-
公开(公告)号:CN108242463A
公开(公告)日:2018-07-03
申请号:CN201611224609.2
申请日:2016-12-27
申请人: 全球能源互联网研究院 , 国家电网公司 , 国网山东省电力公司
IPC分类号: H01L29/06 , H01L21/329 , H01L29/861 , H01L29/872 , H01L21/04 , H01L21/265
摘要: 本发明提供了一种碳化硅超结二极管及其制备方法,所述制备方法包括在碳化硅衬底的正面形成外延薄膜,并采用高温高能离子注入方法向外延薄膜的上表面注入离子,形成超结结构;分别在外延薄膜的上表面和碳化硅衬底的背面淀积金属,形成第一金属电极和第二金属电极。与现有技术相比,本发明提供的一种碳化硅超结二极管及其制备方法,通过增加超结结构可以使碳化硅超结二极管的耐压能力只与其外延薄膜相关,与外延薄膜的掺杂浓度无关,可以通过提高外延薄膜的掺杂浓度及引入空穴的方法降低碳化硅超结二极管导通的通态电阻。
-
公开(公告)号:CN112002648A
公开(公告)日:2020-11-27
申请号:CN202010672215.3
申请日:2020-07-14
申请人: 全球能源互联网研究院有限公司 , 国家电网有限公司 , 国网山东省电力公司泰安供电公司
摘要: 本发明提供一种碳化硅功率器件的制备方法及碳化硅功率器件,方法包括在半导体层(1)的正面形成场限环终端(4);采用热氧化工艺在场限环终端(4)的正面以预设的生长温度形成热氧化层(5);在热氧化层(5)的正面形成氧化层(6),通过设置热氧化层(5)大大降低了氧化层(6)产生孔洞的可能性,碳化硅功率器件在承受反向高电压时不易击穿,提高了碳化硅功率器件的良率和长期可靠性。
-
公开(公告)号:CN111640794A
公开(公告)日:2020-09-08
申请号:CN202010524341.4
申请日:2020-06-10
申请人: 全球能源互联网研究院有限公司 , 国家电网有限公司 , 国网山东省电力公司泰安供电公司
摘要: 本发明属于半导体器件制备技术领域,具体涉及一种高介电常数栅介质材料及其制备方法。该高介电常数栅介质材料,自下至上,包括依次叠加的AlN层、AlOxNy层和Al2O3层;该栅介质层具有较高的界面质量、界面态密度和高可靠性,同时该栅介质层的均匀性较好,漏电流的问题较少。
-
公开(公告)号:CN108231560B
公开(公告)日:2022-02-15
申请号:CN201611125725.9
申请日:2016-12-09
申请人: 全球能源互联网研究院 , 国家电网公司 , 国网江苏省电力公司
IPC分类号: H01L21/28 , H01L21/336 , H01L29/423 , H01L29/49 , H01L29/78
摘要: 本发明提供了一种控制电极制备方法及MOSFET功率器件,所述方法包括在衬底的正面形成栅极电介质层,并在该栅极电介质层上顺次形成石墨烯层和栅电极;在栅电极上形成栅极接触孔,并在衬底的正面中暴露于栅极电介质层以外的区域上形成第一接触孔;向栅极接触孔和第一接触孔填充金属,分别形成栅极接触电极和第一接触电极;在衬底的背面淀积金属,形成第二接触电极;所述MOSFET功率器件包括上述方法制备的控制电极。与现有技术相比,本发明提供的一种控制电极制备方法及MOSFET功率器件,该方法能够改善控制电极的控制问题,降低器件的导通电阻,缩短反向恢复时间,减少开关损耗,提高器件的电流增益。
-
公开(公告)号:CN108257855B
公开(公告)日:2021-09-10
申请号:CN201611238005.3
申请日:2016-12-28
申请人: 全球能源互联网研究院 , 国家电网公司 , 国网江苏省电力公司
摘要: 本发明提供了一种高k栅介质层的制备方法及碳化硅MOS功率器件,所述制备方法包括对具有第一导电类型的碳化硅外延片进行高温牺牲氧化,在其外延层的上表面形成牺牲氧化层;对牺牲氧化层进行腐蚀,直至完全去除外延层上的牺牲氧化层;对去除牺牲氧化层后的外延层的上表面进行高温表面化处理,形成光滑的钝化表面;在光滑的钝化表面上依次淀积Al2O3介质覆层、LaAlO3介质层和Al2O3介质覆层,并对Al2O3介质覆层、LaAlO3介质层和Al2O3介质覆层构成的叠层结构进行退火,形成高k栅介质层。与现有技术相比,本发明提供的一种高k栅介质层的制备方法及碳化硅MOS功率器件,能够减少SiC/SiO2界面处的因杂质和/或表面晶格缺陷造成的界面缺陷,提高栅介质层的耐压能力。
-
公开(公告)号:CN108257859A
公开(公告)日:2018-07-06
申请号:CN201611238004.9
申请日:2016-12-28
申请人: 全球能源互联网研究院 , 国家电网公司 , 国网江苏省电力公司
摘要: 本发明提供了一种栅氧化层的制备方法及MOSFET功率器件,所述制备方法包括对具有第一导电类型的碳化硅外延片进行高温牺牲氧化,在其外延层的上表面形成牺牲氧化层;对牺牲氧化层进行腐蚀,直至完全去除外延层上的牺牲氧化层;对去除牺牲氧化层后的外延层的上表面进行高温表面化处理,形成光滑的钝化表面;对碳化硅外延片依次进行高温干氧氧化和磷气氛下退火,在光滑的钝化表面上形成栅氧化层。与现有技术相比,本发明提供的一种栅氧化层的制备方法及MOSFET功率器件,能够减少SiC/SiO2界面处的因杂质和/或表面晶格缺陷造成的界面缺陷。
-
公开(公告)号:CN108257859B
公开(公告)日:2021-09-03
申请号:CN201611238004.9
申请日:2016-12-28
申请人: 全球能源互联网研究院 , 国家电网公司 , 国网江苏省电力公司
摘要: 本发明提供了一种栅氧化层的制备方法及MOSFET功率器件,所述制备方法包括对具有第一导电类型的碳化硅外延片进行高温牺牲氧化,在其外延层的上表面形成牺牲氧化层;对牺牲氧化层进行腐蚀,直至完全去除外延层上的牺牲氧化层;对去除牺牲氧化层后的外延层的上表面进行高温表面化处理,形成光滑的钝化表面;对碳化硅外延片依次进行高温干氧氧化和磷气氛下退火,在光滑的钝化表面上形成栅氧化层。与现有技术相比,本发明提供的一种栅氧化层的制备方法及MOSFET功率器件,能够减少SiC/SiO2界面处的因杂质和/或表面晶格缺陷造成的界面缺陷。
-
公开(公告)号:CN108257855A
公开(公告)日:2018-07-06
申请号:CN201611238005.3
申请日:2016-12-28
申请人: 全球能源互联网研究院 , 国家电网公司 , 国网江苏省电力公司
摘要: 本发明提供了一种高k栅介质层的制备方法及碳化硅MOS功率器件,所述制备方法包括对具有第一导电类型的碳化硅外延片进行高温牺牲氧化,在其外延层的上表面形成牺牲氧化层;对牺牲氧化层进行腐蚀,直至完全去除外延层上的牺牲氧化层;对去除牺牲氧化层后的外延层的上表面进行高温表面化处理,形成光滑的钝化表面;在光滑的钝化表面上依次淀积Al2O3介质覆层、LaAlO3介质层和Al2O3介质覆层,并对Al2O3介质覆层、LaAlO3介质层和Al2O3介质覆层构成的叠层结构进行退火,形成高k栅介质层。与现有技术相比,本发明提供的一种高k栅介质层的制备方法及碳化硅MOS功率器件,能够减少SiC/SiO2界面处的因杂质和/或表面晶格缺陷造成的界面缺陷,提高栅介质层的耐压能力。
-
公开(公告)号:CN108231560A
公开(公告)日:2018-06-29
申请号:CN201611125725.9
申请日:2016-12-09
申请人: 全球能源互联网研究院 , 国家电网公司 , 国网江苏省电力公司
IPC分类号: H01L21/28 , H01L21/336 , H01L29/423 , H01L29/49 , H01L29/78
CPC分类号: H01L29/401 , H01L29/42372 , H01L29/49 , H01L29/66068 , H01L29/7827
摘要: 本发明提供了一种控制电极制备方法及MOSFET功率器件,所述方法包括在衬底的正面形成栅极电介质层,并在该栅极电介质层上顺次形成石墨烯层和栅电极;在栅电极上形成栅极接触孔,并在衬底的正面中暴露于栅极电介质层以外的区域上形成第一接触孔;向栅极接触孔和第一接触孔填充金属,分别形成栅极接触电极和第一接触电极;在衬底的背面淀积金属,形成第二接触电极;所述MOSFET功率器件包括上述方法制备的控制电极。与现有技术相比,本发明提供的一种控制电极制备方法及MOSFET功率器件,该方法能够改善控制电极的控制问题,降低器件的导通电阻,缩短反向恢复时间,减少开关损耗,提高器件的电流增益。
-
公开(公告)号:CN105869996A
公开(公告)日:2016-08-17
申请号:CN201610262594.2
申请日:2016-04-25
申请人: 全球能源互联网研究院 , 国家电网公司 , 国网上海市电力公司
CPC分类号: H01L21/02661 , C30B25/02 , H01L21/02378 , H01L21/02447 , H01L21/02529 , H01L21/02634
摘要: 本发明提供一种碳化硅外延生长系统及其生长方法。本发明提供的外延系统可进行慢速生长、快速生长、N型掺杂、P型掺杂、单层外延生长、多层外延生长、薄膜外延层生长、厚膜外延层生长、选择性刻蚀等多种功能性的碳化硅外延生长;该系统可依据外延结构要求选择生长模式,生长适合的外延材料。本发明提供的技术方案生长的外延材料质量更优,缺陷更少,更适合应用于高电压电力电子器件中;其适合范围广、生长方法简单、加工成本低,适合工业化生产。
-
-
-
-
-
-
-
-
-