-
公开(公告)号:CN106302716B
公开(公告)日:2019-05-24
申请号:CN201610665342.4
申请日:2016-08-12
申请人: 北京航天长征飞行器研究所 , 中国运载火箭技术研究院
摘要: 本发明涉及一种基于SOB技术的飞行器遥测组合及遥测系统,该遥测组合包括中心逻辑控制模块、数据采集模块、电源管理模块、存储模块和物理接口,其中中心逻辑控制模块从数据采集模块接收数字信号,同时通过物理接口接收外部的串行数据,对数字信号和串行数据进行第一次编帧处理,并将第一次编帧处理后的数据在存储模块中进行存储,第二次编帧处理开始后,从存储模块读取数据进行第二次编帧处理,并将编帧处理后的并行数据转换为PCM码流发送给外部的发射机;该遥测组合及遥测系统具在保证实时记录遥测数据的前提下,能够获得更高的遥测数据接收鲁棒性,增强了遥测下传的可靠性,提高了遥测数据发送的可控性,降低重要数据丢失的概率。
-
公开(公告)号:CN105160725B
公开(公告)日:2018-08-21
申请号:CN201510441616.7
申请日:2015-07-24
申请人: 北京航天长征飞行器研究所 , 中国运载火箭技术研究院
IPC分类号: G07C3/00
摘要: 本发明涉及一种自供电测量存储装置,包括采集模块、存储模块和自供电模块;存储模块包括完全一致的存储板A和存储板B;自供电模块在外界供电消失后,切换锂电池组供电,锂电池组供电结束后氧化银电池组供电。同时提供一种装置回收方法,飞行器落地后,外界供电消失,供电切换模块切换为自供电模式,采集模块继续采集信号分别发送到存储模块的存储板A和存储板B;完成飞行试验后,找回回收装置,从回收装置中取出测量存储装置,读取数据。本发明能满足在恶劣环境下,微秒级采集精度,宽信号范围模拟信号的测量需求,特别对于获取飞行器出筒段、出水段、再入段、飞行器落地瞬间的触地信号,通过特定的结构设计有效减缓大冲击。
-
公开(公告)号:CN104132685B
公开(公告)日:2017-01-04
申请号:CN201410360717.7
申请日:2014-07-25
申请人: 北京航天长征飞行器研究所 , 中国运载火箭技术研究院
IPC分类号: G01D18/00
摘要: 一种传感器测试系统及测试方法,测试系统包括:地面供电模块、传感器模块、数据采集模块、参数设置模块、采样率确定模块、需求确认模块、测试模块和输出与储存模块,测试方法首先对参数设置模块进行初始设置并确定测试需求,然后对整个传感器模块输出的电压信号进行采集;并将采集到的电压信号输入到测试模块中进行测试,最后对测试结果进行分析,本发明实现了不小于250路传感器输出电压的测量,以及对单传感器工作性能的检测,能满足系统测试路数可扩展和容易扩展的要求,且测试效率较高。
-
公开(公告)号:CN108900239B
公开(公告)日:2020-12-18
申请号:CN201810839599.6
申请日:2018-07-27
申请人: 北京航天长征飞行器研究所 , 中国运载火箭技术研究院
发明人: 耿健 , 闫新峰 , 程永生 , 孙涛 , 李骥 , 彭云 , 徐进 , 金文 , 马瑞 , 王煊 , 李化营 , 苏伟 , 赵洋 , 黄朝东 , 王伟伟 , 见其拓 , 刘佳琪 , 水涌涛
IPC分类号: H04B7/185 , H04B7/0413 , H04L1/06
摘要: 一种基于空时块编码的低复杂度空间飞行器全向组网统一收发系统及方法,其发送端根据预设的空时块编码矩阵对输入的基带符号序列进行空时块编码,编码后的结果通过若干条射频链路输出至若干根天线。本发明中,一方面通过将飞行器表面不相邻天线共用相同的射频链路的方式,达到不明显影响全向通信质量的情况下,降低设备硬件复杂度的效果;另一方面设计了一种支持多种射频链路数量配置的统一空时块编码的发送编码和接收检测方案,该方案能够满足任意两个空间飞行器间全向通信的需求并且允许发送端和接收端独立选择各自的天线数量及射频链路数量,从而解决不同天线数量和射频链路数量配置下的飞行器间全向通信的兼容问题。
-
公开(公告)号:CN105045271A
公开(公告)日:2015-11-11
申请号:CN201510373120.0
申请日:2015-06-30
申请人: 北京航天长征飞行器研究所 , 中国运载火箭技术研究院
摘要: 本发明提供了一种欠驱动条件下的空间飞行器位置机动方法,步骤如下:(1)获得载体坐标系下飞行器当前位置与目标位置之间的位置误差及飞行器在当前速度与目标速度之间的速度误差,计算飞行器与目标位置的相对距离;(2)计算载体坐标系下飞行器相对目标位置的视线角速度;(3)计算OZ轴与位置误差矢量的夹角或者OX轴与视线角速度矢量的夹角;(4)计算误差四元数;(5)控制飞行器的姿态和轨道,调整轨控发动机的推力方向,使飞行器从当前位置运动到目标位置。本发明针对采用在飞行器纵轴方向无控制力的动力系统的小型空间飞行器,基于姿轨耦合控制方法,在不增加轨控发动机或改变动力系统布局的条件下完成飞行器的空间位置的改变。
-
公开(公告)号:CN106649142B
公开(公告)日:2019-09-06
申请号:CN201611102026.2
申请日:2016-12-02
申请人: 北京航天长征飞行器研究所 , 中国运载火箭技术研究院
IPC分类号: G06F12/0868 , G06F12/16
摘要: 一种具有断电续存功能的高速存储器,包括三块存储板,其中两块存储板互为备份,用于存储采编器组帧后的数据和接口控制器转发的地面测试系统控制指令;第三块存储板用于存储接口控制器转发的外系统备份数据和地面测试系统控制指令。本发明存储器通过FPGA单元对NAND Flash芯片两个CE同时进行双面读写操作,相对于传统的单CE单面操作,提高了存储器的读写速率。同时在上电复位完成后,存储器能够对上次写到的块地址进行检测和保存,实现了断电续存功能,能够从已有数据后面续存,在地面测试及飞行器飞行过程中,支持多次加断电操作,提高了系统可靠性,满足系统特殊使用要求。
-
公开(公告)号:CN105045271B
公开(公告)日:2017-07-28
申请号:CN201510373120.0
申请日:2015-06-30
申请人: 北京航天长征飞行器研究所 , 中国运载火箭技术研究院
摘要: 本发明提供了一种欠驱动条件下的空间飞行器位置机动方法,步骤如下:(1)获得载体坐标系下飞行器当前位置与目标位置之间的位置误差及飞行器在当前速度与目标速度之间的速度误差,计算飞行器与目标位置的相对距离;(2)计算载体坐标系下飞行器相对目标位置的视线角速度;(3)计算OZ轴与位置误差矢量的夹角或者OX轴与视线角速度矢量的夹角;(4)计算误差四元数;(5)控制飞行器的姿态和轨道,调整轨控发动机的推力方向,使飞行器从当前位置运动到目标位置。本发明针对采用在飞行器纵轴方向无控制力的动力系统的小型空间飞行器,基于姿轨耦合控制方法,在不增加轨控发动机或改变动力系统布局的条件下完成飞行器的空间位置的改变。
-
公开(公告)号:CN106292360A
公开(公告)日:2017-01-04
申请号:CN201610663859.X
申请日:2016-08-12
申请人: 北京航天长征飞行器研究所 , 中国运载火箭技术研究院
CPC分类号: G05B19/04 , G08C19/00 , H02J1/10 , H04L1/0056 , H04L12/40 , H04L2012/4028
摘要: 本发明涉及一种基于数字总线的飞行器上遥测系统,该飞行器上遥测系统具体包括锂电池、数字配电器、二次电源、接口控制器、采编器、存储器和传感器变换器组,本发明采用数字总线和自动自检功能设计,在测试过程中能够通过对关键点电压、电流的测量以及存储器状态数据自动判断系统的工作状态(即系统是否工作正常),发生故障时能准确定位,提高了系统智能化程度,本发明采用状态测量存储设计,能够将关键点电压、电流测量值、存储器状态以及自检结果发送给采编器(成帧后存储在存储器中)和地面测控系统,便于更好掌握飞行器飞行过程中系统工作情况,同时本发明简化地面测试设备及操作,节约研制成本和人力成本。
-
公开(公告)号:CN105021092A
公开(公告)日:2015-11-04
申请号:CN201510373110.7
申请日:2015-06-30
申请人: 北京航天长征飞行器研究所 , 中国运载火箭技术研究院
摘要: 本发明提供了一种捷联寻的导引头的制导信息提取方法,包括如下步骤:(1)获取载体坐标系o-xbybzb下导引头的体视线方位角和体视线高低角;(2)处理捷联导引头测量信息;(3)计算载体坐标系下弹目相对距离矢量以及目标相对飞行器的运动速度在载体坐标系的分量;(4)计算载体坐标系下当前时刻飞行器的惯性视线方位角速率和当前时刻飞行器的惯性视线高低角速率;(5)将步骤(4)获得的结果作为制导信息送至捷联寻的导引头。本发明针对现有技术的不足,直接使用体视线角测量信息和陀螺角速度测量信息提取惯性视线角速度,提高了制导精度,降低制导系统的设计难度,能够广泛应用于各种捷联寻的制导武器中。
-
公开(公告)号:CN112433243A
公开(公告)日:2021-03-02
申请号:CN202011324991.0
申请日:2020-11-23
申请人: 北京航天长征飞行器研究所
摘要: 一种弹间接收机实时交互的差分定位系统,包括:两个飞行器、导航卫星;两个飞行器各有装有一台卫星导航接收机;两台卫星导航接收机分别实时接收多个导航卫星的导航信号,从各个导航卫星的导航信号中提取伪距观测量;实现两台接收机对相同导航卫星的伪距观测量一次差分,消除伪距观测量 和伪距观测量 中的卫星钟差和部分大气延时误差;实现两台接收机对不同导航卫星的伪距观测量二次差分,消除第2个导航卫星的伪距单差值至第N个导航卫星的伪距单差值中的接收机钟差;接收机1和接收机2,均对第2个导航卫星的伪距双差值至第N个导航卫星的伪距双差值,运用最小二乘法,解算出接收机1和接收机2之间的相对距离,实现两个飞行器高精度的相对定位。
-
-
-
-
-
-
-
-
-