反大气层内或临近空间机动目标视线角速率估计方法

    公开(公告)号:CN115342815B

    公开(公告)日:2024-04-26

    申请号:CN202211037198.1

    申请日:2022-08-26

    IPC分类号: G01C21/20

    摘要: 反大气层内或临近空间机动目标视线角速率估计方法,它属于导弹制导控制技术领域。本发明解决了由于目标加速度的估计结果不精确以及拦截导弹弹体的冲击振动,导致对目标与导弹视线角速率估计的精度低的问题。本发明基于机动目标跟踪滤波器跟踪得到目标加速度信息,再结合目标加速度信息和冲击振动带来的扰动信息,采用无迹卡尔曼粒子滤波算法对视线角速率进行滤波估计,克服了由于现有的目标与导弹角速度估计方法中目标加速度的不精确以及弹体的冲击振动所带来的视线角速率估计精度低的问题,进而根据本发明的视线角速率的估计结果提高制导精度。本发明方法可以应用于导弹制导控制技术领域。

    反大气层内或临近空间机动目标视线角速率估计方法

    公开(公告)号:CN115342815A

    公开(公告)日:2022-11-15

    申请号:CN202211037198.1

    申请日:2022-08-26

    IPC分类号: G01C21/20

    摘要: 反大气层内或临近空间机动目标视线角速率估计方法,它属于导弹制导控制技术领域。本发明解决了由于目标加速度的估计结果不精确以及拦截导弹弹体的冲击振动,导致对目标与导弹视线角速率估计的精度低的问题。本发明基于机动目标跟踪滤波器跟踪得到目标加速度信息,再结合目标加速度信息和冲击振动带来的扰动信息,采用无迹卡尔曼粒子滤波算法对视线角速率进行滤波估计,克服了由于现有的目标与导弹角速度估计方法中目标加速度的不精确以及弹体的冲击振动所带来的视线角速率估计精度低的问题,进而根据本发明的视线角速率的估计结果提高制导精度。本发明方法可以应用于导弹制导控制技术领域。

    三维空间中基于多目标灰狼优化的二对一微分博弈方法

    公开(公告)号:CN116451790A

    公开(公告)日:2023-07-18

    申请号:CN202310397347.3

    申请日:2023-04-13

    IPC分类号: G06N5/04 G06N3/006 G06F17/13

    摘要: 三维空间中基于多目标灰狼优化的二对一微分博弈方法,它属于追击者与逃逸者的微分博弈领域。本发明解决了现有微分博弈方法中并未考虑约束的问题。本发明给法向加速度添加了上限,重新求取了带有约束条件的HJI方程,加入对法向加速度的约束可以更好的贴近实际情况,以表征博弈双方在三维空间内的机动能力,使双方的最优博弈点的计算结果更加精确。同时,为求解出双方的最优博弈点,本发明采用了多目标灰狼优化算法来求解Pareto最优解集,寻找最优博弈点,并在生成Pareto最优解集的过程,采用弱肉强食法则来筛选最优解。本发明方法可以应用于三维空间中追击者与逃逸者的微分博弈。

    临近空间高超声速飞行器AHW的弹道预测方法

    公开(公告)号:CN109948304B

    公开(公告)日:2022-07-22

    申请号:CN201910310212.2

    申请日:2019-04-17

    IPC分类号: G06F30/20

    摘要: 临近空间高超声速飞行器AHW的弹道预测方法,它属于飞行器弹道预测技术领域。本发明解决了在临近空间高超声速飞行器AHW有机动时,采用现有方法对飞行器弹道的预测结果误差大的问题。本发明针对临近空间高超声速飞行器AHW,考虑目标受气动力等复杂情况的影响,在飞行器质量、参考面积,气动力参数等敌方飞行器参数未知的情况下,基于当前时刻对于位置和速度的预测,通过求解微分方程,对下一时刻的位置及速度进行预测,直至完成弹道预测。相比于传统方法,本发明方法提高了弹道预测精度,减小了弹道预测误差。采用本发明方法可以使终端位置预报误差小于10km。本发明可以应用于飞行器弹道预测技术领域。

    采用虚拟瞄准点的临近空间高超声速飞行器弹道设计方法

    公开(公告)号:CN110065649B

    公开(公告)日:2022-06-07

    申请号:CN201910389092.X

    申请日:2019-05-10

    IPC分类号: B64F5/00

    摘要: 采用虚拟瞄准点的临近空间高超声速飞行器弹道设计方法,属于弹道设计领域,涉及一种弹道设计方法。本发明为了解决现有比例导引的弹道设计方法存在飞行器难以到达目标点和不能满足落角要求的问题。本发明将飞行器飞行阶段分为巡航段和下压段,在巡航段每间隔K1距离选取一个虚拟的目标点,并选取下压点为xk;然后根据虚拟瞄准点选取的原则进行设计,巡航段要求任意两个相邻虚拟瞄准点之间高度变化不超过5km,设计的弹道在纵向平面内近似为正弦函数的形式;在距最终目标点距离K3的情况下,通过寻优算法确定最后一个虚拟瞄准点坐标。本发明用于临近空间高超声速飞行器弹道设计。

    临近空间高超声速飞行器AHW的弹道预测方法

    公开(公告)号:CN109948304A

    公开(公告)日:2019-06-28

    申请号:CN201910310212.2

    申请日:2019-04-17

    IPC分类号: G06F17/50

    摘要: 临近空间高超声速飞行器AHW的弹道预测方法,它属于飞行器弹道预测技术领域。本发明解决了在临近空间高超声速飞行器AHW有机动时,采用现有方法对飞行器弹道的预测结果误差大的问题。本发明针对临近空间高超声速飞行器AHW,考虑目标受气动力等复杂情况的影响,在飞行器质量、参考面积,气动力参数等敌方飞行器参数未知的情况下,基于当前时刻对于位置和速度的预测,通过求解微分方程,对下一时刻的位置及速度进行预测,直至完成弹道预测。相比于传统方法,本发明方法提高了弹道预测精度,减小了弹道预测误差。采用本发明方法可以使终端位置预报误差小于10km。本发明可以应用于飞行器弹道预测技术领域。

    三维空间中基于RBF_G的二对一同步区域覆盖拦截方法

    公开(公告)号:CN116222310B

    公开(公告)日:2024-04-26

    申请号:CN202310393166.3

    申请日:2023-04-13

    摘要: 三维空间中基于RBF_G的二对一同步区域覆盖拦截方法,它属于多对一导弹同步拦截领域。本发明解决了现有的同步拦截方法中未考虑目标的不同机动级别和类型,以及未考虑目标法向过载的随机性的问题。本发明首先提出了三维空间中的导弹对目标拦截时间的计算方法,其次生成训练数据集用于训练生成RBF_G网络,再基于比例制导率提出了变比例系数的比例制导策略,允许拦截器在期望的拦截时间拦截机动目标,即使目标采用不同的级别和类型的机动,目标的法向过载为随机的定值,导弹也可以通过预计的拦截时间和当前时间误差来实现二对一的同步区域覆盖拦截。本发明方法可以应用于二对一导弹同步拦截。

    采用虚拟瞄准点的临近空间高超声速飞行器弹道设计方法

    公开(公告)号:CN110065649A

    公开(公告)日:2019-07-30

    申请号:CN201910389092.X

    申请日:2019-05-10

    IPC分类号: B64F5/00

    摘要: 采用虚拟瞄准点的临近空间高超声速飞行器弹道设计方法,属于弹道设计领域,涉及一种弹道设计方法。本发明为了解决现有比例导引的弹道设计方法存在飞行器难以到达目标点和不能满足落角要求的问题。本发明将飞行器飞行阶段分为巡航段和下压段,在巡航段每间隔K1距离选取一个虚拟的目标点,并选取下压点为xk;然后根据虚拟瞄准点选取的原则进行设计,巡航段要求任意两个相邻虚拟瞄准点之间高度变化不超过5km,设计的弹道在纵向平面内近似为正弦函数的形式;在距最终目标点距离K3的情况下,通过寻优算法确定最后一个虚拟瞄准点坐标。本发明用于临近空间高超声速飞行器弹道设计。

    三维空间中基于RBF_G的二对一同步区域覆盖拦截方法

    公开(公告)号:CN116222310A

    公开(公告)日:2023-06-06

    申请号:CN202310393166.3

    申请日:2023-04-13

    摘要: 三维空间中基于RBF_G的二对一同步区域覆盖拦截方法,它属于多对一导弹同步拦截领域。本发明解决了现有的同步拦截方法中未考虑目标的不同机动级别和类型,以及未考虑目标法向过载的随机性的问题。本发明首先提出了三维空间中的导弹对目标拦截时间的计算方法,其次生成训练数据集用于训练生成RBF_G网络,再基于比例制导率提出了变比例系数的比例制导策略,允许拦截器在期望的拦截时间拦截机动目标,即使目标采用不同的级别和类型的机动,目标的法向过载为随机的定值,导弹也可以通过预计的拦截时间和当前时间误差来实现二对一的同步区域覆盖拦截。本发明方法可以应用于二对一导弹同步拦截。