-
公开(公告)号:CN116029219B
公开(公告)日:2023-07-07
申请号:CN202310166088.3
申请日:2023-02-27
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F30/27 , G06F30/28 , G06N3/0464 , G06N3/08 , G06Q10/04
Abstract: 本申请公开了一种飞行器气动热预测方法、装置、设备及存储介质,涉及飞行器气动热技术领域,包括:获取飞行器的飞行条件和飞行器的外形特征;基于卷积神经网络构建包含外形特征提取网络、来流信息提取网络以及热流预测网络的气动热预测模型;将飞行条件和所述外形特征输入至训练后的气动热预测模型,利用训练后的气动热预测模型对飞行器的气动热进行预测,以得到相应的预测结果。通过该气动热预测模型直接输出预测的气动热结果,通过该气动热预测模型能够实现对不同外形飞行器的气动热进行快速预测,并且借鉴了图像处理技术的思想,利用卷积神经网络权值共享的特点,相比基于全连接神经网络构建的预测模型提高模型的训练速度。
-
公开(公告)号:CN113390600B
公开(公告)日:2022-07-12
申请号:CN202110842223.2
申请日:2021-07-26
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
Abstract: 本发明公开了用于热解气体气动热效应的激波风洞试验模拟装置,包括安装在激波风洞中的模型,所述模型表面嵌设多孔材料,所述多孔材料与位于模型内部的集气腔连通;还包括用于为所述集气腔供气的气源。本发明的目的在于提供用于热解气体气动热效应的激波风洞试验模拟装置及方法,以填补现有技术中在通过风洞试验数据来修正烧蚀热解气体气动热效应数值计算模型方面的空白,实现获得测试数据,为修正数值计算模型提供充分依据的目的。
-
公开(公告)号:CN112765913B
公开(公告)日:2021-06-29
申请号:CN202110375944.7
申请日:2021-04-08
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
Abstract: 本发明公开了一种分层梯度多孔材料发汗冷却结构及飞行器,该发汗冷却结构包括N层多孔材料层、设于多孔材料层一侧的冷却腔,所述冷却腔内设有冷却剂供应单元,所述冷却剂供应单元用以向冷却腔供应冷却剂,多孔材料层的孔隙率沿靠近冷却腔的方向依次按层减小,其中,N为整数,N≥2。本发明解决了现有技术中发汗冷却结构存在的散热不均匀、热防护效果不佳、成本高等问题。
-
公开(公告)号:CN118520595B
公开(公告)日:2024-09-17
申请号:CN202410985498.5
申请日:2024-07-23
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F30/15 , G06F30/28 , G06F113/08 , G06F119/14
Abstract: 本发明公开了一种基于稳态壁面压力的动导数预测方法,属于计算流体力学及飞行器飞行力学领域,所述动导数预测方法包括如下步骤:S1:生成计算网格步骤,基于飞行器机体表面形态生成网格计算域;S2:基于预设的飞行器飞行参数,求解定常流场;S3:后处理程序集成或数据导出步骤;S4:计算每个微面元的等价无量纲外法向速度投影;S5:计算压力系数动导数;S6:计算微面元相对参考点的动导数;S7:积分获得动导数。本发明方法可以通过较少的计算量获得可满足快速分析评估要求的动导数预测结果。
-
公开(公告)号:CN117782515A
公开(公告)日:2024-03-29
申请号:CN202410217940.X
申请日:2024-02-28
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G01M9/06
Abstract: 本发明公开了一种激波风洞来流参数影响的气动热数据不确定度评估方法,包括如下步骤:依据流场监测装置获取流场监测数据,分析得到数据总体分布情况;采用蒙特卡洛方法,计算得到对应的风洞来流参数,从而获得风洞来流参数总体分布情况及不确定度;计算得到风洞试验模型壁面热流数据;采用非侵入式多项式混沌方法,分析得到壁面热流数据的不确定度及风洞来流参数的敏感性指标。本发明的有益效果:以确定性的气动热数值计算代替风洞试验气动热的测量值,避免引入热流传感器测量误差对热流不确定度的影响;根据风洞运行原理和气动热试验测量原理,分析风洞重复性运行对模型表面气动热影响因素,按照误差传递规律获取气动热数据不确定度。
-
公开(公告)号:CN116296239A
公开(公告)日:2023-06-23
申请号:CN202310601831.3
申请日:2023-05-26
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G01M9/06 , G06F30/27 , G06N3/0464 , G01M9/02 , G06F111/10 , G06F113/08 , G06F119/08
Abstract: 本发明公开了基于卷积神经网络的风洞试验方法、装置、设备以及介质,涉及飞行器风洞试验领域,其中方法包括:对攻角和侧滑角进行采样得到不同的样本点;对各个所述样本点进行气动热数值模拟,得到各个所述样本点的热流数据;根据所述热流数据,利用卷积神经网络对所述热流数据进行训练,得到卷积神经网络模型;获取待预测攻角和待预测侧滑角的范围数值,利用所述卷积神经网络模型进行预测,得到与所述范围数值对应的气动响应面;本发明通过利用卷积神经网络进行风洞现代试验设计的方式,替代现有技术中的线性机理模型,充分挖掘飞行器在不同工况条件下与气动响应间的非线性关系,有效提高响应面的预测精度。
-
公开(公告)号:CN118665708A
公开(公告)日:2024-09-20
申请号:CN202411157119.X
申请日:2024-08-22
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
Abstract: 本发明涉及高速空气动力学技术领域,具体公开了一种高速飞行器微波纹结构表面及其设计方法;包括多组设置在飞行器表面且沿气流方向依次连接的微波纹结构单元;多组所述微波纹结构单元结构相同,包括呈竖向设置的侧面、与侧面的底部连接的底面、与底面远离侧面一侧连接的曲面、以及与曲面远离底面一侧连接的上表面;所述侧面与飞行器表面或相邻的微波纹结构单元中的上表面远离曲面的一侧连接;所述侧面设置在靠近气流上游的一侧。以及公开了其设计方法;本发明利用微波纹结构形成的微尺度涡流,降低高速气流与飞行器表面之间的摩擦,实现高速飞行器关键位置的减阻降热,从而提高飞行器的航程和红外隐身特性。
-
公开(公告)号:CN116773734A
公开(公告)日:2023-09-19
申请号:CN202310865791.3
申请日:2023-07-14
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
Abstract: 本发明涉及高超声速飞行器热防护技术领域,具体是一种C/MeC/SiC复合材料烧蚀后退量的评估方法。本发明提供的方法确定了所述复合材料在有无气流冲刷两类情况下材料的烧蚀后退量,对于有气流冲刷,先根据第一、第二物性参数及氧气摩尔流率获得其烧蚀后退速率,从而获得其烧蚀后退量。对于无气流冲刷,先根据第一物性参数和氧气摩尔流率获得在无气流冲刷条件下所述复合材料烧蚀形成的氧化层厚度,再根据第二物性参数和所述氧化层厚度获得其烧蚀后退量。实验表明,本发明所述的方法能够准确分析出复合材料的烧蚀后退量,具有通用性,能够覆盖不同组分的同一类型物质,该方法具有分析准确度较高、成本低、周期短、操作简便等优势。
-
公开(公告)号:CN116227389A
公开(公告)日:2023-06-06
申请号:CN202310505614.4
申请日:2023-05-08
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F30/28 , G06F30/27 , G06F18/214 , G06N3/048 , G06N3/08 , G06F111/10 , G06F113/08 , G06F119/14
Abstract: 本申请公开了一种气动热数据的预测方法及装置,通过获取目标来流参数信息;将目标来流参数信息输入到预先建立的气动热预测模型中,得到与目标来流参数信息对应的目标气动热数据;预先建立的气动热预测模型是根据风洞试验数据以及CFD计算数据对神经网络模型进行训练后得到的,本申请通过建立飞行器来流参数信息和飞行器的融合数据之间的映射关系,融合数据包括风试验数据和CFD计算数据,生成气动热预测模型,通过该气动热预测模型能快速精确的根据不同的来流条件对不同飞行状态下的飞行器气动热数据进行预测,并使数据结果精度更接近风洞试验数据。
-
公开(公告)号:CN116151083A
公开(公告)日:2023-05-23
申请号:CN202310433940.9
申请日:2023-04-21
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F30/23 , G06F30/15 , G06F113/08 , G06F119/08 , G06F111/10
Abstract: 本发明公开了基于动网格的伸缩翼气动热与传热耦合模拟方法,涉及流固耦合计算领域,包括:选取计算锚点;针对每个计算锚点进行流场求解,获得每个计算锚点的第一流场壁面网格热流值;将多个所述第一流场壁面网格热流值插值到伸出后状态对应的流场计算网格,计算获得每个计算锚点的第二流场壁面网格热流值;将多个第一固定翼热流值插值到固定翼结构壁面网格,将多个第一伸缩翼热流值插值到伸缩翼结构壁面网格,对插值后的固定翼结构壁面网格和伸缩翼结构壁面网格,求解三维非定常热传导方程和伸缩翼结构位移方程,获得飞行器伸缩翼结构的温度分布,本方法实现针对伸缩翼或折叠翼等体型会变化飞行器的气动热与结构热响应耦合模拟研究。
-
-
-
-
-
-
-
-
-