图像中的多类目标自动检测,使得对遥感图像的多目标的实时检测成为可能。
-
公开(公告)号:CN115019123B
公开(公告)日:2023-04-18
申请号:CN202210555496.3
申请日:2022-05-20
Applicant: 中南大学 , 重庆市地理信息和遥感应用中心
IPC: G06V10/774 , G06V10/778 , G06V10/82 , G06V10/764 , G06V20/10 , G06V20/70 , G06N3/0455 , G06N3/047 , G06N3/0895 , G06N3/091 , G06N3/096
Abstract: 本发明公开了一种遥感图像场景分类的自蒸馏对比学习方法,包括:由结构一样的教师网络和学生网络组成长程依赖捕获主干网络模块;获取遥感图像并将图像进行全局切片、局部切片、尺度对齐及数据增强,得到同一张图像的融入尺度信息的不同版本;将全局切片图像送入教师网络、将全局切片图像和尺度对齐后的局部切片图像共同送入学生网络进行自蒸馏对比学习;获得不同版本的图片表征,再经过softmax将表征转化为概率分布,训练网络使学生网络输出的概率分布尽量匹配教师网络输出的概率分布;采用自蒸馏的方式训练神经网络模型;输出场景分类结果。本发明不依赖标签和负样本,可捕捉RSI的全局语义信息,可学习到RSI的多尺度特征。
-
公开(公告)号:CN111008603B
公开(公告)日:2023-04-18
申请号:CN201911246128.5
申请日:2019-12-08
Applicant: 中南大学 , 重庆市地理信息和遥感应用中心(重庆市测绘产品质量检验测试中心)
Inventor: 李朋龙 , 丁忆 , 连蓉 , 马泽忠 , 李晓龙 , 罗鼎 , 肖禾 , 段松江 , 王岚 , 王亚林 , 钱进 , 刘朝晖 , 王小攀 , 魏文杰 , 谭攀 , 曾远文 , 张灿 , 范文武 , 秦成 , 张斌
IPC: G06V20/13 , G06V10/764 , G06V10/774 , G06V10/82 , G06V10/80 , G06N3/0464
Abstract: 本发明公开了一种面向大尺度遥感图像的多类目标快速检测方法,包括以下步骤:将大比例尺遥感图像进行裁剪,并通过重新缩放和旋转来增强数据;利用具有串联线性整流函数模块和Inception模块的卷积特征提取器,将所得的图像数据作为输入并输出多个级别的特征;构建多尺度目标提议网络,并利用多尺度目标提议网络将卷积特征提取器输出的特征生成类似目标区域预测框;构建基于融合特征映射的精确目标检测网络,输入带有类似目标区域预测框的图像,利用精确目标检测网络实现精确的目标检测,输出检测结果。实现了具有大尺度变化的遥感图像中的多类目标自动检测,使得对遥感图像的多目标的实时检测成为可能。
-
公开(公告)号:CN115019123A
公开(公告)日:2022-09-06
申请号:CN202210555496.3
申请日:2022-05-20
Applicant: 中南大学 , 重庆市地理信息和遥感应用中心
IPC: G06V10/774 , G06V10/778 , G06V10/82 , G06V10/764 , G06K9/62 , G06V20/10 , G06V20/70 , G06N3/04 , G06N3/08
Abstract: 本发明公开了一种遥感图像场景分类的自蒸馏对比学习方法,包括:由结构一样的教师网络和学生网络组成长程依赖捕获主干网络模块;获取遥感图像并将图像进行全局切片、局部切片、尺度对齐及数据增强,得到同一张图像的融入尺度信息的不同版本;将全局切片图像送入教师网络、将全局切片图像和尺度对齐后的局部切片图像共同送入学生网络进行自蒸馏对比学习;获得不同版本的图片表征,再经过softmax将表征转化为概率分布,训练网络使学生网络输出的概率分布尽量匹配教师网络输出的概率分布;采用自蒸馏的方式训练神经网络模型;输出场景分类结果。本发明不依赖标签和负样本,可捕捉RSI的全局语义信息,可学习到RSI的多尺度特征。
-
公开(公告)号:CN113723281A
公开(公告)日:2021-11-30
申请号:CN202111001772.3
申请日:2021-08-30
Applicant: 重庆市地理信息和遥感应用中心
Abstract: 本发明公开了一种基于局部自适应尺度集成学习的高分辨率影像分类方法,包括步骤:获取工作区的样本和高分辨率遥感影像;通过不同分割尺度下影像对象平均局部同质性的变化率曲线,获取若干个优选尺度分割结果;计算不同优选尺度分割结果下每个分割对象的分类特征,构建整幅影像的覆盖特征矩阵;计算覆盖特征矩阵中各个覆盖特征对于每个像元分类时的贡献度;整幅影像的局部自适应尺度的集成学习并分割影像;构建分类器对局部自适应尺度分割结果下影像对象进行集成学习并分类。其显著效果是:巧妙的避开了在基于对象分类范式中最佳分割参数的选择问题,实现了不同尺度下分类信息的集成,提高了高分率遥感影像的地物识别精度。
-
公开(公告)号:CN111079604A
公开(公告)日:2020-04-28
申请号:CN201911243920.5
申请日:2019-12-06
Applicant: 重庆市地理信息和遥感应用中心(重庆市测绘产品质量检验测试中心)
Inventor: 丁忆 , 李朋龙 , 罗鼎 , 张泽烈 , 李晓龙 , 肖禾 , 马泽忠 , 段松江 , 刘金龙 , 王亚林 , 吴凤敏 , 钱进 , 刘朝晖 , 曾远文 , 魏文杰 , 林熙 , 范文武 , 刘建 , 黄印 , 卢建洪
Abstract: 本发明公开了一种面向大尺度遥感图像的微小目标快速检测方法,包括步骤:利用轻量级的残差结构构建Tiny-Net模块,并对输入的遥感图像进行特征图提取;搭建全局注意力模块;在全局注意力模块后依次连接分类器与检测器,并利用分类器检测当前输入图像块中的目标;对检测出的目标采用k-means聚类方法得到k个尺度的先验框;使用区域提案网络得到提案区域,并采用位置敏感的ROI池化对提案区域进行池化;训练网络,并利用训练好的网络对新输入的遥感图像进行微小目标的精确检测定位。其显著效果是:实现了快速精确的检测大尺度遥感图像中的微小目标,使得对大尺度遥感图像的目标实时检测成为可能。
-
公开(公告)号:CN115761486B
公开(公告)日:2024-08-20
申请号:CN202211420265.8
申请日:2022-11-15
Applicant: 重庆市地理信息和遥感应用中心
Abstract: 本发明提供一种基于多期稻田影像特征的水稻种植区判定方法和系统,其中,方法包括:获取水稻的耕作制度和物候信息,确定水稻收割后及种植初期和/或灌浆期的至少两个特定时期,获取多期初始遥感影像并进行预处理,得到第一期遥感影像、第二期遥感影像和/或第三期遥感影像;获取水田矢量数据,对第一期遥感影像进行空间约束,结合第一期遥感影像呈现的纹理和光谱特征,判定初始水稻种植区;根据第二期遥感影像和/或第三期遥感影像呈现的光谱特征,判定水稻干扰区;基于空间叠加技术,在初始水稻种植区中剔除水稻干扰区,获取目标水稻种植区。本发明实现了在复杂山地背景下对水稻种植区的精准判定,且能够得到便于识别和管理的水稻种植区范围。
-
公开(公告)号:CN117576394A
公开(公告)日:2024-02-20
申请号:CN202311538263.3
申请日:2023-11-17
Applicant: 重庆市地理信息和遥感应用中心(重庆市测绘产品质量检验测试中心)
IPC: G06V10/26 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/09 , G06T7/62
Abstract: 本发明公开了一种利用全局信息提升地类语义分割的方法,具体涉及地类语义分割技术领域,包括地类信息采集、样本划分、通用地类模型、露天矿识别模型、过滤重合、数据整合,通过构建矿区检测模型,获取图像全局语义信息,通过对遥感图像的分辨率的确定,设置降采样的比例值,得到通用地类模型分析样本,计算出地类语义分割结果A和地类语义分割结果B,使用通用地类模型作为辅助预测,融合两种模型结果,图斑轮廓,计算图斑对的重合率,过滤误检图斑,删除类别冲突的图斑对,对地类语义分割结果进行修正,将优化后的通用地类模型应用于遥感数据实际应用场景中,实现地类信息的快速提取和土地资源的高效管理。
-
公开(公告)号:CN116342738B
公开(公告)日:2023-08-29
申请号:CN202310083918.6
申请日:2023-01-31
Applicant: 重庆市地理信息和遥感应用中心(重庆市测绘产品质量检验测试中心)
Abstract: 本发明提供一种基于GIS的禁捕矢量范围自动提取和图示制作方法,包括:通过获取制图区域范围内的河流数据、禁捕范围起止点和制图数据,对禁捕范围起止点进行矢量化,并合并获取的河流数据,得到有效河流数据,根据有效河流数据提取并简化目标河流中心线,根据禁捕范围起止点与目标河流中心线,获取对应的两条垂线,并基于两条垂线对有效河流数据进行裁剪,得到禁捕矢量范围,构建制图模板,设置地图制图参数,确定地图的分割单元,在分割单元中,结合禁捕矢量范围和制图参数,基于制图模板生成禁捕范围图示。本发明能够实现禁捕矢量范围的快速准确提取,获取精准的禁捕范围图示,简化了禁捕范围图示的生成方法,提高了工作效率。
-
公开(公告)号:CN113723281B
公开(公告)日:2022-07-22
申请号:CN202111001772.3
申请日:2021-08-30
Applicant: 重庆市地理信息和遥感应用中心
IPC: G06V10/26 , G06V20/13 , G06V10/764 , G06V10/77 , G06K9/62
Abstract: 本发明公开了一种基于局部自适应尺度集成学习的高分辨率影像分类方法,包括步骤:获取工作区的样本和高分辨率遥感影像;通过不同分割尺度下影像对象平均局部同质性的变化率曲线,获取若干个优选尺度分割结果;计算不同优选尺度分割结果下每个分割对象的分类特征,构建整幅影像的覆盖特征矩阵;计算覆盖特征矩阵中各个覆盖特征对于每个像元分类时的贡献度;整幅影像的局部自适应尺度的集成学习并分割影像;构建分类器对局部自适应尺度分割结果下影像对象进行集成学习并分类。其显著效果是:巧妙的避开了在基于对象分类范式中最佳分割参数的选择问题,实现了不同尺度下分类信息的集成,提高了高分率遥感影像的地物识别精度。
-
-
-
-
-
-
-
-
-